
pple III Apple Writer III
Word Processing Language

Customer Satisfaction If you discover physical defects in the manuals distributed with an Apple product or in the
media on which a software product is distributed, Apple will replace the documentation or
media at no charge to you during the 90-day period after you purchased the product.

In addition, if Apple releases a corrective update to a software product during the 90-day
period after you purchased the software, Apple will replace the applicable diskettes and
documentation with the revised version at no charge to you during the six months after the
date of purchase.

In some countries the replacement period may be different; check with your authorized
Apple dealer. Return any item to be replaced with proof of purchase to Apple or an
authorized Apple dealer.

Limitation on Warranties
and Liability

J

Even though Apple has tested the software described in this manual and reviewed its
contents, neither Apple nor its software suppliers make any warranty or representation,
either express or implied, with respect to this manual or to the software described in this
manual, their quality, performance, merchantability, or fitness for any particular purpose. As
a result, this software and manual are sold “as is,” and you the purchaser are assuming the
entire risk as to their quality and performance. In no event will Apple or its software suppliers
be liable for direct, indirect, incidental, or consequential damages resulting from any defect
in the software or manual, even if they have been advised of the possibility of such
damages. In particular, they shall have no liability for any programs or data stored in or used
with Apple products, including the costs of recovering or reproducing these programs or
data. Some states do not allow the exclusion or limitation of implied warranties or liability for
incidental or consequential damages, so the above limitation or exclusion may not apply to
you.

Copyright This manual and the software (computer programs) described in it are copyrighted by
Apple or by Apple’s software suppliers, with all rights reserved. Under the copyright laws,
this manual or the programs may not be copied, in whole or part, without the written
consent of Apple, except in the normal use of the software or to make a backup copy. This
exception does not allow copies to be made for others, whether or not sold, but all of the

it

t

material purchased (with all backup copies) may be sold, given or loaned to another person.
Under the law, copying includes translating into another language.

You may use the software on any computer owned by you but extra copies cannot be made
for this purpose. For some products, a multi-use license may be purchased to allow the
software to be used on more than one computer owned by the purchaser, including a
shared-disk system. (Contact your authorized Apple dealer for information on multi-use
licenses.)

Product Revisions
$

Apple cannot guarantee that you will receive notice of a revision to the software described
in this manual, even if you have returned a registration card received with the product. You
should periodically check with your authorized Apple Dealer.

© Apple Computer, Inc. 1982
20525 Mariani Avenue
Cupertino, California 95014

Apple and the Apple logo are registered trademarks of Apple Computer, Inc.

Simultaneously published in the U.S.A, and Canada. All rights reserved.

Apple Writer III
Word Processing
Language

Apple III

I : I 111
■ HHI ?<^< ■■■

Contents

ixList of Figures and Tables

xiPreface

Introduction to WPL
3 An Example of a WPL Program
4 How WPL Is Related to Apple Writer
4 Immediate, Embedded, and Deferred Commands
8 Using Apple Writer “Hands Off”
9 The [p]rintProgram Option

10 How WPL Shares Resources With Apple Writer
10 How WPL and Apple Writer Share Memory
11 How WPL and Apple Writer Share the Screen

How to Write in WPL
16 Overview of WPL
16 Commands and Statements
17 Labels
17 Comments
18 Uppercase and Lowercase
18 Editing and Saving a WPL Program
19 The Parts of a WPL Statement
20 The Label
21 The Command
21 The Argument
22 How to Write a Statement
22 Writing an Apple Writer Command
26 Writing a WPL Command
27 Writing Comments

Contents iii

Controlling Execution 33
33 Ending a WPL Program
33 Executing the Last Statement
34 The Quit Command
34 Interruption Due to Error
35 Program Loops
36 The Go Command
37 Exiting From a Loop

Output
41 Saving a File From a WPL Program
42 Printing From a WPL Program
42 Sending Output to the Screen
42 The Print Command
43 The Input Command
44 Controlling the Screen Display
44 The No Display Command
45 The Yes Display Command
45 Clearing the Screen

41

Using String Variables
49 Introduction to String Variables
49 What Is a String?
50 What Is a Constant?
50 What Is a Variable?
50 String Variables in WPL
52 Setting a String Variable
52 Additional Features of the Input Command
54 The Assign String Command
54 Concatenation
56 The Load String Command
57 Conditional Execution
58 Comparing Strings
58 The Compare Strings Command
60 A Sample Menu Program

49

iv Contents

Using Numeric Variables
65 What Is a Numeric Variable?
66 The Set X Command
66 Converting Strings and Performing Arithmetic
67 Using Counters and Accumulators
68 Comparing Numeric Variables
69 Creating Form Letters With WPL
69 A Sample Form Letter
70 Creating an Address File
72 A Form Letter Program
73 The Write Section
73 The Loop Section
75 The Name Section
75 The Quit Section

Advanced Techniques
80 Writing Subroutines
80 The Subroutine Command
81 The Return Command
82 Sequence of Execution
83 Chaining Programs
83 Flow of Control With Chaining
84 The Do Command
84 Variables and Text During Chaining
84 STARTUP
85 How to Make a startup Program
86 How to Use a startup Program
87 Loading the Catalog Into Memory
88 A Final Word

65

79

Contents v

Enhancing WPL Programs
92 Understanding the autoletter Program
92 The Structure of autoletter
93 autoletter Files
95 Printed Output
95 Screen Output and Keyboard Input
95 Calculations
96 The Processing Loop
99 Running autoletter
99 Modifying the autoletter Program

100 Describing the Need
100 Designing the Program Changes
102 Workfiles
103 Designing the File Changes
105 Implementing the Solution
109 Testing the Solution
111 Summing Up

Syntax of WPL Statements
115 The General Format of a Statement
116 Labels
116 Commands
116 Arguments
116 RETURN
116 Variables
117 String Variables
117 Numeric Variables
117 Constants
117 Comments

List of WPL Commands

91

115

119

Contents

Summary of WPL Commands by Function 121
122 Command Modes
122 Deferred Mode
122 Immediate Mode
122 Embedded Mode
123 Transfer of Control Commands
123 do—Execute a WPL Program
123 go—Execute a Labeled Statement
123 qt—Quit
123 sr—Subroutine Call
124 rt—Return From Subroutine
124 Output Commands
124 PR—Print a Line
124 in—Input a Line
125 nd—No Display of Text Buffer
125 yd—Yes Display Text Buffer
125 np—New Print
125 op—Continue Printing
126 Numeric Variable Commands
126 sx—SetX
126 String Variable Commands
127 as—Assign String
127 cs—Compare Strings
127 ls—Load String

Error Messages and Debugging Hints 129
129 Error Messages
129 Label not found -- > xxxxx

130 ’RT’ without ’SR’

130 Program > 2048 chars

130 M o r e t h an 32 ’SR’

130 Footnote Overflow

131 Debugging Hints
131 Desk Checking
132 Trace

Contents vii

Answers to Programming Questions
135 Chapter 2 Answers
135 The star Program
136 Chapters Answers
136 Uppercase and Lowercase Responses
137 Modifying the menu Program
138 A Menu Program That Creates a Print Values File
140 Chapter 6 Answers
140 Starting the Stock Calculation With the Current Year

WPL Programs in This manual

Index

135

141

145

Contents

8
10
12

19

35
36

51
57

80
82
83

97

98

102

5
7

74

List of Figures and Tables

List of Figures and Tables

Figure 1-1.
Figure 1-2.
Figure 1-3.

Figure 2-1.

Figure 3-1.
Figure 3-2.

Figure 5-1.
Figure 5-2.

Figure 7-1.
Figure 7-2.
Figure 7-3.

Figure 8-1.

Figure 8-2.

Figure 8-3.

Music by WPL
How WPL Shares Memory
The Screen With and Without Text Display

Syntax of a WPL Statement

A Path Containing a Loop
Program Logic of the Jogger’s Path

A String Variable Bucket
Conditional Execution

Subroutine Flow of Control
Execution Sequence of Subroutines
Flow of Control With Chaining

Conditional Transfer of Control: A Fork in
the Road
Unconditional Transfer of Control: A Bend in
the Road
The Workfile: A Kind of Blackboard

Table 1-1.
Table 1-2.
Table 6-1.

Immediate Commands
Embedded Commands
Table of Delimiters

reface

IMPORTANT INFORMATION: If haven’t yet mastered the basic
functions of Apple Writer, you might find yourself confused by what
you read in this manual. That’s only natural: reading about WPL
without having learned Apple Writer is like trying to bake brownies
when you’ve never used a stove before! Save yourself from the frus
tration of burned brownies: don’t pick up this book with any serious
intent until you feel comfortable with Apple Writer.

This manual gives you the power to automate word processing by
writing programs in a Word Processing Language (WPL). WPL is
a special feature of Apple Writer III. Before reading further, please
be sure you are familiar with the contents of the Apple Writer III
manual (which will be referred to from now on as the “Apple Writer
manual”). You might want to read Appendix B in the Apple Writer
manual right now. It takes you through an example of how to use
a WPL program; in this manual you will learn how to write your
own programs.

Ho w to Use This Manual
If you already know how to program in another computer language
(such as BASIC, FORTRAN, Pascal, or assembly language), you will
be able to learn WPL very rapidly. In fact, you may not need to read
all of this manual. To determine whether you need to read the
manual, turn to the appendixes. There you will find the rules for
writing WPL statements and the rules for using each WPL command.
The appendixes may provide all you need to know in order to begin
using WPL. On the other hand, if you’d like more detailed informa
tion, read or skim the manual to see how WPL differs from the
computer language you already know.

If you are new to computer programming, you will discover that
WPL is a very easy language to learn. Begin with Chapter 1 and read
through the whole manual. Right away you will learn programming
terminology and many fundamental programming concepts. You will

How to Use This Manual xi

be able to automate simple word processing functions by the time
you finish Chapter 2. As you read further in the manual, you will
become familiar with more WPL commands until you have mastered
the entire language.

The best way to master automated word processing is to work
with the sample programs in this manual. As you read each chapter,
study the sample programs line by line so that you understand what
each statement does. Type the programs exactly as they appear in
the manual—you’ll learn a lot about WPL statements that way—
and save them. Then run the sample programs and experiment with
them. The more you do, the sooner you’ll be speaking WPL like
a native.

Here is an annotated list of the chapters and appendixes in this
manual:

Chapter 1 Introduction to WPL: Provides a conceptual over
view of WPL.

Chapter 2 How to Write in WPL: Explains the rules for writing
WPL statements.

Chapter 3 Controlling Execution: Describes various ways to
tell WPL which statement to execute next. Shows
how a statement may be executed or not depending
on some condition.

Chapter 4 Output: Shows how to send output to disk, screen,
and printer from a WPL program.

Chapter 5 Using String Variables: Teaches how to use string
variables—special symbols that stand for text.

Chapter 6 Using Numeric Variables: Teaches how to use
numeric variables—special symbols that stand
for numbers.

Chapter 7 Advanced Techniques: Describes how to write very
large programs; explains how a WPL program can
execute another WPL program; tells how to make
and use a STARTUP program; teaches how to load
the catalog into memory.

Chapter 8 Enhancing WPL Programs: Shows how to modify
the standard WPL programs that come with
Apple Writer.

Appendix A Syntax of WPL Statements: Summarizes the syntax
of WPL statements.

xii Preface

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

List of WPL Commands: Lists WPL commands in
alphabetical order.

Summary of WPL Commands by Function: Lists
WPL commands by function; gives syntax of each
command and examples.

Error Messages and Debugging Hints: Lists and
explains WPL error messages; provides debugging
(error identification) hints.

Answers to Programming Questions: Contains
answers to the programming problems presented in
this manual.

WPL Programs in This Manual: Lists and describes
all of the sample programs that appear in
this manual.

How to Use This Manual xiii

Introduction to WPL

3 An Example of a WPL Program
4 How WPL Is Related to Apple Writer
4 Immediate, Embedded, and Deferred Commands
8 Using Apple Writer “Hands Off”
9 The [p]rintProgram Option

10 How WPL Shares Resources With Apple Writer
10 How WPL and Apple Writer Share Memory
11 How WPL and Apple Writer Share the Screen

Introduction to WPL

ntroduction to WPL

WPL gives you a way of doing many exciting things with Apple Writer;
you can

• create custom reports,

• write individualized form letters,

• do arithmetic calculations,

• perform repetitive Apple Writer functions,

• create your own menu programs,

and much more.

You already know how to write a WPL
program!

This chapter tells you about the relationship between Apple Writer
and WPL. It also shows you how much you already know.

WPL is a feature that makes Apple Writer more powerful and easier
to use. WPL has some special commands that you’ll learn about in
this manual. But you could write an entire program right now, using
just the Apple Writer commands you’ve already learned to use. Most
of the commands you learned in Apple Writer can be used in
WPL programs.

An Example of a WPL Program
Here’s an example of a program you already know how to write. It’s
called wpl.memoprt and it’s on your UTILITIES disk.

Before you do anything else, it’s a good idea to make an extra copy of
your UTILITIES disk. Once you have a backup copy, put the original
away in a safe place and use the backup copy for the exercises in
this manual.

An Example of a WPL Program 3

What you need to be a programmer

4

WPL.MEMOPRT automatically prints the heading and body of
a memo. Be sure your printer is turned on. Then start up your com
puter with the MASTER disk, insert the UTILITIES disk, and run the
program by pressing [p] and then typing

do . d 1 /u.ip 1 . rnemop r t

The program is shown below in the lefthand column. The middle
column contains the command name as you are used to seeing it in
Apple Writer. Explanations of what each command does appear in
the righthand column.

program
Apple Writer
command what it does

MEMOPRT NY

L .Dl/HEADING

PNP

NY

L .DI-/BODY

POP [P]CP

clears text buffer
loads document
prints document
clears text buffer
loads second
document
prints second
document

You’ll notice that although you recognize all the commands in this
program, they look somewhat different from the format you’re used
to seeing them in. Chapter 2 explains how to write any Apple Writer
command you already know in this new format so you can use it in
a WPL program.

There’s one thing you need to be clear on to become a successful
WPL programmer: that is, programming is easy! All you need is to
be able to follow instructions, think through a problem step by step,
pay attention to details, and learn from your mistakes.

How WPL Is Related to Apple Writer
Apple Writer and WPL are really both part of the same overall word
processing system. WPL builds on commands and procedures you
already know from Apple Writer, but WPL has some differences and
many additional features.

Immediate, Embedded, and Deferred Commands
In Apple Writer you learned about two kinds of commands:
immediate and embedded. In WPL there are immediate and embed
ded commands and a third kind of command as well: deferred.

Chapter 1: Introduction to WPL

Immediate commands cause something to happen right away. For
instance, as soon as you type this immediate command

the computer immediately saves your file.

Table 1-1. Immediate Commands

The immediate commands [R] (Replace) and [v] (Control Character
Insertion mode) cannot be used in a WPL program.

Table 1-1 shows all of the immediate commands you’ve learned in
the Apple Writer manual as they appear in Apple Writer and as they
appear in a WPL program.

In Apple Writer Meaning In WPL

[B] Beginning B

[c] Case Change mode c

[0] Direction arrow 0

[E] End E

[F] Find and replace F

[G] Glossary G

[L] Load L

[N] New N

[0] SOS Command Menu 0

[p]' Print/Program Menu P?

[Q] Additional Functions Menu Q

[■”] Save s

[T] Tabs T

[w] Word delete/retrieve W

[x 1 Paragraph delete/retrieve X

[V] Splits screen T

[z] Word wraparound U—

Embedded commands are those that you insert in your document.
They aren’t executed right away. Apple Writer pays no attention to
them when you put them in your document. When you print the
document, Apple Writer finds and executes the embedded
commands in the course of printing.

How WPL Is Related to Apple Writer

In general, embedded commands have to do with determining how
your document is printed. The Input command, an especially useful
embedded command, stops the printing of a document and waits
for your input. For instance, if you want Apple Writer to remind you
to tighten the platen before a subscript or superscript command,
you embed this command in your document:

.IN Tighten the platen!

When Apple Writer comes to this command, it will display

Tighten the platen!

on the screen and wait for you to press CRETURN^ before continuing
to print.

Table 1-2 shows all of the embedded commands you’ve learned in
the Apple Writer manual as they appear in Apple Writer and as they
appear in a WPL program. As you may recall from the Apple Writer
manual, most of the commands in Table 1-2 can also be used as
immediate commands (that is, without the leading period).

6 Chapter 1: Introduction to WPL

Table 1-2. Embedded Commands
In Apple Writer Meaning In WPL

. LM Left Margin PLM

.PM Paragraph Margin PPM

.RM Right Margin PRM

. TM Top Margin PTM

. BM Bottom Margin PBM

. PN Page Number PPN

.PL Printed Lines PPL

.PI Page Interval PPI

.SP Single Page PSP

.CP Carriage Return PCR

.UT Underline Token PUT

. LJ Left Justify PL J

.FJ Fill Justify PF J

. CJ Center Justify PC.J

. RJ Right Justify PR J

.TL Top Line PTL

.BL Bottom Line PBL

. IN Input PIN

The embedded commands .ff (Formfeed), and .ep (Enable Print)
cannot be used in a WPL program.

How WPL Is Related to Apple Writer 7

A deferred command is one that is in a program; it is not executed
until the program is run. Almost all of the commands that you learned
in the Apple Writer manual can be used as deferred commands in
a WPL program when they are written in a slightly different way.
Here’s what the [s], .in, and lm commands look like when written
as deferred commands:

s f i 1 e n a rn e

pin T i g h t e n the platen!

pl ml 5

You write a WPL program by making a text file of deferred
commands like those above; then to run the program you press [p],
then type

do . dZ/p rogr arnnarne

and press (return) .

Using Apple Writer “Hands Off”
WPL gives you a way to use Apple Writer “hands off,” just like playing
a player piano. You can run WPL programs that someone else wrote
just as you can use a player piano roll to play a song that someone
else recorded.Figure 1-1. Music by WPL

8 Chapter 1: Introduction to WPL

Commands that are preceded by [p]
are WPL commands.

You can “play” a WPL program over and over again and it never gets
tired. And your hands don’t have to be on the keyboard—you can
be busy doing other tasks (or resting from your labors) while WPL plays
merrily away.

Let’s look at this a little more closely. To create a player piano roll,
you have to play the piano. Everything you play, wrong notes and
all, is recorded exactly as you played it. To create a WPL player
piano roll, otherwise known as a program, you type the Apple Writer
commands almost as you would it you wanted them to be executed
immediately. (Apple Writer knows that they’re not immediate
commands because you don’t use the (control) key.) You complete
the recording by [s]aving the commands in a file called, say,
program, and you play it back by pressing [p], then typing

do . dl/progearn

and pressing (return) .

There are a few special rules for typing commands that are part
of a WPL program. The rules are called syntax and are covered
in Chapter 2.

The [p]rint/Program Option
Some of the commands you’ve learned in Apple Writer are really
WPL commands. Here’s how to tell the difference. If you have to
press [p] before issuing the command, it’s a WPL command.
Remember that [p] gets you the [p]rint/Program option of Apple
Writer; the print part of this option has to do with text format
ting, and the program part has to do with WPL. The WPL commands
you know are

do Do (execute or run a WPL program)
np New Print (print the first or only file of a document)
cp Continue Print (print the next file of a document)

Now look again at the wpl . memoprt sample program earlier in
this chapter. Notice that the np and cp commands have a P in front
of them. This stands for Ccontrol) - p (which you are used to
seeing represented as [p] in the Apple Writer manual).

You will learn more about specific syntax requirements in Chapter 2.
Right now the important thing to remember is that WPL commands
are connected to Apple Writer through the [p]rint/Program option.

How WPL Is Related to Apple Writer

How WPL Shares Resources With Apple Writer
Apple Writer is a program that can talk to other programs. For
instance, Apple Writer passes your messages to the operating sys
tem every time you [i_]oad or [s]ave a file. Apple Writer also receives
messages from any WPL program you run. Therefore Apple Writer
and the WPL program must be in the memory of the computer at
the same time. You might think that things get fairly complicated
inside the computer, but in fact Apple Writer has “a place for every
thing and everything in its place.” That’s what the rest of this chapter
is about.

Ho w WPL and Apple Writer Share Memory
Apple Writer and WPL each stay in special sections of memory
assigned to them; these sections of memory are called buffers. The
buffer assigned to WPL is 2,048 characters long. That’s long enough
to write quite a large WPL program, but it’s not long enough to write
any possible program, so there’s a method called chaining that lets
you connect several programs together. Chaining is described in
Chapter 7.

WPL programs and the footnotes in a document share the same
buffer. So if you’re using a WPL program to print a document that
contains footnotes, you won’t have as much room available for your
program as you otherwise would. The room available for the WPL
program will be reduced to 1,024 characters; the rest of the buffer is
used to hold the footnotes.

All of the other buffers that were described in the Apple Writer
manual continue to exist when you run a WPL program. Figure 1-2
shows how WPL shares memory.

10

WPL BUFFER WPL BUFFER WPL BUFFER
WHEN THERE IS NO WHEN THERE IS A

Figure 1-2. How WPL Shares Memory

FOOTNOTE FOOTNOTE

The screen buffer assumes special significance in WPL, so we’ll
look at that next.

Chapter 1: Introduction to WPL

How WPL and Apple Writer Share the Screen
Remember that player piano? When you’re playing the piano
yourself—using Apple Writer in immediate mode—you usually want
the screen to display all or part of the document in the text buffer.
Occasionally you may load a document without putting it in the text
buffer—that is, you display it temporarily on the screen. When you’re
using a player piano roll—a WPL program—you will scarcely ever
want to display the document on your screen. There are three
reasons for this:

Turn the text display off in most WPL
programs.

For a translation of the two-character
name of any WPL command, see
Appendix B. For a summary of how to
use any WPL command, see Appendix C.

• first, your WPL program will run up to five times faster if you don’t
display the document as it’s being processed;

• second, you don’t need to look at the text as it’s being processed—
you already know how it will be processed, because you designed
the program; and

• third, there are other, more useful ways to use the screen.

The screen normally displays the contents of the text buffer. WPL
has a command, nd, that turns off the text display, and another
command, yd, that turns it back on.

When the text display is on, WPL can send only a one-line message
to the screen. When the text display is off, WPL can use the entire
screen for messages. (See Figure 1-3.)

How WPL Shares Resources With Apple Writer

Figure 1-3. The Screen With and Without
Text Display.

With text display (YD), you see only one
line of the message, and it’s often hard
to see.

|Z Mem £42£2 Len £59 Pos 0 Tab 0 File.

Occasionally, you may load a document without putting it in the text buffer--that is, you

display it temporarily on the screen. When you’re using a player piano rol 1-- a WPL program-- you will

scarcely ever want to display a document on your screen. There are three reasons for this:

-first, your WPL program will run up to five times faster if you don’t display the document as

it’s being processed;

-second, you don’t need to look at the text as it’s being processed--you already know how it

will be processed, because you designed the program; and

-third, there are other, more useful ways to use the screen.

The screen normally displays the contents of the text buffer. WPL has a command, NO, that

turns off the text display, and another command,

Enter Your Selection (A-J)

When the text display is on, WPL can send only a one-line message to the screen. When the text

display is off, WPL can use the entire screen for messages. (See F igure 1-B)

Figure 1-3 A.

Without text display (ND), you see
messages on the whole screen. (The
Help Screen Menu is a message from
a WPL program.)

HELP SCREEN MENU

A. Command Summary

B. Cursor Movement

C. Upper Lower Case Change

D. Delete Retrieve Text

E. Tabs

F. Glossary

G. SavlngFlles

H. Loading Files

I. Find Replace Text

J. Print Format Commands

Press RETURN to Exit

Enter Your Selection (A-J)

Figure 1-3 B.

Use your screen for debugging.

By turning off the text display, you can create menus like those in
Apple Writer or you can display the results of computations per
formed by your WPL program. You can also display information that
will help you debug your program. Debugging is a popular computer
term. It means removing the errors, or bugs, from your program.
See Appendix D for more information on program errors and on
using the screen to debug programs.

Now that you know how WPL and Apple Writer are related, you are
ready to begin actually writing in WPL. Just turn the page.

12 Chapter 1: Introduction to WPL

16
16
17
17
18
18
19
20
21
21
22
22
26
27

How to Write in WPL

13How to Write in WPL

Overview of WPL
Commands and Statements
Labels
Comments
Uppercase and Lowercase
Editing and Saving a WPL Program

The Parts of a WPL Statement
The Label
The Command
The Argument

How to Write a Statement
Writing an Apple Writer Command
Writing a WPL Command
Writing Comments

ow to Write in WPL

A WPL program is a series of statements. Whether we refer to them
as WPL statements or just plain statements, we mean exactly the
same thing. Each statement represents a complete thought, just as
an English sentence does. A statement usually occupies one line of
text (that is, it begins and ends with a CRETURN)), although certain
Apple Writer commands such as [F]ind may require a two-line
statement.

Syntax—the rules for fitting parts
together

First you will learn what the parts of a statement are called and what
they’re for. Then you’ll be shown how to make statements out of all
the Apple Writer commands and WPL commands you already know.

Syntax is the name for the collection of rules that describes how
words in a sentence fit together. For instance, in English syntax the
following order is usual:

SUBJECT VERB OBJECT

I threw the ball.

The ball hit the fence.

The only way to tell whether the ball is a subject or object in the
second sentence is to study the word order. This chapter teaches
you the simple syntax rules that apply to WPL statements. (See
Appendix A for a summary of the syntax rules.) The rules help
Apple Writer interpret your program correctly, without ambiguity;
they also help you remember what you meant when you wrote it.

Before we look at the details, though, let’s look at the big picture.

How to Write in WPL 15

Overview of WPL
This section

• defines some terms that are used in this manual;

• introduces you to two programming concepts: labels
and comments;

• gives you some general rules about when to use upper- and
lowercase;

• reminds you how to save and use a WPL program.

Commands and Statements
Command. This word means just what it does in the Apple Writer
manual: an order given to the computer, like [f]ind or [p]np
(New Print).

Apple Writer Command. This is a command that you learned to
enter as an immediate command by pressing the (control) key while
typing the command letter. Apple Writer commands in a WPL
statement are entered without using the (control) key. The
command names are always one character long. Here are some
Apple Writer commands:

As Deferred Commands
As Immediate Commands in a WPL Program
[B] B

[L] L

[N] N

WPL Command. This is a command that you learned to enter as an
immediate command by pressing [p] before typing the command.
In WPL, these commands are entered by preceding them with
the letter p. The command names themselves are always two
characters long. Here are some WPL commands:

As Immediate Commands
[P]NP

[P]CP

[P]DO

As Deferred Commands
in a WPL Program
PNP

PCP

PDO

16 Chapter 2: How to Write in WPL

Giving names to commands

Internal documentation

Statement. A statement, sometimes called a WPL statement, is like
a sentence; it is a complete thought. The term statement generally
refers to a statement that contains a command, but a statement may
also be a comment, which is defined below. A command statement
includes the command name, an optional label, and any other
information supplied with the command.

Labels
Labels are names. They tell Apple Writer which WPL statement in
your program you’re referring to. You’ve never had to do that before
because you haven’t needed to talk about a command—you could
just execute it. But sometimes in a program you want to tell Apple
Writer to go back and do a set of commands that it has already done.
The way to do that is to give the first statement in the set a name; for
example in the following program segment, newdoc is a label.

NEWDOCL .D2/NEWTEXT

PGO NEWDOC

Comments
A comment is a note to yourself written in WPL syntax and included
in a program. Comments, like labels, are things you haven’t had any
use for before. They’re special statements that Apple Writer ignores
when it executes your WPL program. Comments are there for the
sole purpose of helping you to remember how your program works.
Then if you haven’t looked at the program for six months you can
read the comments to see what it does. The following statement is
a comment:

P Note that the 1 atest version of the file rnust be loaded.

(A comment always begins with a p. See the end of this chapter for
more information on how to write comments.)

Overview of WPL 17

Uppercase and Lowercase
Some of the WPL statements in this manual are printed in uppercase
and others are printed in lowercase. Most of the time Apple Writer
doesn’t care which you use. pnp is exactly the same command as
pnp or Pnp or even pNp.

Upper- and lowercase matter in labels.

The argument follows the command and
gives more information about it.

There are two places where upper- and lowercase definitely do
make a difference, however. The first has to do with labels', a label
must be typed exactly the same way wherever it is used. If you use
uppercase for a label in one place in your program and lowercase in
another, Apple Writer will think you are talking about two different
labels. This can lead to very strange program results.

The other place where upper- and lowercase make a difference is in
the argument of a WPL statement—the portion of the statement that
follows the command and gives additional information about it.
(To find out more about arguments, see the section called “The Parts
of a WPL Statement” later in this chapter.) A part of the argument
may be intended to have a precise value in which upper- and lower
case are significant. For instance, if you ask Apple Writer to [r]ind
/apple/ (the fruit), that’s not the same as finding /Apple/ (the
company). Here’s the rule of thumb to follow in writing Apple Writer
and WPL arguments:

• If the argument must be a specific value, such as y or n, it can be
entered in either upper- or lowercase.

• If the argument may be any value, such as a string of text to be
found or printed, then the argument is taken exactly as you
typed it.

Editing and Saving a WPL Program
A WPL program is a document that has been saved in a file. It is
created the same way any Apple Writer document is created.

To create a new WPL program, clear memory with the Apple Writer
[N]ew command, type the program, and save it in a file using the
Apple Writer [s]ave command:

[5] a ve: . d 1 / p r □ g r a m n a m e

18 Chapter 2: How to Write in WPL

See Appendix F for a list of the programs
on the UTILITIES disk.

To edit an existing WPL program, use the Apple Writer [L]oad
command to load the file:

[L]oad: .dl/programname

Then edit it and save it.

To use a WPL program that you have written and saved on a disk,
press [p] and then type the WPL Do command followed by the
name of the file you saved the program in:

[P]rint/Program: do . dl/programname

All the sample programs used in this manual are found on the
UTILITIES disk; the program names all begin with WPL.

Important:
It’s a good idea to start the names of all your WPL programs with WPL.,
like this

w p 1. p r o g r a m n a rn e

so that you can easily distinguish WPL programs from the rest of your
files.

The Parts of a WPL Statement
A statement always contains a command name (unless it is a
comment statement); it may also contain a label (the name of the
statement) and an argument (the additional information that is
needed in order to execute the command). Figure 2-1 shows the
syntax of a statement.

Figure 2-1. Syntax of a WPL Statement.

The Parts of a WPL Statement

The Label
The label is a name for the statement. Labels are optional, but you
must give a name to a statement if you refer to it in another state
ment. The commands in WPL that refer to another statement are go
and Subroutine Call (sr).

You may also give any statement a name in order to help you
remember what the statement does. This is known as internal docu
mentation— information about a program that is contained in the
program itself. (Another way to document your program is to include
comment statements. You will learn how to write comments later in
this chapter.)

Here are the rules for writing a label:

• It must begin in the leftmost position of the line (that is, at Tab
position 0 on your screen).

• It may contain any character except the space, including upper-
and lowercase letters.

• It may be any length.

• It must be followed by at least one space.

When you refer to a label in a WPL statement, you must spell it
exactly the way you did when you wrote the label. The following
list contains three different labels:

MYLABEL

mylabel

MyLabel

Here’s what a label (getfile) looks like as part of a statement in
a WPL program:

GETFILE L .dl/filename

20 Chapter 2: How to Write in WPL

The Command
The command is like a verb; it’s the part of a statement that tells
the computer what to do. Most commands contain two parts: the
command name (like [r]ind or do) and an argument (described in
the next section). Some commands do not take arguments. Here
are the rules for writing a command:

• Leave one or more spaces before the command, whether or not it
is preceded by a label.

• If the command is an Apple Writer command, type the command
name by itself, without using the (control key; for instance, type
[L]oad or [s]ave as l or s.

• If the command is a WPL command like np or do, place the
letter p immediately before the command name: pnp or pdo. (The
p stands for the Apple Writer [p]rint/Program command.)

The Argument
Argument is a mathematical term that programmers use. The argu
ment is the part of a command that gives additional information
about it. I n other words, it’s a modifier that tells Apple Writer precisely
how to execute the command. Some commands (like [E]nd) work all
by themselves without an argument. Others have an argument that
consists of one, two, or more parts. As you are introduced to each
new command in this manual, you’ll be told exactly how to write the
argument if the command takes one.

The argument is the last part of a statement, and it is always fol
lowed by Creturn^ . This means that the next statement in the
program always starts on a new line. In the following statement,
. di/autoietter is the argument:

PDU . dl/au to 1 e 11er

The Parts of a WPL Statement 21

How to Write a Statement
Let’s begin with a question of style. Some programming languages
require you to write certain parts of a statement in particular posi
tions on the line. (These positions are often called columns because
they originally referred to the columns of a keypunch card.) WPL,
on the other hand, is quite flexible in its format. Nevertheless you
may find that your program is a lot easier to read and work with if
you follow a set pattern in writing statements. Here is the one
we recommend:

• Decide how long your longest label will be. Then begin every
command two positions beyond that point, whether or not the
command has a label. That way the commands will be lined up
and easy to read.

• When spaces between the command name and the argument are
optional, use them. Apple Writer won’t care, and you’ll be able to
read your program more easily.

• If you line up the commands as we suggest, a statement will use
the same number of characters in its label area whether it contains
a label or just spaces because spaces are counted as characters.
Therefore use labels liberally to remind you what the statements
do. In the loadfile program below, the first statement takes no
more room than the last statement.

LOADFILE L .Dl/LETTER

REPLACE F/1981/1983/A

PRINT PNP

8 .Dl/LETTER

• If your program is long, you’ll save room by keeping your
labels short.

Writing an Apple Writer Command
Here are the rules for writing an Apple Writer command in a
WPL program:

• Type the one-letter command name without pressing the
(control) key. If you want [F]ind, type F, if you want [Glossary,

type G, and so on.

• For file commands ([L]oad, [s]ave), spaces between the command
name and the argument are optional.

22 Chapter 2: How to Write in WPL

• For all other commands, spaces between the command name
and the argument are not allowed.

Here are the rules for writing the argument of an Apple Writer
command in a WPL program:

• Type the argument exactly the way you would type it if you were
using the command as an immediate command. That is, if you
must press (control) or (return) when you enter the argument in
Apple Writer, press (control) or "return when you enter the
argument in your WPL program, (control) should always be pre
ceded and followed by [v].

• Alwaysend thestatement with (return) . If the statement has no
argument, press (return) after the command name. If there’s an
argument, press (return) at the end of the argument.

• If, when you type the command in Apple Writer, you need to press
(return) twice (for instance, to exit from the DOS Command
Menu) then you must also press (return^ twice when you use the
command in a WPL program. However, in the WPL program you
must put one or more spaces between the two (return) s. This is
because the second (return) cannot be in the leftmost position
of the line. If it were in the leftmost postion, it would look like
a label and be ignored. This in turn would mean that the (return)
at the end of the following line would be used to exit from the
menu and the command on that line would be ignored.

Now let’s look at three examples of Apple Writer commands written
as program statements. Each statement begins on a new line
because the preceding statement ends with (return) .

Apple Writer Command Description

2. NY

3. F / J u n e / J u 1 y

Move cursor to beginning of file.

Clear memory.

Find and replace text.

How to Write a Statement 23

Example: move cursor to beginning of file

Example: clear memory

24

Example 1. b
[b] is an Apple Writer command that doesn’t need an argument. It
moves the cursor to the beginning of the document in the memory
buffer, and it sets the direction to >. In a WPL program, you use this
command if, for example, you want to search for a marker from the
beginning of a document to the end. For instance

L . d 1 b u d g e t. a n n u a 1

B

F/1582/1983/A

Load file.
Move cursor.
Find, replace all dates.

This little program loads a file called budget . annual into the text
buffer from the disk in drive 1. It moves the cursor to the beginning
of the document in memory and then searches through the docu
ment, replacing every occurrence of 1982 with 1983.

Now that you know the syntax rules for Apple Writer commands
in a WPL program, you should be able to read this sample program
without difficulty. If you’re having trouble remembering what the
Apple Writer commands do, please look them up in your Apple
Writer manual right now.

Even if you’re feeling pretty comfortable with Apple Writer, you may
find it helpful to review all the features of each command before you
begin programming. That’s because some features are especially
useful when used in a program, and you might have missed their sig
nificance the first time around.

Example 2: ny
[N]ew is an Apple Writer command that requires an argument.
The command clears memory. When you press [n] , Apple Writer
responds by asking you if you really want to erase memory, and you
may answer either y or n. Because you are prompted for an answer
when you use [n] as an immediate command, you must respond as
if you were prompted when you issue this command in a WPL pro
gram. Remember, WPL is like a player piano—the same notes are
played whether or not the pianist is at the keyboard.

You want your program to answer yes, of course. If you didn’t, you
wouldn’t have written a [N]ew statement in the first place. So type
the response, which is this command’s argument, just the way you
would if you wanted the command to be executed immediately.
Notice that there aren’t any spaces between the n and the Y. You
wouldn’t have typed a space at the keyboard, so Apple Writer doesn’t
expect you to put one in your program.

Chapter 2: How to Write in WPL

Example: replace a word

Example 3: f / J une/ Ju 1 y/

Y?

[F] is an Apple Writer command whose argument has more than
one part. You can use this command to find text (that is, position the
cursor), ortofind and replace the next occurrence of the text (which
is what this example does), or to find and replace all occurrences
automatically.

The [f]ind statement requires two lines in yourWPL program. That’s
because you would have to press (return) after typing/June/July/

if you were entering the [f] ind command at the keyboard for imme
diate execution. If you want to see for yourself, type some text
containing the word June and then do the following:

Press [b]
Press [F]

Type /June/J u1y/

(Move cursor to start.)
(Find/replace command.)
(Replace June with July.)

Nothing happened, right? That’s because you haven’t pressed
(return) yet. Do that right now, and you’ll see the next prompt:

[F]ind:RETURN = Proceed / Y = Replace

Type y and the replacement will be made. You’ll also get the final
prompt, without having to press (return):

[F]i nd:R E T U R N = Proceed

Now type

The prompt disappears and the cursor is positioned after the text
that was replaced. (The question mark is explained below.)

If you look at the statement that contains this Apple Writer com
mand, you’ll see that the statement does exactly what you did at the
keyboard. Here it is again:

F June/ July
I. .» Q

I f

Where you had to press (return) , the statement contains a CRETURNJ
and continues on the next line. Where you didn’t press (return)
after the y, the statement continues on the same line. That’s the way
all Apple Writer commands are written in WPL—just the way they’re
entered “live at the keyboard.”

How to Write a Statement 25

It’s probably all clear to you now except for that question mark.
What in the world is that? You should be able to see from the syntax
you’ve learned that it’s a response to the final prompt:

[F]ind:RETURN - Proceed

How to exit from the [f]ind command in
a program

What’s confusing is that you’re used to responding to that prompt
with a space if you don’t want to proceed. However, if you go back
to your Apple Writer manual, you’ll see that any character except
(return) will have the same effect as a space.

Since a space doesn’t print, you can’t see whether it’s there or not.
Your WPL program can read it, but you can’t. Therefore most WPL
programmers use the question mark by convention to exit from the
[Fjind command.

Writing a WPL Command
Here are the rules for writing a WPL command in a program:

• Precede the 2-letter command name with the letter p. For instance,
np becomes pnp, cp becomes pcp, and so on.

• For a few commands—Assign String, Input, and Print—spaces
between the command name and the argument are considered
to be part of the argument.

• For all other WPL commands, spaces between the command
name and the argument are optional and may be used to make
your program more readable.

• Always end the statement with (return) . if the statement has no
argument, press (return) after the command name. If there’s an
argument, press (return) at the end of the argument.

Here are the WPL commands you learned in the Apple Writer
manual, first as they are written in WPL and then as they are entered
as immediate commands:

In a Program From the Keyboard
PDO .d2/filename Press [P]

Type do .d2/f1lename

pnp Press [p]
Type np

pcp Press [p]
Type cp

26 Chapter 2: How to Write in WPL

Comments help you remember how
your program works.

Note that you can write all your docu
mentation with Apple Writer!

The rest of this manual will teach you how to write programs and
how to use the 14 other WPL commands.

Writing Comments
Comments are statements that annotate your program. The format
of a comment statement is

{label) space(s) P space(s) text of comment

Braces ({ }) mean that the label is an optional part of the com
ment statement.

The comment format is a useful convention. If, while executing
a program, Apple Writer finds a command it doesn’t recognize, it
throws it away—that is, the unrecognized command is ignored.
Apple Writer interprets the comment format as an unrecognized
WPL command because the first character after the p is a space.

You cannot believe how easy it is to forget how your program works
or even how to read it until it happens to you. Therefore when you
write a program it’s important to document it by inserting comments
that explain the design of the program. Here are some other docu
mentation techniques you might want to consider:

• Keep a list of all the files on each disk, with a one-line statement
of the nature of each file.

• Write a paragraph about each program you write, with an
explanation of what the program does and how to run it.

• Make a master list of all programs and files that work together to
accomplish a particular job.

How to Write a Statement 27

Here is an example of a commented program called star. The first
statement is a comment. Its label is the program name and the
comment itself is the program description. The convention of
labeling the first statement with the program name is used through
out this manual.

Example: filling memory with stars

STAR p THIS PROGRAM FILLS MEMORY WITH STARS (comment)
ny
p INSERT A STAR INTO MEMORY (comment)
f//*/

y?

1 o o p e

p load more stars (comment)
Ltt

pgo loop

You know all the commands in this program except for the very last,
pgo loop, which says, “Go to the statement labeled loop and begin
executing instructions.” You’ll learn more about the Go command in
the next chapter.

By the way: The star program illustrates a handy way to insert text into
the document in memory. Just use the [f] ind commmand to find “nothing”
and replace it with text, like this:

F//text/

(The WPL equivalent of “nothing” is two delimiters with nothing
in between.)

The text is inserted at the current cursor position. You can also delete text
by replacing it with nothing, like this:

Fztext//

Here’s a chance for you to practice editing and running a WPL
program. Clear memory and type the sample program in with Apple
Writer. Notice that Apple Writer doesn’t do anything except edit
text—it doesn’t try to execute any of the commands because you
haven’t entered them in immediate mode.

When you’re finished typing, save the program and run it. Watch the
screen fill up with starsand seethe length value (Len:) on the Data
Line increase. Soon the computer will beep and the cursor will
begin flashing again. That means the program has filled all of
memory and has halted.

28 Chapter 2: How to Write in WPL

Now clear memory and load the program so you can edit it. Change
it so that it places *«$ in memory. Save the new version and run it.
You can stop the execution of the program at any time by pressing

C escape) . (Look in Appendix E to see if you modified the star
program correctly. Appendix E contains the answers to all of the
programming questions in this manual.)

Try “playing computer” by reading the program and writing down
the results of each statement so that you can see for yourself why
the program works the way it does. See if you can change the pro
gram so it fills memory faster or makes a more interesting pattern on
the screen.

When you’re ready to learn some new WPL commands, go on to the
next chapter.

How to Write a Statement 29

Controlling Execution

33 Ending a WPL Program
33 Executing the Last Statement
34 The Quit Command
34 Interruption Due to Error
35 Program Loops
36 The Go Command
37 Exiting From a Loop

Controlling Execution 31

Controlling Execution

In this chapter you will learn

• how to end a WPL program.

• how to perform repetitive functions in a WPL program. (You saw
an example of this in Chapter 2, when you ran the star program
which fills memory with stars.)

The four ways to stop a program

Example: appending files

(For a more general version, see
appends in Chapters.)

Ending a WPL Program

You already know one way to stop a running WPL program: press
(escape) and it will immediately stop. That’s a little like stopping a car
by driving it into a brick wall. There are two ways that you can pro
gram a graceful ending: by executing the last statement or by using
the Quit command. Apple Writer also stops your program when it
finds an error in it.

Executing the Last Statement
In a simple WPL program, the statements are executed in sequence
until the last statement is encountered. When there are no more
statements to execute, the program stops and Apple Writer returns
you to its edit function. The memoprt program at the beginning of
Chapter 1 is an example of halting by executing the last statement.
Here’s another example, the append program:

APPEND P THIS PROGRAM MAKES THREE FILES INTO ONE

NY

L ,D2/JANUARY

L .D2/FEBRUARY

L .D2/MARCH

S .D1/QUARTER1

Ending a WPL Program 33

Example: Printing a daily message

The append program doesn’t need a special command to tell Apple
Writer when it’s done. More complex programs, however, may be
written so that the last statement in the program isn’t necessarily the
last one to be executed. In that case, the Quit command is used.

The Quit Command
The format of the Quit command is

PQT

When Apple Writer encounters the Quit command in the course of
running a WPL program, it stops the program and puts you back in
the Apple Writer editor. Whatever was in the text buffer while the
program was running is still there.

You may use the Quit command more than once in a program. The
message program, below, contains two Quit statements.

MESSAGE L . Dl/MSG. DA ILY/JUNE 07/JUNE 08/N

PGO PRINT

PQT

PRINT PNP

PQT

The first Quit statement causes the program to stop only if the
june 0? marker is not found. (We’ll tell you more about why some
commands work only under certain conditions in the section “Con
ditional Execution” in Chapters.) The second Quit statement causes
the program to stop after printing the text between the markers.

Interruption Due to Error
When you run a WPL program, Apple Writer sometimes finds
a condition that keeps it from proceeding further. For instance, you
may have told it that a certain file is on your disk, but Apple Writer
can’t find the file because you misspelled the name in your program.
When Apple Writer recognizes an error condition, it says in effect,
“I give up. I can’t continue to run this program. Here’s the problem
I found, displayed on the screen.”

34 Chapter 3: Controlling Execution

Appendix D lists and explains the five WPL error conditions that can
cause Apple Writer to stop running a program. If the error message
displayed on the screen is not covered in Appendix D, it’s a SOS
message and you will find an explanation of it in the Apple Writer
manual. (Errors associated with files are usually SOS errors.) Please
look at Appendix D now to familiarize yourself with the format of the
error messages and the types of errors that can occur. You may not
understand these messages right now, but you will shortly.

If your program stops with an error message, look up the message
in Appendix D to find an explanation of the message and some
suggestions as to what might have caused the error. When you find
the problem, load and edit your program, save the corrected version,
and run the program again.

Program Loops

How to do things over and over again

Program loops are a means of doing repetitive tasks. If you want
a certain function in your program to be performed over and over
again, you don’t want to have to write out a complete set of instruc
tions for each repetition. In WPL there’s a way to say, “Go back and
do that again.” In fact, the command is called go.

Here’s how program loops work. Let’s say that there’s a circular
track near a jogger’s house. Every day the jogger walks to the track,
runs around it five times, and then walks to the office. Figure 3-1
shows what the jogger’s path looks like:

Figure 3-1. A Path Containing a Loop

Program Loops 35

Figure 3-2. Program Logic of the
Jogger’s Path

The loop in the path is the part that is repeated. It’s called a loop
because the end joins the beginning to make a circle. A program, on
the other hand, is a (more or less) straight path. It has a beginning,
a middle, and an end. But it may contain any number of loops. If
you were to write a program to describe the jogger’s path, its logic
would look like the drawing in Figure 3-2.

The Go Command
The Go command makes program loops possible in WPL. The for
mat of the command is

P GIJ s t a t e rn e n t1 a b e 1

Normally Apple Writer executes WPL statements consecutively. The
Go command, however, causes execution to continue at the state
ment whose label is named in the Go command. For example

loopl

{if condition 1 skip next statement}
pgo loopl

{if condition 2 skip next statement}

This example shows two loops in a program, equivalent to having
our jogger run around the track a few times (loopl) and then run
around the office building a few times (ioop2). The first loop is exe
cuted until condition 1 occurs; then the Go statement is skipped
and the program proceeds to loop 2. The second loop is executed
until condition 2occurs. Chapter 5 tells you how to define conditions.

36 Chapter 3: Controlling Execution

It is also possible to nest loops so that one falls inside another:

A nest of loops

1 u u p 4

{if condition 4 skip next statement}
pgo loup4

{if condition 3 skip next statement}
p g o 1 o o p J

Exiting From a Loop
A never-ending loop is not usually a good idea, for a jogger or for
a program. The star program in Chapter 2 contained an endless
loop, but it was the kind that Apple Writer would eventually find out
about. Sometimes Apple Writer doesn’t know or care if your loop
goes on forever. If you happen to be printing in the loop, you can
chew up vast forests worth of paper before you discover the problem.

There are three ways of exiting from a loop:

• You can use the Go command to go (or branch} to a statement
outside the loop.

• You can use the Quit command to end the program.

• You can take advantage of conditional execution, a feature of
WPL in which certain commands may cause the next statement
in the program to be bypassed. Chapter 5 tells you how to use
conditional execution.

Program Loops 37

Output

41 Saving a File From a WPL Program
42 Printing From a WPL Program
42 Sending Output to the Screen
42 The Print Command
43 The Input Command
44 Controlling the Screen Display
44 The No Display Command
45 The Yes Display Command
45 Clearing the Screen

Output 39

| 1

.

■ ?

Ml

p:’. :Fr.-;

it ■

*Hg|

■ !

B

sSSgfi rfwl

^SgL.

: j?::I. S^:'.-:\:::?-•>•< ■'

88S3888^ .■■RMBiilK

,„JM ■

• • ■ ■ ''. '■ >
I

w<
WpA.

■

utput

This chapter covers WPL’s facilities for

• writing files,

• sending messages to the screen,

• receiving input from the keyboard,

• and printing text.

Saving a File From a WPL Program
You can write a program that creates a file or modifies an existing
file and saves the results on a disk. You have already seen an exam
ple of this. The append program in Chapter 3 created a quarterly file
by loading three monthly files into the text buffer and then issuing
a [s]ave command. This program saved the entire document in the
QUARTERl file.

Refer to the Apple Writer manual for
more ways to save and load files.

You can also use the special features of the Apple Writer [s]ave
command to save part of a document in a new file or to add part or
all of a document to an existing file. A WPL program that saves part
of a document in a new file is

savepartL .d2/oldfile

b

f f i rs tword/

s . d 2 n e w file! last w o r d !

A WPL program that adds a document to the end of an existing file is

add o n L . dl new da t a

s . dlo 1 d f 11 e +

Saving a File From a WPL Program 41

Printing From a WPL Program
When you learned Apple Writer, you learned how to use the np
(New Print) and cp (Continue Print) WPL commands as immediate
commands. You also saw these commands used in the memoprt
program in Chapter 1 of this manual. In Chapter 5, you will discover
how to create a menu program that uses these commands to print
any number of files. For a summary of the New Print and Continue
Print commands, see Appendix C.

Sending Output to the Screen
One of the most useful enhancements WPL makes to Apple Writer is
the capability of sending and receiving screen messages, allowing
you to interact with a running WPL program. You have already used
programs that do this: the Help screens in Apple Writer are created
using WPL programs to display menus and receive your input. This
chapter introduces you to various screen output commands
and techniques.

The Print Command
The Print command displays text on the screen. You can use it to
display up to 128 characters of text, but we recommend that you
limit your text to that which will fit on one line of your display.

The format of the Print command is

PPR text

Any spaces between the command and the first printable character
will be treated as part of the text and placed on the screen. For exam
ple, the following command displays a centered heading on an
80-column display:

PPR DAPPLED SAPLINGS TOPPLED

The text portion of the Print command may contain any combination
of keyboard characters. A blank line is displayed if the command is
entered without an argument:

PPR

42 Chapter 4: Output

The Input Command
The format of the Input command is

PIN text

Additional features of the Input com
mand are described in Chapter 5.

This command displays a line of output on your screen, just as the
Print command does. But Input also causes the program to stop
and wait for you to press CretuW . Here’s an example:

Example: getting your program to stop
temporarily.

HALT PND

PPP [G]

PPR ===== Insert special forms in printer =====

PIN Then press RETURN

In the first line, pnd, the No Display command, allocates the entire
screen to messages rather than to text. The first Print command
rings the bell to get the user’s attention, ([g] causes the bell to ring.)
The second Print command displays a message line on the screen.
The Input command displays another message line and causes the
program to stop and wait. When the user signals by pressing Creturn
that the proper paper has been loaded, the program continues
processing.

Try the halt routine now to see how it works.

• Type the four program statements using Apple Writer. You must
press [v] before and after [G] (to enter and leave Control Charac
ter Insertion mode). See the section “Clearing the Screen,” below,
for more about [v].

• Save the program in a file—do not save it on the MASTER disk.

• Run it using the Do command.

You’ll see the two messages displayed on the screen. Now press
(return and watch the messages disappear. (The screen now

contains whatever was there before you ran the halt program.
Whenever a WPL program ends, the text buffer display is restored
to the screen.)

Sending Output to the Screen 43

Here’s another example of a program that uses the Print and Input
commands. The section shown below displays a logo for the pro
gram LETTER.

Example: logo display LETTER PND

RPR [\]

RPR

PPR

P PR* *

PPR* WIDGET INDUSTRIES, INC. *

PPR* Form Letter Generator *

PPR* *
ppp **t#*******#****oo:««**#t«****o*oo*o*o*

PPR

PIN P ress r e turn to begin. . .

Your program will run up to five times
faster when the document in memory is
not displayed.

The statement ppr [\] (which clears the screen) is explained below.

The Input command, in addition to stopping and starting a WPL
program, can be used to receive information from the user and
deliver it to the program during execution. You will learn how to do
this in Chapters.

Controlling the Screen Display
Apple Writer usually reserves only one line on the screen for output
messages from a program. That’s because the rest of the screen is
kept for display of the document in memory. But you can control
the use of the screen by using the WPL commands nd (No Display)
and yd (Yes Display) to turn the document display off and on.

The No Display Command

The nd (No Display) command turns off the text buffer display so
that the entire screen may be used for message output. No Display
is usually the first command in a WPL program.

The format of the command, which does not take an argument, is

PND

44 Chapter 4: Output

Inserting control characters in a WPL
program

If you issue a series of Print commands in your program and forget
to turn off the text display with nd, the output messages will be
displayed one at a time in the one-line space provided for them...at
computer speed. All you’ll see is a fast flicker. Therefore if you want
to display several lines of information, such as a menu, you must
use the No Display command. You must also put an Input command
(in) at the end of the lines of information so that they continue to be
displayed until the user presses (return).

The Yes Display Command
The yd (Yes Display) command turns the text buffer display back on
so that you can display the document your WPL program is working
on. This can be helpful while you’re developing a program because it
lets you see the effect the program statements are having on the text.

Document display is the state that Apple Writer is in unless you tell it
otherwise. The format of the command, which does not take an
argument, is

PYD

Clearing the Screen
Before you load a file, you normally clear memory. Similarly, before
sending messages from a program to the screen, it is customary to
erase the screen.

The Print command that clears the screen is shown in this manual
as follows:

PPR [\]

This means “Enter the command bytyping ppr and then pressing [v]
[\] [v].” The first [v] tells Apple Writer to enter Control Character
Insertion mode so that [\] or any other control character is entered
as text. (The [\] is a clear screen character.) The second [v] causes
Apple Writer to exit from Control Character Insertion mode and
enter Text mode again. When the program is run, Apple Writer
executes the statement ppr [\] by clearing the screen.

Controlling the Screen Display

46

Using String Variables

49 Introduction to String Variables
49 What Is a String?
50 What Is a Constant?
50 What Is a Variable?
50 String Variables in WPL
52 Setting a String Variable
52 Additional Features of the Input Command
54 The Assign String Command
54 Concatenation
56 The Load String Command
57 Conditional Execution
58 Comparing Strings
58 The Compare Strings Command
60 A Sample Menu Program

Using String Variables

sing String Variables

This chapter explains the terms string and variable. It shows you
how to use string variables to

• create and manipulate strings of text;

• compare a string to a constant or to another string;

• use strings in place of constants in Apple Writer commands;

• modify a program at execution time by using string variables;

• write a menu program.

Introduction to String Variables
In this section you will learn what a string variable is and why it is
such a powerful programming tool.

What Is a String?
Simply stated, a string is text. Each word in this sentence may be
thought of as a string—a sequence of characters strung together. In
WPL, a string may contain up to 64 letters, numbers, and any special
characters you can enter from your keyboard, including control
characters and space characters. Each line below is an example of
a valid string:

A

. dl•••■" f i lenarne

[G]

a!
C up e rt in o, C A 95014

10

F o u r s c o r e and s e v e n y e a r s a g o

Introduction to String Variables 49

What Is a Constant?

String variables versus numeric variables

50

A constant is a string that always has the same value. Its value does
not change while the program is running. All of the strings shown in
the previous section are constants.

What Is a Variable?
In algebra, a variable is a letter or symbol that represents an
unknown number. Sometimes the letter represents a specific num
ber, as in the expression

x = 10 + 2

Other times the letter may represent an infinite number of possibil
ities, as in the expression

x = 10 + y

In this expression, x is known only when we know what y is.

Both of these uses of variables are found in WPL. That is, a variable
may represent a specific value such as “YES” or “10”, or it may
represent a vast number of possibilities such as “any file name” or
“any number from 1 to 1,000”. Your program can control how a given
variable is used—more about this in the next section.

There are two kinds of variables in WPL: string variables and numeric
variables. String variables, which represent text, are described in this
chapter. Numeric variables, which represent numbers, are described
in Chapter 6. The difference between numbers in string variables
and numbers in numeric variables is that you can do arithmetic only
with a numeric variable.

String Variables in WPL
WPL uses four symbols for string variables: $fi, $8, $c, and w.
These may be entered in either upper- or lowercase. $A and $a are
the same variable. Each variable may be used over and over again
to represent different values of text during the course of a program.
Whenever a variable name appears in a program, Apple Writer sub
stitutes the current value of the variable.

Chapter 5: Using String Variables

You can think of a variable as a bucket that holds whatever you put
in it. (See Figure 5-1.) The contents of the bucket will be there until
you put something new in the bucket. When you do, the old contents
are automatically emptied out before the new contents are put in.

Your program can decide whether a given variable may contain
any value at all or whether it must contain a specific value or set of
values. In the appends program, which appears later in this chapter,
all of the variables may contain any value—the program doesn’t
check them. In the choice program (also later in this chapter), the
$a variable must contain the answer “yes” or “no”; otherwise
the program asks the question again.

Figure 5-1. A String Variable Bucket

A string variable may be used in any Apple Writer or WPL command
instead of text. Here are some examples of string variables used
in statements:

1. ppr The new file for month Sa is Sb.

2. L $D/$A

3. f / Sc/Sb/a

In example 1, the $a variable represents the name of a month and
the $b variable represents a filename. In example 2, the $a variable
represents a filename and the so variable represents a drive designa
tion. In example 3, the $c variable represents the string to be replaced
and the $b variable represents the replacement string.

Introduction to String Variables 51

The WPL program that contains these statements assigns each
variable its value by means of the Input command, the Assign String
command, or the Load String command. These commands are de
scribed in the next section. Here is how the three statements might
look if Apple Writer replaced the variable names with the current
values of the variables:

1. ppr The new file for month JULY is JUL23

2. L .Dl/STOCK

3. f / n ij t s / b o 11 s / a

Setting a String Variable
A string variable keeps its value until its bucket is filled with a
different value. Filling the bucket is also called setting the variable.
You may set a string variable by

• typing its value while the program is running (in response to the
Input command);

• assigning a specific value to it in your program (with the Assign
String command);

• loading text from a file into the variable (with the Load String
command).

Additional Features of the INPUT Command
The format you learned for the Input command is

PIN text

In this format, text is displayed and the program halts until you
press (return) . (Remember that the string includes the space before
text.) The expanded format of the Input command is

PIN text = SA

where $a may be any string variable. In the expanded format, text

is displayed but = $ a is not displayed. When the program halts, what
ever you type before pressing (return) , up to 64 characters, will be
stored in $a (that is, in any string variable named in the Input
statement).

52 Chapter 5: Using String Variables

You can try out a simple program right now that uses the two formats
of the Input command. Just type in the following five-line program,
[s]ave it in a file, and execute it.

Example: pick a number pick pnd

PPf [x]

pin Pick a number from one to ten, then press RETURN . = SA

pin The n u m b e r y o u p i c Ik e d i s $ A ; p r e s s RETURN.

pqt

Whatever you type is put in the $a bucket by the first Input state
ment and displayed by the second Input statement. You can type
three Or 3 Or antidisestab 1 ishmentarianism and the program
echoes it. Later in this chapter you’ll learn how to use the Compare
Strings command to find out what was typed and take different paths
within the program depending on what’s in the bucket.

Note: Variables give you a way to generalize a program. For instance,
the append program in Chapter 3 consolidates 3 specific input files
(January, February, and march) into a specific output file. By substituting
string variables for the file names, you can make a program that works
with any files you specify at execution time:

APPEND2 P THIS PGM MAKES ANY THREE FILES INTO ONE
NY
PIN WHAT’S THE FIRST FILE? = Sa
L Sa
PIN WHAT’S THE 2ND FILE? = Sb
L Sb
PIN WHAT’S THE 3RD FILE? = Sc
L Sc
PIN WHAT’S THE OUTPUT FILE? = $d
S $d

All of the Apple Writer menus are written in WPL using the Input
command. By the end of this chapter you’ll be able to write your own
menu program.

Setting a String Variable 53

The Assign String Command
You can fill a string variable bucket from outside the program by
using the Input command or from inside the program by using the
Assign String command. The Assign String command allows your
program to fill any string variable with text.

The format of the Assign String command is

PAS text = SA

where $a represents any string variable and text is the value to be
assigned to the string variable. The spaces before and after the text
are also assigned to the string variable. The variable to the right of
the equals sign represents the bucket to be filled. The following are
legitimate Assign String statements:

pas Thank you for your letter dated = SA

PAS International Industries Inc. = SC

pas .02/ = $d

Note: Variables may appear on both sides of the equals sign so that you
can give a string variable the value of any string variable(s) plus text. We’ll
tell you more about this in the next section.

Concatenation
Combining two or more strings is called concatenation. When
concatenating strings, the total length of the new string (the variable
on the right of the equals sign) may not be more than 64 characters.
Three examples of concatenation are shown below.

In the first example, two text strings are concatenated with a string
Example: putting brackets around a string variable ($a). The first text string is a blank space and a left bracket

([) and the second text string is a right bracket (]). The result is
placed in the same string variable; the previous contents of $a

are destroyed.

pas [Sa] = Sa

If the value of $a is apple before the Assign String statement is exe
cuted, then the value of $a after execution is [apple]. The space
between the command and the left bracket is part of the argument.

54 Chapter 5: Using String Variables

Example: putting strings together
In the second example, three string variables ($d, sc, and $a) are
concatenated and placed in sb:

passasdsl: = SB

If the value of $ a is . di and the value of so is wpl . and the value of sc
is memoprt then the value of sb after execution is . di/wpl . memoprt.

Example: adding strings that contain
spaces

In the third example, text including space characters is concatenated
with two string variables; $b represents a first name, $c represents
a last name, and $a contains the result after execution:

pas Mr . Sb Sc = Sa

If the value of $b is John and the value of $c is Doe, then after
execution of this Assign String statement, $a will contain the value
Mr-. John Doe (including the space between pas and Mr.).

Concatenation is a useful way to store the contents of two or more
buckets in a single bucket. For instance, here’s a routine that asks
for three pieces of information and saves them in a single variable
for use later in the program:

Example: collecting parts of an address pnd

pin What ’ s your ci ty? = Sa

pin What’s your state? = Sb

pin What ’ s your zip code? = Sc

p a s $ a , $ b $ c = $ a

p p r Y o u r rn ail w ill b e s e n t t o $ a .

Notice: There is a space between the Assign String command and $a in
the second-to-last statement; this space is actually part of the argument
of the Assign String command. When text is substituted for $a in the last
statement, it will begin with a space.

That’s why there’s no space between to and $a in the last statement. If
you had a space in the text and a space in the variable, you would get
two spaces between to and the address when the substitution was made.
Here is another way to write the last two statements of the routine:

pas$a, Sb Sc = Sa
p p r Y o u r m ail w ill b e s e n t t o $ a.

After this routine has been executed, $b still contains the state and
$c still contains the zip code, but you can now reuse $b and $c by fil
ling them with new values since $a contains the city, state, and zip
code formatted with commas and spaces.

Setting a String Variable 55

The Load String Command
Load String lets you set a string variable from a file. (Input lets you
set a string variable from the keyboard. Assign String lets you set
a string variable from within the program.) The format of the Load
String command is

PLS .d2/filename* start•end!AN = SA

where start identifies the beginning of the string to be loaded and
end identifies the end of the string to be loaded. $a represents the
string variable being loaded. The Load String command has no
effect on the document in memory.

Load String works exactly like [L]oad except that [L]oad places text
in the text buffer and Load String places up to 64 characters of text
in a string variable. As in [L]oad, you may specify a or N or both, a
means load all occurrences of the string, n means don’t include the
start and end markers in the string variable.

Let’s look at an example of how this command works. You might
want to type in the small program and data file so you can try this
out for yourself. The data file, names, looks like this:

El r o w n , M a r y

Jones,Lee

l< i t c h e n, C h r i s

Sunn,Dau i d

The program prompts for a last name, uses the Load String
command to get the first name, and displays first and last name
on the screen:

Example: finding names in a file GETNAME PND

PIN Enter last, name = Sa

PLS . d2/'NAMES < Sa , <><n = Sb

PIN Sa’s first name is Sb

PQT

As you can see, the Load String command is handy for looking up
values in tables and lists. Notice the use of special delimiter charac
ters. The first marker in the Load String statement is a concatenation
of a string variable and text (the comma). The second marker is the
return character (>).

56 Chapter 5: Using String Variables

If the first marker in the Load String command is not found, the next
statement in the program is skipped. This is called conditional
execution—\it’s one of WPL’s most powerful features; you will learn
all about it in the next section of this chapter.

Conditional Execution
There are times when you can’t write a precise program command
because you don’t know exactly what the conditions will be when
it’s executed. For example, you may want to tell Apple Writer to put
a message on the screen only if the previous [f] ind found what it
was looking for. Since you can’t know in advance whether or not the
text will be found, you have to provide for both possibilities in your
program. If the text is found, Apple Writer executes the next state
ment; if the text isn’t found, the next statement is skipped. This is
called conditional execution because a statement is either executed
or skipped depending on the outcome of the previous statement.
We refer to the condition that causes the next statement to be
skipped as the unsuccessful outcome.

Figure 5-2. Conditional Execution

Figure 5-2 shows the logic behind conditional execution. The same
picture can be drawn with words:

FIND SOME TEXT
DISPLAY THE TEXT
GO TO NEXT SEARCH

The second statement, DISPLAY THE TEXT, is executed only if the
text is found. The third statement, GO TO NEXT SEARCH, is always
executed. If the text is not found, the second statement is skipped
and Apple Writer goes directly to the third statement.

Conditional Execution 57

Conditional execution applies to both WPL commands and Apple
Writer commands. As you learn the WPL commands, you will be
told which ones cause conditional execution. (You learned earlier in
this chapter that the Load String command causes conditional
execution.)

Here are the Apple Writer commands that cause conditional execu
tion when written in a WPL program:

Command Next statement skipped if...
[F]ind Text not found
[L]oad with markers First marker not found

Comparing Strings
In the getname program earlier in this chapter, a variable is used as
a marker in a Load String command. In this particular case, the pro
gram doesn’t have to know the current value of the variable. Some
times, however, a program needs to make a choice that depends on
the value of the variable. In a menu program, for instance, the
keyboard input determines which menu item is selected. The
Compare Strings command tests a variable to see if it contains
a particular string—for example, a particular menu selection.

The Compare Strings Command
The Compare Strings command determines whether two strings are
equal, and causes conditional execution. If the strings are equal, the
next statement is executed. If the strings are not equal, the next
statement is skipped.

By the Way: Two strings are equal if they are the same length and if both
strings contain the same characters in the same order. The following
strings are equal:

BA135C = BA135C

The following strings are not equal:

BA135C not - BA135CD
BA13 not = B13A
BA 135C not = BA135C

58 Chapter 5: Using String Variables

The format of the Compare Strings command is

P l_: S / s t r i n g 1 •••■" s t r i n g Z

stringi and string2 may consist of text, one or more string varia
bles, or a combination of these.

The delimiters for the Compare Strings command are similar to the
delimiters for the [f]ind command: the first non-space character
typed after the command is the delimiter.

The following are valid Compare Strings statements:

pcs/$a/$b/

PCS .YES.SC.

p c s / $ d $ b J u 1 y 18 8 3 /

PCS !Ms. SA !$B !

The following routine demonstrates the use of string variables and
conditional execution in comparing strings:

Example: comparing yes and no P n d

■ ■ ■

choice p p r D o y o u uj a n t t o p r 1 n t a n o then file ?

pin Enter YES or NO ; then press RETURN . = Sa

p c s / $ a ■■■■■■' Y E S -z

pgo print

p c s / $ a / N /'

p g o g u 1t

p p r Y o u did n ’ t a n s uj e r t h e q u e s t i o n !

p g o choice

After each Compare Strings command, the next statement will be
executed only if the comparison is equal. Because the next state
ment in each case is a Go command, the statements after the Go
command will be executed only if the strings are not equal. It is also
possible to have two Go commands in a row; compare the following
routine to the routine above:

Example: print or quit p i n T o p r i n t a n o t h e r file t y p e

p c s / $ a ■ • Y /

p g o p r i n t

p g o q u i t

t h e n p r e s s R E T U R N . ~ $ a

Comparing Strings 59

In this version, any response other than y will cause the program to
execute the quit routine. “Y” and “y” are not the same! How would
you rewrite this routine so that the user could type either an upper
case or lowercase response? (See Appendix E for the answer.)

A Sample Menu Program
It’s often helpful to print a document on the screen in order to
review it before it goes on paper. In order to print on the screen, you
must change the print destination setting using the Apple Writer
[p]rint/Program command. The menu program determines whether
you want to print on the screen or on the printer; it then changes the
print destination setting automatically and prints the file.

Example: a menu program menu pnd

ppr- [\]

ppr PRINT OPTIONS MENU:

ppr-

p p r (1) Scree n

p p r (2) P r i n t e r

p p r (3) Q u i t

ppr

select p i n S e 1 e c t 1, 2 , o r 3 :

pcs /$a/3/

p g o q u i t

pcs ---■$a-/2/

pgo pr in ter

pcs /$a/l/

pgo screen

pgo select

s c r e e n p p d . c o n s o 1 e

pgo file

printer ppd.printer

pgo file

quit pqt

file pin Enter fi 1 e name:

ng

L Sc

pnp

pin Press RETURN.

pgo menu

= Sa

(Compare $a to 3)

(Equal: Quit routine)
(Not Equal: Compare to 2)

(Equal: Printer-routine)
(Not Equal: Compare to 1)
(Equal: Screen routine)
(Not Equal: Select, routine)

60 Chapter 5: Using String Variables

To change several print values, make
a print value file.

You may want to change not only the print destination but other
print values. One way to do this in Apple Writer is to create a print
value file. Can you figure out how to modify the menu program to
load a print value file for each option on the menu? Hint—you will
need a statement that looks something like this:

qCp ri n tva 1 file

Remember that you must also create print value files with the
names your program will be looking for. Can you write a menu pro
gram that creates a print value file? See Appendix E for the solution
to these programming puzzles.

A Sample Menu Program 61

62

65
66
66
67
68
69
69
70
72
73
73
75
75

Using Numeric Variables

63Using Numeric Variables

What Is a Numeric Variable?
The Set X Command

Converting Strings and Performing Arithmetic
Using Counters and Accumulators
Comparing Numeric Variables

Creating Form Letters With WPL
A Sample Form Letter
Creating an Address File

A Form Letter Program
The Write Section
The Loop Section
The Name Section
The Quit Section

sing Numeric Variables

In this chapter you will learn

• how to convert a number in string form to a numeric variable;

• how to add and subtract in WPL;

• how to use counters and accumulators in a program;

• how to use numeric variables to control a loop;

• how to create and number an address file;

• how to produce personalized form letters.

What Is a Numeric Variable?
Like string variables, numeric variables can be set from the keyboard
or from within a program. Unlike string variables, you can do
arithmetic with numeric variables. The three WPL numeric variables,
(x), (y), and (z), may be substituted for text in WPL and Apple
Writer commands. There is also a special set of commands associ
ated with them.

A numeric variable has the following characteristics:

• It may represent zero or any positive integer from 1 through
65,535.

• The variable name may be either upper- or lowercase and is
always enclosed in parentheses: (x), (y), or (z).

• If the value of the variable is increased or decreased so that it
becomes zero, conditional execution causes the next statement
to be skipped. (In WPL’s arithmetic system, 65,535 + 1 = 0. This
is known as overflow.)

• Setting the variable to zero (as opposed to increasing or
decreasing it to zero) does not cause the next statement to
be skipped.

What Is a Numeric Variable? 65

The Set X Command

Adding and subtracting with variables

The command that performs arithmetic manipulation of numeric
variables is called Set X. (There are actually three commands—Set
X, Set Y, and Set Z—one for each variable. They function identically.)
The format of the Set X command is

PSX number

where number may be signed or unsigned. When the number is
unsigned as in

PSX 35

the variable is given the value of number—in this case, (x) is set to
35. When the number is signed as in

psz + 10

psy - 200

the variable is modified by the value of number according to the
direction of the sign—in this case, 10 is added to the current value of
(z) and 200 is subtracted from the current value of (y j .

Converting Strings and Performing Arithmetic
The age program, following, shows how numeric variables are used
in WPL. This program figures out your age from information you
type in response to Input statements. The information is entered as
strings, converted to numeric form, used in arithmetic, and displayed
as output text. In the age program, your birth year and the current
year are converted to the variables (x) and (y j respectively. (x j is
then subtracted from f y j to approximate your age. If you have not
had a birthday in the current year, 1 is subtracted from the answer.

Example: how old are you? AGE PND

PPR [\]

PIN ENTER YOUR BIRTH YEAR = $a

PIN ENTER THE CURRENT YEAR = $b

PIN HAD A BIRTHDAY YET THIS YEAR (Y or N) ? = Sc

PSX Sa

PSY Sb

PSY - (X)

PCS /$c/N/

PSY -1

PIN YOUR AGE RIGHT NON IS (Y j !

66 Chapter 6: Using Numeric Variables

The statement

PSX Sa

takes the value of the $a string and converts it to a numeric variable,
(x). As you see in the final statement, a numeric variable may also
be used as text.

Using Counters and Accumulators

One advantage of WPL is that it allows you to perform repetitive
Apple Writer functions. Sometimes these functions need to be per
formed a given number of times. Numeric variables allow you to
control the number of times a routine or loop is performed. They also
serve as accumulators for numeric values collected during the loop.

Let’s say that each year on your birthday your company will give
you a gift of stock, one share for each year of your life. You can write
a WPL program that calculates the total number of shares you’ll
receive in the next five years. In fact, since the age program collects
all the necessary data, your stock calculation can be added to the
end of that program. Here’s what the additional statements would
look like:

Example: cumulative addition, counting
down

CALC P Calculate Total Stock Over 5 Years

PSZ 5

PSX 0

LOOP PSY +1

PSX + (Y J

PSZ -1

PGO LOOP
PIN I n 5 yea r s y o u w 111 h a v e (X) s h a r e s o f s t o c k

The calc routine uses the (z) variable to control the number of
times the calculation is performed—once for each year, or five times
in all. Taking advantage of the conditional execution that occurs
when a variable is decreased to 0, calc begins by setting (z) to 5.

Then it subtracts 1 from (z) each time the loop section is executed.
When (z) becomes 0, the Go command at the bottom of the loop is
skipped and the answer is displayed.

The Set X Command 67

The (x j variable contained the birth year in the first part of the pro
gram. calc doesn’t need that information anymore, so it reuses (x)
as the accumulator—the bucket where it adds each year’s number
of shares, calc initially sets (x j to 0 in order to clear out the pre
vious information.

Warning
Always give numeric variables an initial value before adding or subtrac
ting. You can provide an initial value by issuing a Set X command or by
converting a string variable to a numeric variable. (Setting a numeric
variable to 0 doesn’t cause the next statement to be skipped.)

The (y) variable already contains your current age, which will be
increased by 1 each time the program executes the loop. Because
you want to start counting with your next birthday, calc must add 1
to the (y j variable before doing the stock accumulation. (If you
wanted to start counting with the current year, where in the loop
would you increase the variable? See Appendix E for the answer.)

Comparing Numeric Variables
You can compare a numeric variable to another numeric variable
by using the Compare Strings command. You can also compare a
numeric variable to a numeric constant or to a string variable, pro
vided the constant or string consists of an integer between 0 and
65,535. First, though, you must convert the numeric variables to
string format using the Assign String command.

Comparing numeric variables gives you a way to end a loop without
decreasing a numeric variable until it reaches 0. Let’s change the
calc five-year stock calculation routine so that it uses this alterna
tive. (Remember that this routine is an addition to the age program
which is listed earlier in the chapter.) Here’s how newcalc looks as it
performs the calculation for any number of years:

Example: cumulative addition, counting
up

NEWCALC P Calculate Total S t o cIk Uver N Years

PIN HOW MANY YEARS WILL YOU RECEIVE STOCK? = Sa

PSZ 0

PSX 0

LOOP PSY +1

PSX +(Y j

PSZ +1

PAS(Z) = Sb

PCS z$b/$a/

PGO END

PGO LOOP

END PIN In Sa years you uji 11 have (X) shares of s took

68 Chapter 6: Using Numeric Variables

In the original stock calculation routine calc subtracted 1 from (z j
until the value of (z) was 0. In the new routine newcalc begins with
0 and adds 1 until the value of (z j is equal to the number of years
that was input in $a. In order to make the comparison, newcalc must
convert (z) to a string variable, $b, which is then compared to the
original input value in $a. As long as the two strings are not equal,
the pgo end statement is skipped and the program returns to loop.
When the strings are equal, the loop is exited and the final answer is
displayed.

When newcalc converts (Z) to $b, the contents of the (Z) bucket are
not changed. When the program is executed, Apple Writer just looks
at the value of the numeric variable and sets the string variable to
that same value.

Creating Form Letters With WPL
You now know all the commands needed to create your own per
sonalized letters. This section contains two sample letter-writing
programs. The first program, number, numbers an address file so
that it may be used for form letter input. The second, write, uses
the numbered address file and a form letter file to write personalized
letters. To begin, let’s look at the form letter itself.

A Sample Form Letter
Here’s what a very simple form letter looks like. Your own letter, of
course, might be several pages long.

(Date J

(A d d r e s s j

Dea r (N a m e):

Your back-ordered merchandise has been received and will be

s hipped t o d a y b y parcel p o st. T h a n k y o u f o r y o u r o r d e r .

Sincerely,

Catalog Sales Distributors , Inc.

The date, address, and name are the portions of the form letter that
will be customized. You type the date; the address and name are
contained in an address file. The write program assumes that this
letter is stored in a file called letter on the disk in drive 2.

69Creating Form Letters With WPL

Creating an Address File
The address file, oldad, consists of a name and address for each
customer. The file is named oldad because that’s what it’s called in
the number program later in this section. An address may contain
any number of lines. Each line ends with CRETURN).

Marking the beginning of a name
Because WPL has to be able to identify where each address begins,
we use the convention of beginning the name line with a pair of
angle brackets. A left angle bracket marks the end of the file. The file
looks like this:

< > C h a r 1 e s Gee

34B Sansome Street

San Francisco, CA94111

OMarilyn Bee

12570 Pacific Blvd.

Santa Monica, CA 90002

< > S e r e n d i P . Tee

RED 3 Box 12

High Point, OR 97567

There are two steps in creating an address file: (1) type the
addresses, and (2) number the addresses. The form letters will be
printed in whatever order the addresses are stored in the file.

Note: You don’t have to arrange the addresses in any special order such
as by zip code or last name, but adding new addresses and finding
addresses for corrections is easier if the file is in some order.

Once the address file has been created, the addresses must be
consecutively numbered because the write program uses the
numbers to step its way through the file. If you add an address in
the middle of the file, all the addresses that follow the new one must
be renumbered. The number program saves you from this tedious
clerical effort by doing the job automatically.

70 Chapter 6: Using Numeric Variables

The number program, shown below, assigns consecutive numbers
to the address file, oldad. Each time it finds a < > marker, it inserts
the next consecutive number between the angle brackets. The (x)

variable is used for numbering the addresses. When all the
addresses have been numbered, the numbered address file is saved.
The numbered file is given a new name, newad. (That way if your
computer loses power during the save operation, you won’t lose the
original file.)

numberpsx 1

ny

f/< > / < (x j > /

y?

pgo found

pgo qu i t

Example: numbering a list

found psxT1

pgo loop

quit s .d2/newad

As the number program runs, you can watch the numbering process
on the screen. If you want to speed up the program, use the No
Display command at the beginning of the program to eliminate the
screen output.

After the number program runs, the newad file looks like this:

< 1> C h a r1e sGee

3 4 B Sans o rn e S t r e e t

San E r a n c i s c o , C A 94111

< 2 > M a r i 1 y n Bee

12570 Pacific Blvd.

Santa Monica, CA 90002

< 3 > S e re n d i P. Tee

RED 3 Box 12

H i g h P o i n t, 0 R 9 7 5 £ 7

Creating Form Letters With WPL

A Form Letter Program

The write program creates a form letter for each address in the
newad file created by the number program. A section-by-section
explanation of the write program follows; first, here’s the entire
program:

Example: form letter processing Write p nd

ppr [\]

psx 1

ppr ***** EORM LETTER PROCESSOR *****

pin Enter current date: = Sa

L o o p n g

L . d2/'let ter

b

t ! (D a t. e j • $ a !

y?

f /f Address J//

y?

L .d2/newad!< f x j > ■ < ! n

pgo Name

p g o Q u i t

Name f -z (N a rn e) / /

y?

L .d2xnewad’<(x)>• !n

pnp

psx +1

pgo Loop

Quit ppr [g][g][g]

psx -1

pin The number of 1 e11ers pr inted was (x i .

As you read the detailed description of the write program, which
follows, study the WPL statements that correspond to the functions
described. You will find a syntax summary and examples for each
command in Appendix C.

72 Chapter 6: Using Numeric Variables

The w r i te Section
Here’s the Write section of the write program:

W r i t e p n d

PPr [\]

psx 1

ppr ***** FORM LETTER PROCESSOR *****

pin Enter current date: = Sa

The program begins by turning off text display, clearing the screen,
setting the address file counter to 1, displaying the program title on
the screen, and prompting for the current date, which is used in
every letter. These functions are performed only once; therefore
they are not included in the loop.

The Loop Section
Here’s the Loop section of the write program:

L o o p riy

L .d2/1etter

b

f ! (D a t e) ! $ a •

y?

f /(Address)//

y?

L .d2/newad!<(x) > ! < ! n

pgo Name

p g o Q u i t

The processing loop extends from the beginning of the2 Loop section
to the end of the Name section. The text buffer is cleared and a fresh
copy of the form letter is brought into memory. The cursor is placed
at the beginning of the letter. The first [f]ind command inserts the
current date. The second [e] ind command places the cursor at the
(Address) tag and deletes the tag.

A Special Note: You might be accustomed to using / as a delimiter, but
there are times when it cannot be used. For instance, if you are loading
segments of a file, you cannot use the / as your delimiter, since it is an
integral part of the file name (i.e., . d2/). You also don’t want to use / as
a delimiter when it might appear elsewhere in the argument. For
instance, the write program uses ■ delimiters instead of the usual /
delimiters in the [f]ind command for the date because you may want to
use the / character as part of a date.

A Form Letter Program 73

Table 6-1. Table of Delimiters

Alternate delimiters are necessary because of the way Apple Writer
executes a command that contains a variable: first the variable
name is replaced by the current value of its bucket, then Apple
Writer executes the command. If the bucket happens to contain
characters that match the delimiter, you won’t get the results you
expect. These two examples show how a poor choice of delimiters
can get you into trouble:

1. Command:
Current Value of $a:
The Command as Executed:
What Happens:

f /(Date)/$a/

9/17/77

f/(Date)/9/I7/77/

(Date) is replaced
by 9—the rest of
the command is ignored.

2. Command:
Current Value of $B:
The Command as Executed:
What Happens:

F «$B !

DECEMBER ! !

F!DECEMBER ! ! !

December is deleted.

To avoid problems, don’t choose a delimiter that might appear
elsewhere in the argument. Table 6-1 shows you what delimiters
you may use in specific situations.

Delimiter Any Length Carriage Return Any Character (Wildcard)

/ none none none

I none none none

< — < ?

$ % &

& J

+ J

The (x) variable is used as an index to the address file. (x) is set to
1 in the Write section and increased by 1 in the Name section. The
second [c]oad command searches the address file for the current
address marker and loads the address, not including markers, at
the current cursor position. This form of [c]oad causes conditional
execution because [c]oad may or may not find the text it’s looking
for: if the address marker is found, execution continues at the Name
label; if not found, execution continues at the Quit label.

74 Chapter 6: Using Numeric Variables

The Name Section
Here’s the Name section of the write program:

Name f/(Name)//

y?

L .d2/newad

pnp

psx +1

pgo Loop

< (x) > « ! n

The [f] ind command places the cursor at the (Name) tag and deletes
the tag. Then the same address that was loaded in the Loop section
is loaded again. This time, however, the ending marker is a space
character, so only the first name of the address is inserted into the
document in memory. The program assumes that the [L]oad opera
tion is successful—if the address was found in the Loop section, it
will certainly be found again.

The form letter is now complete, so it is printed. The program adds
1 to the address file index and goes to the top of the loop.

The Quit Section
Here’s the Quit section of the write program:

Quit ppr [g][g][g]

psx -1

pin The number of 1 e11ers pr i n t e d uas (x) .

This section is executed when the value of (x) is one higher than
the number of the highest index in the address file. That signals the
end of the job. The Quit section rings the bell three times to notify
the operator that the printing is complete. Then, in order to display
the correct number of letters, 1 is subtracted from (x). Finally,
a message is displayed.

A Form Letter Program 75

Advanced Techniques

80 Writing Subroutines
80 The Subroutine Command
81 The Return Command
82 Sequence of Execution
83 Chaining Programs
83 Flow of Control With Chaining
84 The Do Command
84 Variables and Text During Chaining
84 STARTUP
85 How to Make a startup Program
86 How to Use a startup Program
87 Loading the Catalog Into Memory
88 A Final Word

Advanced Techniques 77

dvanced Techniques

This chapter covers four advanced techniques: subroutines, chain
ing, startup, and loading the catalog into memory. It is possible to
make effective use of WPL without ever needing these techniques.
You will find that subroutines and chaining are of value, however, if
you plan to write programs that are very large or very complex. You
will find startup useful if you perform the same commands or run
the same program every time you boot Apple Writer. You will find
loading the catalog useful if you want to print it or save a copy of it
on disk.

In this chapter you will learn

• what subroutines are and how to write them;

• how to use subroutines to save memory;

• how to write WPL programs larger than the 2,048-character limit;

• how to add a startup program to Apple Writer;

• how to put a copy of the catalog into memory.

Advanced Techniques 79

Writing Subroutines
In a large program, identical sets of statements are often needed in
more than one place. Subroutines provide a means of writing these
statements in one location and accessing them from anywhere in
the program. Figure 7-1 shows the flow of control from several
places in a program to a subroutine and back again.

Figure 7-1. Subroutine Flow of Control.

A subroutine is self-contained: it has only one beginning and one
end. It is part of a WPL program but functions as if it were a separate
program. Go commands are allowed within a subroutine but may
not refer to a label outside the subroutine.

The Subroutine Command
The first statement of a subroutine is a labeled statement. The label
is the name of the subroutine. The Subroutine command says, “Go
to the labeled statement and begin executing at that point.” In this
sense the Subroutine command works just as the Go command
does. The difference is that the Go command causes a permanent
transfer of control to a different place in the program. The Sub
routine command causes a temporary transfer of control; when the
subroutine has finished executing, control is automatically returned
to the statement following the Subroutine command.

80 Chapter 7: Advanced Techniques

The format of the Subroutine command is

PSR label

Programmers talk about calling subroutines or calling programs. A
call is a transfer of control. The Subroutine command calls the
routine named in its argument. A subroutine may not call itself. For
instance, a subroutine named subx may not contain the following
statement:

Every subroutine contains a Return
command.

PSR SUBX

Later in this chapter you will learn how to use the Do command to
call another program.

The Return Command
Execution of a subroutine is initiated by a Subroutine command and
ended by a Return command. The Return command causes the
statement after the Subroutine call to be executed; execution then
proceeds sequentially.

The Return command must be the last statement executed in any
subroutine. (It can appear anywhere within the subroutine, as long
as it is the last statement executed.) There may be more than one
Return statement in a subroutine, just as there may be more than
one Quit statement in a WPL program.

The format of the Return command, which takes no argument, is

PRT

Writing Subroutines 81

Sequence of Execution
Figure 7-2 illustrates the order in which statements are executed in a
program using a subroutine.

Figure 7-2. Execution Sequence of a
Subroutine a MAIN PGO START

b SUB • • •
c PRT
d START • • •
e PSR SUB
f • • •

g PSR SUB
h • • •
i PQT

Statements are executed
in this order:

a
d
e
b
c
f

g
b
c
h
i

When a subroutine is called, Apple Writer searches for the
subroutine label beginning at the first statement. For the sake of
efficient execution, subroutines should be placed near the start of
the program and the most frequently accessed subroutine should be
placed first.

The only valid way to enter a subroutine is by means of a subroutine
call; that is, an SR command. You may not Go to a subroutine label
or enter a subroutine as the next sequential instruction in your
program. If you do, the results are unpredictable. For instance, a
program may not begin with a subroutine. (If it did, the Return
command would have nowhere to return to.) Use the technique
shown in Figure 7-2, where the first statement is a Go command that
sends control to the start of the main program. Place all subroutines
between the Go command and the main program.

82 Chapter 7: Advanced Techniques

Chaining Programs

About program length A WPL program may not be longer than 2,048 characters. Because
WPL programs and footnotes share the same buffer, if the program
prints a text file containing footnotes then the program is limited to
1,024 characters. Most WPL applications will not be affected by
these size restrictions. Occasionally, however, a program exceeds
the limit. Chaining is a method of writing such a program by dividing
it into two or more smaller programs that are linked together at the
time they are run.

Flow of Control With Chaining
Chaining is accomplished when one program calls another using the
Do command. Figure 7-3 shows how control flows from one pro
gram to another in chaining, a, b, and c are separate WPL programs.
Program a can call either b or c. When a program is called, it replaces
the calling program in the WPL buffer, b and c can return to a only by
calling a. In that case a starts over again from the beginning, not from
the place where it called b or c. Unlike subroutines, which return to
the statement after the Subroutine call, chaining always begins at the
first statement of the called program.

Figure 7-3. Flow of Control With
Chaining.

Chaining Programs 83

The Do Command
Chaining is done by issuing a Do command. The command may
appear anywhere in the calling program. When it is issued, the called
program replaces the calling program in the WPL buffer. Therefore
any statements that follow the Do command in the calling program
will not be executed. The format of the Do command is

PDO .d2/filename

where filename is the name of the called program. You are used to
using the Do command as an immediate command that executes a
WPL program. In chaining, the Do command is used as a deferred
command. Exactly the same thing happens in both cases: the file
named in the Do command is read into the WPL buffer, and execu
tion begins at the first statement in the buffer.

Variables and Text During Chaining
When one program chains to another, the calling program is no
longer available. Variablesand most buffers, however, remain un
changed. (The footnote buffer, which is shared with WPL programs,
gets cleared when the called program is loaded.) Program a can
read a document into memory and then call program b to modify the
document. Program A can also prompt for keyboard input and B will
have access to the variables.

Refer to the Apple Writer manual to learn
more about startup programs.

STARTUP
If you have created a WPL program named startup on the disk that
contains your system print and system tab files, sys . prt and
sys .tab, it will be executed automatically when you boot Apple
Writer. Any program may be named or renamed startup. If you
always run the same program after you boot, name it startup so that
it is part of the boot itself. For instance, if you always run contprint,
use the Rename File option of the SOS Command Menu to change
the name of the program. (Make sure the file is unlocked before you
try to rename it.) Here’s how you would change the name of
CONTPRINT tO STARTUP:

1. Press [o] to display the SOS Commands Menu.

2. Type b to rename a file.

3. Type contprint,startup and press (return) .

4. Type startup and press (return).

84 Chapter 7: Advanced Techniques

Example: a startup program that
chooses a glossary

How to Make a startup Program
You may want to write your own startup program to help you start
up your system efficiently. This is a good idea if other people also
run Apple Writer on your computer. For instance, here’s a program
that helps the user load the correct glossary file for various tasks
without knowing anything about files or glossaries:

star tg 1 oss p this is a S T A R T UP prograrn

pnd

ppr-[\]

ppr WELCOME TO APPLE WRITER !

ppr-

p p r D o y o u uj a n t t o r u n . . .

pp r a . Tex t editing?

ppm b. Report printing?

ppr c. Form letters?

x ppr

pin Type a, b, or c and then press RETURN. = Sa

pcs/$a/a/

pgo a

pcs-- Sa/b/

pgo b

pcs/$a/c/

pgo c

pgo x

a pasEDITGLOSS = Sb

pgo y

bpasR PTGLOSS = Sb

pgo y

c pasLTRGLOSS = Sb

y ppr

ppr Make sure the GLOSSARY disk is in drive 1.

pin Then press RETURN.

p load the correct glossary file

qe.dl/$b

p q t

Type the startgloss program using Apple Writer and give it the
name startup when you save it. You may save it on any disk except
your Apple Writer Master Disk. The next section describes how to
use a startup program such as this one.

STARTUP 85

How to Use a startup Program
The startup program may be on the boot disk, or on any other
Apple Writer disk. You may use different startup programs for dif
ferent tasks. There is only one restriction: The STARTUP disk must
contain a sys .tab file and a sys .prt file because otherwise you will
get a SOS error. You may copy the standard versions of these files
from the Apple Writer MASTER disk to your STARTUP disk, or you
may create new ones using the Save Tab File and Save Print/Program
Value File options of the Additional Functions Menu. To see this
menu, press [q], (Forfurther information about sys .tab and
sys . prt, see the Apple Writer manual.)

Note: To copy the standard tab file from the Apple Writer MASTER
disk to a data disk, follow these instructions:

1. Put the Apple Writer MASTER disk in drive 1.

2. Put the data disk in drive 2.

3. Select the Additional Functions Menu by pressing [q].

4. To load the system tab file, type

A. Dl/SYS

(a selects the Load Tab File option; sys is the name of the file.)

5. To copy the system tab file, press [q] and type

B. D2/SYS

(b selects the Save Tab File option; sys is the name of the file.)

6. You can copy the standard print value file in the same way, using the
Additional Functions Menu and selecting options C and D.

To use a startup program:

1. Put the Apple Writer MASTER disk in drive 1 and boot.

2. When the Apple Writer copyright display appears, put the disk
containing the startup program and the sys.tab and sys.prt
files in drive 1.

3. Press (return) .

That’s all there is to it.

86 Chapter 7: Advanced Techniques

Loading the Catalog Into Memory
In Apple Writer, you can load a disk catalog into memory so that
you can print the text, modify it, search it, or save it. (Note: you can
modify the copy of the catalog in memory, but that does not modify
the disk’s catalog.) This feature is also available in a WPL program.
Here’s how it works.

First, enter the statement

OA.Dltt

This WPL statement consists of the following parts:

0 Opens the 80S Command Menu.

A Selects option A, the catalog option.

.DI Reads the catalog from drive 1.

tt Puts the catalog in the text buffer.

Now comes the tricky part. Apple Writer doesn’t load the catalog all
at once; instead, it loads a screenful and then waits for you to type
a space or press (return) . That’s fine when you use [o] Att as an
immediate command, but when you use it in a program your pro
gram doesn’t know in advance how many screens the catalog
contains. Here are the statements that you must put after oa . di tt to
make sure you load the entire catalog into memory:

(spaces) p (5spaces) (return)
(spaces) p (return)

Notice that both statements are in the comment format. The first
contains five spaces because the catalog may contain up to five
screens of information—and each space causes Apple Writer to
load another screen. The (return) at the end of the first comment
brings Apple Writer back to the SOS Command Menu. The (return)
in the second comment causes Apple Writer to exit from the SOS
Command Menu and execute the next statement in your program.

The following catalog program reads a catalog of any length (up to
five screens) and prints the catalog:

Example: printing your catalog CATALOG NY

OA. Dltt

P (5 s p a c e s j

P

PNP

PQT

Loading the Catalog into Memory 87

A Final Word
As you continue to use Apple Writer and WPL, you’ll see how WPL
programs can simplify your writing and organizing tasks. Discover
the power of WPL by experimenting. One good way to begin is to
modify the sample programs written in thise manual. You can also
change the programs that are provided on your Apple Writer disk.
Chapter 8 explains how to modify programs, using the autoletter
program as an example.

88 Chapter 7: Advanced Techniques

92
92
93
95
95
95
96
99
99

100
100
102
103
105
109
111

Enhancing WPL Programs

89Enhancing WPL Programs

Understanding the autoletter Program
The Structure of autoletter

autoletter Files
Printed Output
Screen Output and Keyboard Input
Calculations
The Processing Loop
Running autoletter

Modifying the autoletter Program
Describing the Need
Designing the Program Changes
Workfiles
Designing the File Changes
Implementing the Solution
Testing the Solution

Summing Up

nhancing WPL Programs

The quick way to write a program: revise
an existing one.

New programmers quickly learn that the easiest way to write a pro
gram is to find one that does almost what you want it to do, and
then modify it. In this chapter you’ll find out howto modify a program
that someone else has written, using the autoletter program as an
example. You will improve autoletter by giving it the ability to use
titles (Mr., Ms., and so forth), and the ability to use first names and
last names selectively in the body of the form letter.

You will learn

• how to understand a program that you didn’t write;

• howto use a workfile;

• how to redesign a program;

• how to test the modified program.

Enhancing WPL Programs 91

Understanding the autoletter Program
The autoletter program, found on your MASTER disk, appears
below. The numbers to the left of the WPL statements are not part of
the program. We’ve added them so that you can easily refer to
specific statements.

1 . START PSX 1
r LOOP NY

L L -D1/F0RMLETTER

4. B
c F/(Address)//

e Y?
f

L .Dl/ADDRS!<(X) > !<!N

8. PGO FOUND
c). PGO QUIT

1C). FOUND PLS .Dl/ADDRS !< (X J > ! !N = SA

11 B

12) F/(Name j/$A/A

1cL PNP

14. PSX +1

15 PGO LOOP

16. QUIT PIN[\] Done at address (X) (press RETURN)

177 NY

Basic elements of a WPL program

The Structure of autoletter

The first thing to look for is the structure of the program. That is,
what is the basic outline of the program logic? To acquire an
understanding of any WPL program, answer these questions:

• What files does the program use? What do they look like?

• What printed output does the program produce? What screen
output and keyboard input?

• What calculations are performed?

• What is the main processing loop? (What does the program do?)

92 Chapter 8: Enhancing WPL Programs

autoletter Files
Scan the program listing looking for [L]oad, Load String (ls), and
[s]ave commands—commands that refer to files. Statements 3, 7,
and 10 contain references to the formletter file and the addrs file.

Note: When analyzing a program, print every file the program uses. If a
file is very long, print just the beginning and the end of it.

The formletter file is printed below:

(Address)

Dear (Name):

Congratulations on your purchase of an

Apple c o rn p u t e r. Yo u and y o u r f a rn 11 y

w ill spend rn a n y e n j o y a b 1 e and

i n s t r u c t i v e h o u r s w 11 h y o u r n e w

p e r s o n a 1 c o rn p u t er. I n t o d a y ’ s

fast-paced high-technology world,

(N a me), y o u can’t a f f o r d t o b e w i t h o u t

o n e . A n d y o u can r e s t a s s u red t h a t

when you use an Apple cornpu ter, you ’ re

using the best there is.

B e s t w i s h e s ,

The Foll<s at Apple 0omputer

. i n A d d r e s s n u rn b e r (X J (p r e s s r e t u r n j

Understanding the AUTULETTER Program 93

In order to understand the structure of the autoletter program,
study the structure of its files. Notice the following things about the
FORMLETTER file:

• It contains the text of a letter.

• It contains two words in parentheses: (Address) and (Name).

(Name) appears throughout the letter.

• It contains an embedded Input command, which refers to address
number (x). This implies that the numeric variable (x) is set in
the autoletter program, and also that autoletter will stop after
each letter is printed and wait until (return) is pressed.

• It ends with an embedded . ff (formfeed) command. When the
form letters are printed, . ff causes the printer to skip to the top
of the page so that each letter begins on a new page.

Next, look at the addrs file. The beginning and end are shown below:

< 1 > John Smi th

123 Elm Street

Anytown, U.S.A. 12345

< 5 > M a r y S a n d e r s

00000 Nu 11 Resu11

Meander, OH. 54637
<

Notice the following things about the addrs file:

• It contains a series of four-line addresses consisting of name,
street address, city and state, and zip code.

• Each address begins with a number enclosed in angle brackets.
The addresses are consecutively numbered.

• The file ends with a left angle bracket.

94 Chapter 8: Enhancing WPL Programs

Numeric variables control looping.

Printed Output
To find out what the program prints, first look for New Print (np) and
Continue Print (cp) statements. Then see what file is [i_]oaded
before the print command is issued. It turns out that at statement 13
the autoletter program prints the letter that was loaded from the
formletter file at statement 3.

Screen Output and Keyboard Input
Screen displays usually provide choices for the user, control over
printing, or information about the progress of the program. Screen
messages provide clues to how the program works. To locate them
in the autoletter program, look for Print (PR) and Input (in)
commands. (Don’t forget the embedded Input command you found
in the formletter file.)

The following is true of autoletter:

• There are no user choices because there are no Input commands
that contain a string variable for input.

• There is one message, at statement 16. It contains a number that
is 1 greater than the number of the last address printed by
the program.

• The Input statement at the end of the form letter stops the pro
gram until you press CRETuRN^. It’s there to allow you to change
paper in the printer. If your printer uses continuous forms (paper
that comes in a roll, like paper towels, or in a box of attached
sheets), the embedded Input statement may be removed.

Calculations
Look for commands that set numeric variables—sx, sy, and sz. One
of these commands at the top of the loop (just after the label that
begins the loop) or at the bottom of the loop (just before a Go
command) probably identifies a calculation that is part of the pro
gram structure. A numeric variable is often used to control a loop. In
the calc routine in Chapter 6, for instance, the (z j variable is
decreased by one each time the loop is executed; when (z) reaches
zero, looping ends.

Understanding the AUTOLETTER Program

Statement 14 in autoletter adds 1 to the (X) variable. The following
statements also use the (x) variable:

• Statement 1 initializesthe value of the (X) variable by setting it to 1.

• Statement 7 uses the (x) variable in a [L]oad command to search
for a marker in the addrs file. Substitute a value for the variable to
see what the marker looks like: when (Xj is 1, the marker is <i>.

• Statement 10 uses the (x) variable in a Load String command to
search for a marker in the addrs file. (x) has the same value in
statement 10 as it had in statement 7.

Use of the (x) variable in the autoletter program can be sum
marized as follows:

• it is initialized to 1,

• it is used to locate text in the addrs file,

• it is increased by 1 at the bottom of the loop.

The addrs file reveals how the consecutive address numbers are
related to the use of the (x) variable in autoletter.

The Processing Loop
Most programs do some main task over and over. For instance,
a program that generates form letters prints the body of a letter over
and over again. No matter how complex the processing may be, it
can be summarized in a simple statement. Because you have ana
lyzed the inputs, outputs, and calculations of the autoletter
program, you can now define its main task.

Look for Go commands in the program. The Go command deter
mines what statement is executed next. Notice whether it is
associated with conditional execution of a previous statement.

96 Chapter 8: Enhancing WPL Programs

There are three Go commands in autoletter:

• Statements 8 and 9 each contain a Go command. These state
ments are associated with the preceding [L]oad, which searches
fora marker. If the markerexists in the formletter file, the pro
gram proceeds to the found label at statement 10; if not, it
proceeds to the qu It label at statement 16. Statements 8 and 9
together represent a conditional transfer of control', the next
statement to be executed depends on whether the [L]oad
command finds the marker. A conditional transfer of control is
like a fork in the road. See Figure 8-1.

Because there is no Go command after statement 16 sending
control back to the processing loop, the program ends after the
quit section is executed.

• Statement 15 contains the third Go command. This statement
representsan unconditional transfer of control. It always causes
statement 2 to be executed next. An unconditional transfer of
control is like a bend in the road. It causes the program to stop
executing statements in a straight line, one after another, and go
to a different place in the program. See Figure 8-2.

Figure 8-1. Conditional Transfer of
Control: A Fork in the Road

Understanding the AUTULETTER Program 97

Figure 8-2. Unconditional Transfer of
Control: A Bend in the Road

With what you’ve learned, you can now describe the processing
loop. Here’s what autoletter does:

• Sets (x) to 1.

• Loads a form letter into memory.

• Loads address <i> from the addrs file. If the address doesn’t exist,
time to quit.

• Loads a name from address <i> and uses it to replace every
occurrenceof (Name) in the form letter. (See statements 10
and 12.)

• Prints the form letter.

• Adds 1 to (x), so that the next address will be <2> .

• Goes back to the top of the loop and loads a fresh copy of the
form letter.

• Displays a message, clears memory, and ends the program when
(X) is 1 more than the highest-numbered address in the addrs file.

When you have finished analyzing the program, prepare a brief sum
mary statement like this one: “autoletter prints a customized form
letter for every address in a consecutively numbered address file.”

autoletter is a relatively simple program, but the technique you’ve
just learned will work for any WPL program.

98 Chapters: Enhancing WPL Programs

The program you’re changing may
modify the files that it uses.

Define your need and design a solution.

Running autoletter

You may be wondering why you didn’t begin this process by running
autoletter. The reason is that sometimes a program modifies files,
and if you don't know exactly what it does you don’t want to
change the files without making a backup copy. To back up the files,
you need to find out their names by studying the program—as you
just did.

Before going any further, copy the autoletter program and its two
files to a set of files on another disk. Name the copies autoletterz,
F0RMLETTER2, and ADDRS2. These are the files that you will modify in
the next part of the chapter.

Now run autoletter and see exactly how it works:

• Make sure the Apple Writer MASTER disk is in drive 1 and that
your printer is turned on.

• Press [p]. To print the form letters on a printer, type pd . printer.
To display them on the screen, type po. console. Then press
(RETURNj .

• Press [p]. Type do autoletter and then press (return) .

• Press C return) after each letter is printed.

Modifying the autuletter Program
Modifying a program is easy... but only if you do it in a methodical
manner. There are four steps to take, no matter what kind of pro
gram you want to change or how complex the change is:

1. Describe the problem or need. What do you want the program
to do?

2. Design a solution. Conceptually, what additions and changes to
the program need to be made? What changes must be made to
the files? What will the new output look like?

3. Implement the solution. What specific program statements must
be added or changed? What specific changes must be made to
files used by the program?

4. Test the solution. Does the output of the modified program match
the results you defined in step 2?

In the rest of this chapter you will follow these four steps in order to
add new features to the autoletter program.

Modifying the AUTULETTER Program 99

100

Describing the Need
autoletter takes information from an address file and creates
personalized form letters. However, it does not provide for titles such
as Ms., Mr., Dr., and so on. Therefore you might define what needs to
be changed in the following way:

autoletter should be able to address the recipient of a form
letter by title and last name (“Dear Mr. Smith”). It should also include
the title in the address portion of the letter (“Mr. John Smith”).

Designing the Program Changes
The design phase of a program change consists of two parts:
changes to the program and changes to the files. It’s best to tackle
the parts one at a time.

When you analyze the need statement, you may discover aspects of
the situation that weren’t obvious at first. For instance, autoletter
can’t address a letter to Mr. Smith unless it is able to distinguish
among the different parts of the name in the addrs file.

Distinguishing parts of the name turns out to be a major stumbling
block. Looking at the formletter document, you can see that only a
single form of the name is used. Statement 10 in the autoletter
program shows that the name consists of whatever is between the
end of the address marker and the next space character. This,
presumably, is the person’s first name.

Chapter 8: Enhancing WPL Programs

What if you add a title to the beginning of the name line:

< 1 > M r . JohnS m i t h

Now the information between the end of the address marker (<i>)
and the first space is “Mr.”. Good, because you want to be able to
isolate that information.

But how will autoletter get the first name in the name line? Can
it say that the first name begins and ends with a space? No, because
the first marker in a Load String statement must be unique in the file,
and the space character is not unique. Therefore the first name in
address < i > will always be used because that’s the first occur
rence in the file of information beginning and ending with a space.

If you think about it, you will see that this problem occurs no matter
what part of the name line you try to isolate. Even if you insert
markers into the name, such as

< 1 > M r. + J o h n $ S rn i t h

the markers are unique only within a given address. They would not
be unique within the addrs file.

What’s needed is a file containing only the current address that
autoletter is working on. How in the world can we make that
happen? The answer is, by creating a workfile.

Modifiying the AUTULETTER Program 101

Workfiles
A workfile is a file that a program uses over and over again. It’s
something like a blackboard. Let’s say you’re writing a book on
mathematics and you want to prepare a list of answers to the prob
lems in the book. You might work a problem on your blackboard,
record the answer, erase the blackboard and work the next problem,
and so on. Once you’ve got the answer, you don’t have any reason
to preserve the means by which you arrived at it.

102 Chapter 8: Enhancing WPL Programs

Let’s see if autoletter can make use of such a workfile. We
must envision how the workfile would be used and determine
whether such a use is possible in autoletter:

How the Workfile is Used
Add the current address to the
document in memory
(the form letter).

Save the current address in
a workfile.

From the workfile, load the title,
first name, and last name into
separate strings.

Insert the title, first name, and
last name into the form letter.

Why This Is Feasible
autoletter already
does this.

[s]ave with markers saves
a portion of a document.

Because the workfile contains
only the current address, you
can designate parts of the name
with unique markers.

[F]ind with Replace option.

Having demonstrated the feasibility of the proposed solution, you
can proceed to look at the changes that must be made to the files.

Designing the File Changes
The files autoletter uses are

FORMLETTER

ADDRS

During this discussion it will be helpful to have a copy of the
formletter document in front of you, so print a copy or display the
document on your screen or refer to the listings earlier in this
chapter.

Looking atthe formletter document, you recall that it contains two
variable elements, (Name) and (Address). In order to create the
salutation “Dear Mr. Jones” it’s necessary to identify specific name
elements for the title and last name. Because the letter is informal, it
would be nice to have the first name available as well. Therefore you
decide to replace every occurrence of (Name) with one of the
following:

Name Element Examples
(Title)

(F n a rn e)

(L n a m e)

Mr.,Ms., Dr.,Rev.,Gen.,Hon.,Sir, Miss,Mrs.,etc.
George, Carol Sue
Smith, Huck-Finn, van den Berg, Lloyd George

Modifying the AUTULETTER Program 103

You list as many different examples as possible to ensure that the
design solution covers all cases.

Next, let’s tackle the addrs file. That’s a little trickier. Referring to the
list of name elements, you see right away that the space character is
no longer useful as a delimiter because it may be part of a first name
(Carol Sue) or a last name (van den Berg).

By the Way: The Fname element represents the name the person wishes
to be addressed by. Carol Sue Davis may be known as either Carol or
Carol Sue. It will be the responsibility of the person maintaining the addrs
file to know this information about each addressee.

A worst-case example of a complex name line in the addrs
document is

< 1 > Ms. Laro1 Sue B. Davis-Robbs

Your task now is to design a system, or algorithm, for marking the
line so that autoletter can distinguish among the name elements in
a Load String statement. Let’s see what happens if you place the
following symbols before each element:

Symbol Element

@F @

@M@

(Title) ... part of address marker
(F n a rn e)

Middle n a m e o r initial

(Lnarne) ... end of name is (return)

The worst-case example would look like this:

<1>Ms.@F@CarolSue@M@B.@L@Davis-Robbs Or
< 1> Ms . @F@Caro 1 @M@Sue El. @L@Davis-Robbs

104 Chapter 8: Enhancing WPL Programs

Use new names for the modified files.

To determine whether these symbols will perform correctly as
markers in a Load String command, check the worst-case examples
against a table of markers:

Beginning Marker Ending Marker Element

@F 0

@L@ fRETURNj

[Titlej

(F n a rn e j

(L n a rn e j

From the table you can see that each element has a unique set of
markers. If you want to test the solution in greater detail, make up
some names using the examples in the table of name elements; then
insert markers and examine the results to see if they satisfy the
requirements you’ve stated.

Warning
When you choose a marker, don’t choose a character that appears in
yourform letter! autoletter will deleteall marker characters in the form
letter.

Implementing the Solution
Having stated how you’re going to change autoletter, you’re ready
to begin programming. Put the data disk containing your copy of
AUT0LETTER2 in drive 1. Load autolettero into memory and make
the actual changes as we talk about them in the manual.

The first modification to the program is to insert a comment before
statement 1 documenting the change:

AUT0LETTER2 P MODIFIED VERSION OF AUTOLETTER

Then change the filenames in statements3,7, and 10to formletter2
and ADDRS2 so that your modified program doesn’t try to use the
original files that came with Apple Writer.

Modifying the AUTULETTER Program 105

You’re going to use all of autoletter except statements 10,11,
and 12. These statements load the name from the address file and
replace it in the document in memory. Instead, you want to load
different name elements from a workfile and replace them in the
document.

AUTOLETTER 1. START PSX 1

2.
3.
4.
5.
6.
7.
8.
9.

LOOP NY

L .Dl/FORMLETTER

B

F/(Address)//

Y?

L .Dl/ADDRS'<(X)> ! < !N

PGO FOUND

PGO QUIT

10.
11.
12.
13.
14.
15.

FOUND PLS .Dl/ADDRS ! < (X) > ! «N = SA

B

F/(Name j/$A/A

PNP

PSX +1

PGO LOOP

16.
17.

QUIT PIN[\] Done at address (X) (press RETURN)

NY

To save the current address in a workfile, precede it with a unique
marker such as (). The first section of new statements inserts the ()
marker at the end of the formletter document in memory. The
current address is then loaded, including markers. The following
statements replace statements 10,11, and 12.

FOUND E

D

P INSERT RETURN AND () MARKER

F< <>()<

Y?

P LOAD CURRENT ADDRESS AT END OF LETTER

L .D1/ADDRS2!<(X) > ! < ■

106 Chapter 8: Enhancing WPL Programs

The next section of the program places the cursor at the (j marker
and saves the current address in the workfile.

B

Y?

P CREATE WORKFILE WITH CURRENT ADDRESS

S .Dl/WORKFILEtm tt

Y

Now the name elements can be replaced in the form letter.

P INSERT TITLE FROM WORKFILE INTO FORM LETTER

PLS .Dl/WORKFILE!>!@!N = $D

B

F / (T i 11 e) / $ D / A

P INSERT FIRST NAME

PLS .Dl/WORKFILE!@F@!@!N = $D

B

F / (F n a rn e j / $ D / A

P INSERT LAST NAME

PLS .D1/WORKFILE< @L@< X N = $D

B

F / (L n a rn e) / $ D / A

There are just two small housekeeping details left to take care of.
First, you need to remove the markers that are embedded in the
name.

P DELETE MARKERS IN FORM LETTER

B

F / @ F @ / / A

B

Fz@M@/ /A

B

F/@L@/ /A

Modifying theAUTULETTER Program 107

Next, you must delete the current address at the end of the letter to
be printed. From the end of the letter, delete one line at a time until
the () marker is deleted. When it’s gone, you know you’ve deleted
the entire address.

DELTEMP E

P DELETE CURRENT ADDRESS AT END OF FORM LETTER

X

Y?

PGO DELTEMP

The finished program looks like this:

AUT0LETTER2 P *** AUT0LETTER2 ****

START PSX 1

LOOP NY

L .D1/F0RMLETTER2

B

F/(Address)//

Y?

L .D1/ADDRS2!<(X)> ! < !N

PGO FOUND

PGO QUIT

FOUND E

D

P INSERT RETURN AND () MARKER

F < < > () <

Y?

P LOAD CURRENT ADDRESS AT END OF LETTER

L .D1/ADDRS2!<(X)> ! < !

B

F/()/()/

Y?

P CREATE .Dl/WORKFILE WITH CURRENT ADDRESS

S -Dl/WORKFILEtmtt

Y

P INSERT TITLE FROM .Dl/WORKFILE INTO FORM LETTER

PLS .Dl/WORKFILE! >!@?N = $D

B

F/(T i 11e)/$D/A

P INSERT FIRST NAME

PLS .Dl/WORKFILE!@F@!@!N = $D

B

F/(F name)/$D/A

P INSERT LAST NAME

PLS . Dl/WORKFILE<@L@<><N = $D

108 Chapter 8: Enhancing WPL Programs

F/ [’ Lname J z$D/A

P DELETE MARKERS IN FORM LETTER

B

F/@F@/ /A

B

F/@M@/ /A

B

F/@L@/ /A

DELTEMP E
P DELETE CURRENT ADDRESS AT END OF FORM LETTER

X

F/()/()/

Y?

PGO DELTEMP

PNP

PSX +1

PGO LOOP
QUIT PIN[\] Done at address [X) [press RETURN)

NY

Testing the Solution
In order to test the programming changes you’ve made, it’s neces
sary to change the files autoletter uses so that they match the new
version, autoletterz.

In the ADDRS2 file, the appropriate markers must be inserted in
the name line, according to the table of markers, so that the
addresses look like this:

<1 >Mr.@F@John@L@Smith

123 Elm Street

A n y t o i..-. i n, U.S.A. 12345

■ ■ ■

< 5 >Ms . @F@Mary A 1 ice@M@R . @L@Sanders

00000 Null Resu11

Meander, OH. 5 4 £ 3 7

Warning
Be sure the last address in the adorsz file ends with a < marker on a
separate line. If the < marker is missing, the last form letter will not be
printed.

Modifying the AU TO LET TER Program 109

Notice that address <s> has been changed to test one of the
conditions you designed autoletter2 to handle: a first name that
contains a space character. Check to see if there are other
conditions that need to be tested, and add or change addresses in
RDDRS2 so that all program modifications are verified.

You must also change the formletter2 document to conform to
autoletter2’s algorithm for filling in the title and last name
separately. Here’s how the changed letter might look:

(A d d r e s s)

Dear (Title) (L n a rn e) :

C o n g r a t u 1 a t i o n s o n g o u r p u r c h a s e o f a n

Apple c o rn p u t e r . Y o u and the (L n a rn e j

f a rn i 1 g w ill spend rn a n g e n j o gable and

i n s t r u c t i v e h o u r s w i t h g o u r n e w

pe rsona 1 cornpu t er. I n t odag ’ s

fas t - paced high- techno 1 ogg wo rid,

(F n a rn e) , g o u can’t a f f o r d t o b e

w i t h o u t o n e . And g o u can r e s t a s s u r e d

that when gou use an Apple cornpu t e r ,

gou’ re using the best there is.

Bes t wi shes,

The Foll<s at Apple Cornputer

. i n A d d r e s s n u rn b e r (X) (p r e s s r e t u r n j

.FF

Now run the enhanced version of autoletter:

Press [p]
Type DO .D1/AUT0LETTER2
Press (return)

If you like watching the letter being personalized, leave the program
as is. If you’d like the program to run much faster and don’t need to
see the document displayed, insert a No Display (nd j statement
before the start statement.

110 Chapter 8: Enhancing WPL Programs

The final step in testing is to review the results. Was every letter
printed correctly? If not, follow the debugging instructions in
Appendix D, change the program or files as necessary, and run the
test again. The letter produced for address <5> should look like this:

M s . M a r y A1 i c e R . S a n d e r s

00000 Null Result

M e a n d e r, OH. 54637

Dear Ms . Sanders:

C o n g r a t u 1 a 11 o n s o n y o u r p u r c h a s e o f a n

Apple c o rn p u t e r . Y o u a n d the S a n d e r s

f a rn i 1 y w ill s p end rn a n y e n j o y able and

1 n s t r u c 11 v e h o u r s w 11 h y o u r n e w

p e r s o male o rn p u t er. I n t o d a y ’ s

fas t - paced h 1 gh - techno 1 ogy wo rid,

M a r y Alice, y o u can’t a f f o r d t o b e

i....j i t h o u t o n e . And y o u c a n r e s t a s s u r e d

that 1.....1 hen you use an Apple cornpu ter ,

you ’ r e us 1 ng the bes t there i s .

Best, wishes,

T h e F o 1 k s a t A p p 1 e U o rn p u t e r

There are copies of the modified files on the UTILITIES disk
(WPL.AUT0LETTER2, F0RMLETTER2, and ADDRS2) . YOU Can refer to
these if you are having any trouble with your modified files.

Summing Up
In this chapter you have learned what steps to take to change a
program so that it fits your needs. First you learned how to examine
a WPL program and find out what it does. Then you learned how to
design, implement, and test your modifications. You became familiar
with workfiles, and you saw how using a workfile could expand the
capabilities of WPL.

You now have all the tools you need to be an effective, efficient,
innovative WPL programmer. But you haven’t learned all that WPL
can do for you. The power of WPL is that you can tailor-make pro
grams to suit your own Apple Writer requirements. Need a program
that sends out customized memos? formats TV and movie scripts?
keeps track of all your Apple Writer files? Whatever it is, you’re ready
to design it, write it, and let the player piano work while you play.

Summing Up

112 Chapter 8: Enhancing WPL Programs

Appendixes

115 Appendix A: Syntax of WPL Statements
119 Appendix B: List of WPL Commands
121 Appendix C: Summary of WPL Commands by Function
129 Appendix D: Error Messages and Debugging Hints
135 Appendix E: Answers to Programming Questions
141 Appendix F: WPL Programs in This Manual

Appendixes 113

yntax of WPL Statements

A WPL program contains one or more statements. A statement may
contain a WPL command, an Apple Writer command, ora comment.
Any statement that does not contain a recognizable command is
ignored when the program is executed. Every statement must end
With treturn) .

The General Format of a Statement
The format of a statement is

LABEL space(s) COMMAND NAME space(s) ARGUMENT (return)

The label must start in the leftmost position of the line. One or more
spaces are required between the label and the command name. If
there is no label, one or more spaces must precede the command.
The rules governing spaces between the command name and the
argument vary with the command: for Apple Writer commands, use
spaces just as you would if you entered the command as an
immediate command; for WPL commands, whether or not you need
spaces between the command name and the argument depends on
which command you’re using:

• commands that do not take an argument: op, nd, np, qt, rt, yd

• commands in which each space counts as a character: as, in, pr

• commands in which spaces are optional and have no effect: cs, do,
GO, LS, SR, SX, SY, SZ

Upper- and lowercase letters may be used interchangeably except in
label references and (in certain cases) arguments.

The General Format of a Statement 115

116

Labels
A label is a name given to a WPL statement. The label is optional; it
may be any length and may contain any characters except spaces.
Upper- and lowercase letters in a label are significant: label and
label are not considered the same.

Commands
A command may be an Apple Writer command (see the Apple Writer
manual) or a WPL command (see Appendix B).

Apple Writer commands are entered in programs in exactly the same
way as you would enter them as immediate commands with one
important exception: you don’t have to press (control) . That is,
[L]oad is entered asL, [F]ind is entered as F, and soon.

WPL commands are always preceded by a p when entering them in
programs. The p stands for [p]rint/Program. Thus, the New Print
command is entered as pnp.

Arguments
Some commands take arguments, others do not. For Apple Writer
commands, refer to the Apple Writer manual. For WPL commands,
see Appendix C. The argument for an Apple Writer command may
contain a (return) and may therefore appear on more than one line.

(RETURN)

Every statement must end with (return) .

If (return) appears on a line by itself, it is ignored. Therefore if you
need two (return) s in a row—for instance, to exit from a menu—
precede the second (return) with at least one space or other
noncommand character.

Variables
There are three numeric variables and four string (text) variables in
WPL. Numeric variables represent unsigned whole numbers. String
variables represent one or more characters of text.

Appendix A: Syntax of WPL Statements

String Variables
The string variables are represented as $a, $b, $c, and $D. They
may be either upper- or lowercase and are always preceded by a
dollar sign. Each string variable may contain up to 64 characters of
text. A string variable may be used in place of text in any command.
The value of the variable at the time the command is executed
replaces the variable name.

Numeric Variables
The numeric variables are represented as (x), (Y), and (z). They
may be either upper- or lowercase and are always enclosed in
parentheses. They may be increased, decreased, or set to any
integer from 0 to 65,535. If the maximum number is increased by 1,
the result is 0; this is called overflow. When a statement increases or
decreases a numeric variable to 0, the next statement is skipped.
When a statement sets a numeric variable to 0, the next statement is
executed.

Constants
A constant is a string that always has the same value. Its value
does not change while the program is running. For example, in
a command that adds 1 to a numeric variable, “1 ” is a constant;
in a command that displays hello on the screen, “hello” is
a constant.

Comments
A comment line may be inserted anywhere in your WPL program. By
convention, a comment begins with the following characters:

space(s) p space(s)

Any statement that is not recognized as a WPL command or an
Apple Writer command is assumed to be a comment and is ignored
during execution of the program. A comment may not appear on the
same line as a command.

Comments 117

/st of WPL Commands

Deferred Commands: Apple Writer does not immediately execute
deferred commands when you type a WPL program. They are
executed when the program that contains them is run. All of the
commands listed below may appear as deferred commands in a
WPL program, preceded by the character p. For example, pnp.

Immediate Commands: Immediate commands are executed as soon
as they are typed at the keyboard. Commands listed below with an
asterisk in column I may be executed immediately from the
keyboard, preceded by [p]. For example, press [p] and then type
np followed by (return) .

Embedded Commands: Commands embedded in a document are
executed when Apple Writer encounters them in the course of
printing the document. Commands listed below with an asterisk in
column E may be embedded in an Apple Writer document, preceded
by a period. For example, .in.

Command Description
AS

CP

cs

DO
GO
IN
LS

ND
NP

PR

QT

RT

SR

SX

SY
SZ

YD

ASSIGN STRING (give string variable a value)
CONTINUE PRINTing the next file of a document
COMPARE STRINGS
DO (execute) a WPL program
GO to a labeled WPL statement and execute it
INPUT (display a message and wait for a reply)
LOAD STRING
NO DISPLAY of text on screen
NEW PRINT (first or only file of a document)
PRINT (display) a line on the screen
QUIT the program and return to Apple Writer
RETURN from a subroutine
SUBROUTINE call
SET X (change the value of numeric variable X)
SET Y (change the value of numeric variable Y)
SET Z (change the value of numeric variable Z)
YES DISPLAY text on screen

List of WPL Commands 119

ummary of WPL
Commands by Function

The 17 different WPL commands fall into four functional groupings:

• Transfer of Control Commands—do, go, qt, sr, rt
These commands affect the sequence of execution; the next
statement to be executed is not the next sequential statement in
the WPL program. Commands that cause a WPL program to start
and end are included here.

• Output Commands—display commands are PR, in, nd, yd
—print commands are np, op

These commands allow the program to display messages, print
documents, and turn the text buffer display on and off.

• Numeric Variable Commands—sx, sy, sz
These commands are used to set integer variables and change
them by addition and subtraction.

• String Variable Commands—as, cs, ls
These commands are used to set string variables, compare two
strings, and load a specified string from a file.

This appendix tells you how to use each WPL command. The
commands are grouped by function and covered in the order
shown above.

There is a fifth group that is composed of commands that also
belong to other groups:

• Conditional Commands—sx, sy, sz, cs, ls
These commands affect the sequence of execution. Under
certain conditions, the statement following the conditional
command is skipped. Conditions that cause a statement to be
skipped are described in this appendix in the usage section for
each conditional command.

Summary of WPL Commands by Function 121

I n order to use this appendix, you need to be familiar with the syntax
rules of WPL (see Appendix A).

Items in braces ({ }) are optional.

Command Modes
There are three ways (or modes) of using WPL commands: deferred,
immediate, and embedded. Some commands can be used in more
than one of these modes. Every command can be used in deferred
mode—that is, in a WPL program. The command’s argument is the
same regardless of mode, but the command name must be pre
ceded by the character “. ” in embedded mode or “p” in deferred
mode. This section contains a definition of each mode and the
command name syntax required for each mode. The command
descriptions below give an example for each mode in which a given
command can be used. See Appendix B for a table of the modes
allowed for each command.

Deferred Mode
Syntax: Command name is preceded by the character p.
Example: pdo
Usage: p is the [p] in the Apple Writer [p]rint/Program

command, but it is typed without pressing (control)
when entering a deferred command. Normally
[p]rint/Program commands are executed as soon as
they*are entered. In deferred mode, however, these
commands are treated as text; they are then stored in a
file as part of a WPL program and are executed only
when the program is run.

Immediate Mode
Syntax: Command name is preceded by [p].
Example: [p]do
Usage: From Apple Writer, the command is executed

immediately. The command is valid only when typed
after pressing [p].

Embedded Mode
Syntax: Command name is preceded by a period.
Example: .in
Usage: When embedded in an Apple Writer document, the

command is executed when it is encountered in the
course of printing the document.

122 Appendix C: Summary of WPL Commands by Function

Transfer of Control Commands

do—Executes WPL Program
Syntax:
Examples:

Usage:

DO .dl/filename

PDO .D2/CHAINPR0G

[P]DO .Dl/WPLPROG

In deferred mode, the current WPL program chains to a
program called filename.

In immediate mode, the WPL program called filename

is executed immediately.

go—Execute a Labeled Statement
Syntax:
Example:
Usage:

GO statement label

PGO LOOP

Causes the statement named statement label to be
the next statement executed, regardless of where in the
program the st atement label statement appears.
Execution then proceeds normally.

QT—Quit
Syntax: qt
Example: pqt
Usage: When qt is encountered, the WPL program is exited

and control is returned to Apple Writer.

sr—Subroutine Call
Syntax:
Example:
Usage:

SR subroutinelabel

PSR PRINT

Causes the statement named subroutine label to be
the next statement executed. Execution then proceeds
normally until a Return command is encountered. Note:
a subroutine may contain a Subroutine Call. This is
called nesting. Subroutines may be nested up to 32
levels.

A subroutine is not allowed to call itself.

Transfer of Control Commands 123

rt—Return From Subroutine
Syntax: rt
Example: prt
Usage: Causes control to be transferred to the statement

following the Subroutine Call command that was
executed last.

124

Output Commands
pr, in, nd, and yd govern screen output, np and cp govern
printer output.

pr—Print a Line
Syntax:
Example:
Usage:

PR {message-text)

PPR ** Welcome to the Print Menu Program **

Causes a message line of up to 128 characters to be
displayed on the screen. If no message text is provided,
a blank line is displayed.

I n—Input a Line
Syntax: {message-text}{$A}

Examples: PIN Name of document to be printed? = $A

.IN Please insert special forms in printer

Usage: Causes a message line of up to 128 characters to be
displayed on the screen. If no message text is provided,
a blank line is displayed.

Causes the program to wait until (return) is pressed.
A response may be typed before pressing (return) . in
deferred mode, the program may test the response for
a particular value. In embedded mode, any response
followed by (return) causes the program to resume
execution.

Every character before the = sign is displayed, including
space characters. The string variable ($ a j is not displayed.
Any of the WPL string variables may be specified. The
response is stored in the specified string variable.

Appendix C: Summary of WPL Commands by Function

nd—No Display of Text Buffer
Syntax: nd
Example: pnd
Usage: Prevents document in memory from being displayed on

the screen. Use this command for faster processing of a
WPL program.

Provides full use of screen for PR and in commands. If
nd is not specified, only a single line on the screen is
available for output messages.

yd—Yes, Display Text Buffer
Syntax: yd
Example: pyd
Usage: Causes document in memory to be displayed on the

screen.

np—New Print
Syntax: np
Examples: pnp

[P] NP

Usage: Causes the document in memory to be printed. The first
page is numbered according to the current value of
Page Number (pn), which is described in the section
on printing in the Apple Writer manual.

cp—Continue Printing
Syntax: cp
Examples: pcp

[P]CP

Usage: Causes the document in memory to be printed. Page
numbering continues from previous document.

Output Commands 125

Numeric Variable Commands
sx sets numeric variable (x), sy sets numeric variable (y), and sz
sets numeric variable (z). The three numeric variable commands
function identically; therefore, only sx is shown here.

sx—SetX
Syntax: SX n or

SX (Y)
SX SA

SX +n Or SX -n

Example: psx +2

Usage: n is a whole number between 0 and 65,535 inclusive.
If n is not preceded by a sign, the variable (x) is set to n.
If n is preceded by a plus sign (+n), the value of n is
added to (X). If n is preceded by a minus sign (-n), the
value of n is subtracted from (x).

n may be a numeric variable. For instance, the state
ment sx (y) takes the current value of variable (y j and
places it in variable (x). (y j remains unchanged.

n may be a string variable. For instance, the statement
sx $a takes the current value of variable $a, converts it
to numeric format, and places it in variable (xj. $a
must represent a whole number between 0 and 65,535.

If n is signed and the new value of (x j is 0, the next
statement is skipped.

String Variable Commands
The four string variables are sa, sb, sc, and sd. In the syntax of the
string variable commands shown below, the source string is on the
left of the equals sign and the receiving string is on the right. The
receiving string is shown by convention as sa but may be any of the
string variables. A string variable may contain up to 64 characters.

126 Appendix C: Summary of WPL Commands by Function

as—Assign String
Syntax:
Example:
Usage:

AS text-or-variable = $A

PAS .DI/ = $D

The string variable on the right of the equals sign is
given the value of the text, variable(s), or concatenation
of text and variables, on the left side of the equals sign.
A string variable may appear on both sides of the
equals sign; in this case its original value is lost after the
Assign String command is executed. In all other cases,
the values of any variables on the left side of the equals
sign remain unchanged.

cs—Compare Strings
Syntax:
Example:
Usage:

CS /text-or-var 1 ab 1 e/text-or-var 1 ab 1 e/

PCS /$A/yes/

A slash (/) is usually used as the delimiter, but you may
use any character that does not appear in the text. (See
the discussion on delimiters in Chapter 6). The
comparison results in one of two possible outcomes:
EQUAL or NOT EQUAL. If the comparison is equal, no
action is taken. If the comparison is not equal, the next
statement is skipped.

ls—Load String
Syntax:
Example:
Usage:

LS fllename!string-start!string-end!{n}{a}= $A

PLS .Dl/GETTYSBURG!Fourscore’ago! = SA

The file is searched for the first occurrence of string-

start. Up to 64 characters are loaded from the file into
the string variable. Loading ceases when string-end is
found. If string-start is not found, the next statement
is skipped.

The Load String command is similar to the Apple
Writer [c]oad command and uses the same options: n
means “do not include the markers in the string”; a
means “load all occurrences.”

String Variable Commands 127

rror Messages and
Debugging Hints

This appendix contains two sections. The first section explains
every error message that WPL provides. The second contains hints
on how to figure out why your program is not doing what you
expected it to do.

Error Messages
If, while running a WPL program, Apple Writer comes to a condition
that prevents it from executing the current statement, it stops and
displays a message on the screen. This condition is known as an
execution error. To leave the WPL program (which can proceed no
further) and return to Apple Writer, press (return)

Here is a list of WPL execution error messages. When the message
appears on the screen, it is preceded by the words wpl Error and
followed by the words (Press return) .

Label not f o u n d - - > x x x x x

A Go command contained the label argument xxxxx, but no such
label exists in the program.

• Have you spelled the label correctly in the Go statement?

• Did you type letter I for number 1 ? letter O for number 0?

• Is the use of upper- and lowercase identical in the label and the
label argument?

Error Messages and Debugging Hints 129

’RT’ without ’SR’

A Return (rt) command was encountered, but there was no sub
routine to return from.

• Did you enter the subroutine without calling it with a Subroutine
(sr) command? For instance, did you enter the subroutine by
Go-ing to it?

Program > 2048 chars

The WPL program is longer than 2,048 characters. (That is, the size
of the WPL program exceeds the space allotted for it in Apple Writer.)

• Refer to Chapter 7 for suggestions on using subroutines and
dividing long programs.

M o r e t h a n 3 2 ’SR’

More than 32 Subroutine (sr) commands were executed without
a Return (rt) command.

• Does a Go command in a subroutine refer to a label outside the
subroutine?

• Was the Return command bypassed? (Can the statement just
before the Return statement cause conditional execution?)

• Does the subroutine call itself? For example

AAA PSR AAA Or

BBS P..

PSR BBB

P. .

PRT

F o o t n o t e U v e r f 1 o w

The WPL program tried to print more than 1,024 characters of
footnote text on a single page, or a single line of footnotes contains
more than 128 characters.

•Isa footnote missing the end-of-footnote identifier “ >) ”?

• If you need help in reducing the amount of footnote material on
a page, see the Apple Writer manual.

130 Appendix D: Error Messages and Debugging Hints

Debugging Hints
In addition to errors listed above that cause the WPL program to
stop, there are others—known as logic errors—that do not stop the
program but that produce unexpected results. These errors typically
occur when

• a command name or argument is mistyped

• a WPL command is not preceded by P

• duplicate labels exist and are referred to by a Go command

• a syntax error occurs (see Appendix A)

• a file does not contain the information your program expects

• the program contains a design error

• conditional execution occurs and a statement is unintentionally
skipped

The following sections describe techniques for correcting logic
errors.

Desk Checking
Desk checking is pencil-and-paper work. It means taking a printed
copy of your WPL program and a printed copy of the textfile, if any,
and playing computer—reading each statement and writing down
what happens when it is executed. Each time the value of a variable
changes, write down the new value. Is it what you expected? After
a command that causes conditional execution, which statement is
executed next?

This is the time to make sure the program syntax is correct. This is
also the time to look up in the manuals any command whose format
or use you are unsure of. When you find an error, check to see if you
have made the same error in more than one place in the program.
After you have corrected all the errors you can find by methodical
desk checking, run the program again. You may have to go through
this process a number of times if you are unfamiliar with Apple Writer
or WPL.

131Debugging Hints

Trace
A trace is a kind of debugging diary displayed on the screen by your
program. When a program is producing unexpected results and
desk checking doesn’t reveal where the error is, insert trace state
ments to display

• the sequence of execution of program statements

• changes in variables

After your program is operating properly, you can remove the
trace statements.

You create a trace statement by inserting an ordinary WPL Print or
Input statement in your program to display the progress of the pro-Displaying the progress of a program
gram as it is executed. The Input command allows you to stop the
program as well as print out the value of any variables you are using.
A good place to put a trace is at the beginning of a loop or after
a change in a variable. Here is a sample program with traces inserted.
(Explanations are in the righthand column.)

Initialize xPSX i

F/string//

Y?

PGO LABELS

PQT

PSY (X)

PSY +1

PIN LABELB, X is (X) , Y is (Y)

L .D2/TEXTFILE ■ (X)!(Y)!N

LABELA

Go if string found
Quit if not

LABELS

Y = X + 1
t racel

Load text from marker
x to y at cursor

X = X + 1PSX +1

PIN After load, X is (X)

PGO LABELA

t race2

The trace statements are labeled traceland trace2. Tracei lets
you know that the program is in the labels routine and tells you the
current values of (x) and (v). Trace2 lets you know that text has
been loaded and shows you the new value of (x).

132 Appendix D: Error Messages and Debugging Hints

When you run the program with traces, the following messages will
be displayed:

LABELS, X is 1, Y is 2

After load, X i s 2

LABELS, X is 2, Y is 3

After load, X 1 s 3

(and so forth)

You may also find it helpful during debugging to turn on the display
of the document in memory by inserting a Yes Display (yd) com
mand or deleting a No Display (nd) command.

Debugging Hints 133

nswers to Programming
Questions

Throughout the manual are programming puzzlesand questions.
Try working out the answers by yourself before you look them up in
this appendix.

Chapter 2 Answers

The star Program
The star program fills memory with stars by inserting the first star
and then loading from memory. The star program looks like this:

STAR p THIS PROGRAM FILLS MEMORY WITH STARS

ny
p INSERT A STAR INTO MEMORY

f/z*z

y?

1 o o p e

p LOAD MORE STARS

Ltt

pgo loop

To change the program so that it places *»$ in memory, change the
[f]ind statement

from: f//*/ to:

135Chapter 2 Answers

Chapter 5 Answers

Uppercase and Lowercase Responses
The following routine goes to the quit label if any response except
uppercase “Y” is typed:

pin To print another file type Y, then press RETURN. = Sa

pcs /$a/Y/

pgo print

p g o q u 11

To change the routine so that it accepts lowercase “y” as well, insert
the following two statements after the Compare Strings statement:

pgo print

pcs/$a/y/

The modified routine looks like this:

pin To print another file type Y, then press RETURN. = Sa

pcs /$a/Y/

pgo print

pcs /$a/y/

pgo print

pgo qu i t

136 Appendix E: Answers to Programming Questions

Modifying the menu Program
The menu program, shown below, displays a menu that allows you to
select an output destination for your document:

m e n u pnd

ppr [\]

ppr PRINT OPTIONS MENU:

ppr

ppr (1j Screen

p p r f 2 j P r i n t e r

ppr | 3) Quit

ppr

select pin Select 1, 2, or 3: = $a

pcs /$a/3/

pgo quit

pcs /$a/2/

pgo printer

pcs /$a/l/

pgo screen

pgo select

s c r e e n p p d. c o ns ole

pgo file

p r i n t e r p p d . p r i n t e r

pgo file

qu 1 t pqt

file pin Enter filename: = $ c

rig

L $c

pnp

pin P r ess RETURN

pgo menu

To change the menu program so that it loads a print value file for each
print option (screen or printer), you must change the screen routine
and the printer routine so that they load the appropriate files.

Print value files are loaded by means of Apple Writer’s Additional
Functions Menu. To use this menu, type [Q] followed by the letter of
the option you have selected. If you choose Option C (Load Print/

Program Value File) Or Option D (Save Pr in t/Program Value File),

Apple Writer asks you for the name of the file.

Chapter 5 Answers 137

The print value file that contains the values appropriate to screen dis
play is called pvscrn. The print value file for the printer is called
pvprtr. (The next section of this appendix tells you how to write
a menu program that creates these print value files.) Replace the
screen and printer routines in the menu program with the
following:

screen

printer

qc.D2/pvscrn

pgo file

qc.D2/pvprt r

pgo file

qc.D2.pvscrn means

q
c

. D2/pvscrn

Open the Additional Functions Menu
ChOOSe Option C: Load Pr int/P rogram Value F ile

the file and drive (followed by (return))

138

A Menu Program That Creates a Print Value File
The followingPRTVAL program creates a print value file tailored to
user specifications. The program shows how to create a print value
file from a menu program. It is included here to illustrate a technique
and therefore modifies only a few of the available print options, psp,
ppd, and ppl are the WPL equivalents of embedded Apple Writer
print commands .sp, .PD,and .pl.

Appendix E: Answers to Programming Questions

PRTVAL P CREATE A PRINT VALUE FILE

PND

PPR [\]

PPR PRTVAL creates a print value tile for

PPR (1 j Screen

PPR (2) Prin ter

WHICH PIN Select 1 or 2 = SA

P BEGIN WITH STANDARD SYSTEM PRINT VALUES IN MEMORY

PPR Pu t Apple Wr i ter master disk in dr 1 ve 1,

PIN then press RETURN.

QC.D1/SYS

PCS /$A/1/

PGO SCREEN

PCS /$A/2/

PGO PRINT

PGO WHICH

SCREEN PPD.Console

PSP1

PIN How many lines long is the screen display? = SB

PPL SB

QD .D2/PVPRTR

PGO QUIT

PRINT PPD.Printer

PSP0

PIN How many printed lines per page? = SB

PPL SB

QD .D2/PVSCRN

QUIT PPR *** The print value fi le was created. ***

PPR To verify the new values, press RETURN arid then

PIN type CONTROL-P followed by ?

PQT

The prtval program loads the standard system print value file,
prt . sys. Any values that are not modified by prtval have the
standard system setting in the new print value file.

Chapter 5 Answers 139

—

Chapter 6 Answers

Starting the Stock Calculation With the Current Year
The stock calculation routine looks like this:

5

PSX

LOOP PSY

PSX

PGO LOOP

hares of stool

Each year on your birthday you receive your age in stock. The (y)
variable represents your age each year. When the calc routine is
entered, (Y) is your present age. At the loop label, (Y) is immediately
increased by 1 and the result is then added to accumulator (X). That
is, calc is designed to calculate the total stock you will receive on
your next five birthdays.

To redesign calc so that it begins calculating with your present age,
not your age at your next birthday, add your age to the accumulator
before adding 1 to your age. You can do this by switching the order
of the two commands following the loop label:

LOOP PSX+(Y)

PSY +1

140 Appendix E: Answers to Programming Questions

PL Programs in This
Manual

This appendix contains a list of all the programs and routines that
appear in the manual. Some of the programs are on the Apple Writer
UTILITIES disk with the prefix wpl .; these are marked with an
asterisk (*).

*MEMOPRT (Page 4)
Prints a document from two files.

append(Page 33)
Makes three specific files into one.

message(Page 34)
Prints a selected portion of a file.

savepart(Page 41)
Saves part of a document in a new file.

addon (Page 41)
Adds a document to an existing file.

pick (Page 53)
Echoes whatever you type.

APPEND2(Page 53)
Makes any three files into one.

getname(Page 56)
Prompts for a value, searches a file, and displays the result.

choice(Page 59)
Prompts for an answer, compares it to valid responses.

‘menu(Page 60,137)
Prints a file on the printer or displays it on the screen.

‘age (Page 66)
Calculates current age from birth year.

‘CALC (Page 67,140)
Calculates a 5-year stock option. (Includes age program.)

newcalc(Page 68)
Another way of calculating a stock option.

‘number (Page 71)
Assigns consecutive numbers to addresses in a file.

WPL Programs in This Manual 141

*WRITE (Page 72)
Creates a form letter.

startgloss (Page 85)
A Startup program that loads a choice of glossaries.

AUTOLETTER (Page (92)
Prints form letters, inserting names and addresses from an
address file.

autoletters(Page 108)
Prints form letters, inserting names and addresses from an
address file.

prtval (Page 139)
Tailors a print value file to specifications.

142 Appendix F: WPL Programs in This Manual

Index

accumulators 67-68
addon program 41,141
address files 70-71
addrs file 94,104-105
age program 66-67,141
algorithm 104
analyzing programs 92-99
append program 33-34,141
appendg program 53,141
Apple Writer

MASTER disk 4, 86, 92
relation to WPL 4,10-12

Apple Writer commands
definition of 16
how to write 16,22-26,116

argument
definition of 18,19, 21
how to write 21,23,116
upper-and lowercase with 18

Assign String command 54, 55,
68,127

autoletter program 92,142
analysis of 92-99
modification of 99-111
-AUT0LETTER2 program 108,142

blank line 42
branching 37
buffers

definition of 10
footnote 10, 83, 84,130
screen 11
text 12,44-45,56

bugs 12,131-133

calc program 67-68,141
calling

programs 84
subroutines 81

catalog program 87
chaining programs 83-84
choice program 59,141
clearing the screen 45
columns 22
command name 19,21
command statement 17
commands

deferred 8,119,122
definition of 16,21
embedded 5-7,119,122
how to write 21,22-26,116
immediate 5,16,119,122
See also Apple Writer commands
and WPL commands

comments
definition of 17
how to write 27-28,117

Compare Strings command 58-60,
68,127

concatenation 54-55
conditional execution 57-58
constants 50,117
Continue Printing command 4, 42,

95, 125
Control Character Insertion mode

43,45
converting strings 66-67
counters 67-68
creating programs 18
cursor, moving the 23, 24

Index 145

Data Line 28
debugging 12,131-133
deferred commands 8,119,122
deleting text 28
designing changes

to file 103-105
to program 100-101

desk checking 131
disk

MASTER 4,86,92
STARTUP 86
UTILITIES 3,4,19,111,141

display 12,42-45,125
Do command 84,123
documentation, internal 17, 20, 27

editing programs 19, 28-29
embedded commands 5-7,119,122
ending programs 33-35
erasing the screen 45
error messages 34-35,129-130
executing the last statement 33
exiting

from loops 37
from programs 33-35

Find command 25-26, 28, 75
finding and replacing text 25-26, 28,

75
flow of control

with chaining 83
with subroutines 80

footnote buffer 10, 83, 84,130
form letters 69-75

See also autoletter program
formletter file 93-94,103

generalizing a program 53
getname program 56,141
Go command 35-37, 80, 96-97,123

halt program 43
halting programs 33-35,43

immediate commands 5,119,122
implementing program changes

105-109
initial value, giving numeric variables

an 68

Input command 43,44,52-53,124
inserting text 28
internal documentation 17,20,27
interruption due to error 34-35

labels
definition of 17,19
how to write 20,116
upper-and lowercase with 18

last statement 33
letter program 44
Load command 19
loading catalog into memory 87
Load String command 56-57, 58,

127
logic errors 131-133
loops

processing 96-98
program 35-37

lowercase characters 18, 50,136

MASTER disk 4, 86, 92
memoprt program 3-4,141
memory

clearing 24, 29
loading catalog into 87
sharing with Apple Writer 10

menu program 60-61,137-138,141
message program 34,141
modifying programs 99-111
moving the cursor 23-24

naming programs 19
nested loops 37
New Print command 4,42,95,125
newcalc program 68-69,141
No Display command 11,44-45,

110,125
number program 71,141
numeric variables

accumulators 67-68
calculating with 66-69
commands 126
comparing numeric variables
68-69
converting strings to 66-67
counters 67-68
definition of 50, 65
giving an initial value to 68
Set X, Y and Z commands 66,
126
syntax of 117

Index

output destination 60-61,137-138
overflow 65

pick program 53,141
Print command 42,45,124
print value files 61,138-139
printing from programs 42, 60
printing to screen 42-44, 60
processing loops 96-98
program loops 35-37
prtval program 138-139,142

Quit command 34,37,123

concatenating 54-55
definition of 49-51
generalizing programs with 53
Load String command 56-57, 58,
127
setting 52-57
syntax of 117

strings 49
Subroutine Call command 80-81,
123
subroutines 80-82,123-124
syntax

definition of 15
of a WPL statement 19-21,
115-117

system print (SYS . prt) file 84, 86
system tab (sys . tab) file 84, 86

replacing text 25, 28, 75
Return command 81,124
return from subroutines 81,124
(return) 116

Save command 18,41
savepart program 41,141
screen

and debugging 12
clearing 45
controlling display 44-45
Input command 43,44,52,124
No Display command 11,44-45,
110,125
Print command 42, 45,124
printing to 42-44, 60,137-138
sending output to 42-44,60,137-138
sharing with Apple Writer 11
text display 11-12
Yes Display command 11,45,125

setting variables 52-57
Set X, Y and Z commands 66,126
star program 28-29,135
startgloss program 85,142
startup program 84-86
statements

See WPL statements
string variables

Assign String command 54, 55,
68,127
commands 126-127
Compare Strings command
58-60,127

testing program changes 109-111
text buffer 11,44-45, 56
text display 11-12
trace 132-133
transfer of control 80, 81

unsuccessful outcome 57
uppercase characters 18, 50,136
using programs 19
UTILITIES disk 3,4,19,111,141

variables
See numeric variables and string
variables

workfiles 102-103
WPL commands

definition of 16
how to recognize 9
how to write 16,26,116
list of 119
summary by function 121-127

WPL statements
definition of 17
how to write 22
syntax of 19-21,115-117

write program 72-75,141

Yes Display command 11,45,125

Index 147

—

■ " 1 1 ----—(£2

—

Tuck end flap
inside back cover
when using manual.

20525 Mariani Avenue
Cupertino, California 95014

(408) 996-1010
TLX 171-576
030-0601-A

—

—

—

------ —

^appkz computer
® a a • .a

4r------

O

