

Introduction
This supplement contains general background information on the
PET interfaces and lines to the “outside world.”

This information is relevant to users who wish to interface with any
device external to the PET computer itself. The device could be a
printer, a source of digital data such as a seismograph or other scien­
tific instrument, a second cassette tape deck or an extra memory to
increase the power of the PET still further.

This document is intended to provide essential information for the
experienced user anxious to explore the interface possibilities of
the PET.

PET INTERFACES AND LINES 3

COMMANDS AND OPERATIONS 15
FOR PERIPHERAL DEVICES

THE IEEE-488 BUS-
A SHORT DESCRIPTION 43

1

PARALLEL
USER PORT J2

SERIAL NUMBER
AND

ELECTRICAL SPEC.

3-WIRE AC
POWER CORD

Figure 1-1. Rear view of PET 2001 showing switch,
fuse, line cord and interfacing connectors

PET Interfaces and Lines

TABLE OF CONTENTS

1. Connector Orientation 4
2. IEEE-488 Interfaces (Connector JI) 5

2.1 Receptacles for the lEEE-Interface 6
2.2 IEEE-488 Connectors 6

3. Parallel User Port (Connector J 2) 7
3.1 Versatile Interface Adapter 8
3.2 Programming the User Port 10

4. Second Cassette Interface
(Connector J 3) 10

5. Memory Expansion Connector
(Connector J4) 12

3

1. Connector Orientation
As indicated in Figure 1-1, there are four connectors provided,
accessible through slots in the rear and side of the PET that enable
the user to interface the computer with external devices.

As outlined in Figure 1-2, edge card connectors are utilized which are
in fact, direct extensions of the PET main logic assembly board itself.
There are two contacts to each position of the connector. The con­
tact identification convention for JI and J2 is also illustrated in
Figure 1-2.

3 Wire
AC Power

Cord
1.6 ASIo
Bio Fuse

Memory
Expansion J4
Connector

J1
IEEE-488
Interface J2

Parallel
User Port

J3
2nd Cassette

Interface

Power
Switch

Figure 1-1. Simplified top view of PET showing switch,
fuse, line cord and interfacing connectors.

FROM PET MAIN LOGIC ASSEMBLY BOARD

Upper
Contact
(or Pin)

Lower
Contact

Rear or Edge-on View through slots in PET (or Pin)

Figure 1-2. Simplified views of edge connectors J1 and J2
to illustrate contact identification convention.

2. IEEE-488 Interfaces (Connector jd

The standard IEEE-488 connector is not used on the PET. Instead, a
standard 12 position, 24 contact edge connector with .156 inch
spacing between contact centers is provided. This permits it to be
compatible with all of the other connections to the PET.

Keying slots are located between pins 2-3 and 9-10.

Table 2-1 shows the PET contact identification characters, the con­
nection for a standard IEEE connector, the IEEE mnemonics and the
signal definitions.

Electrical drive capability and line impedance matching is in accord­
ance with IEEE-488 specifications.

Table 2-1. PET contact identification characters.
IEEE-488 identification characters,

PET Pin
Characters

Upper Pins
) 1
7 23 34- 4
I 0 5
f I 6
(2 7

I3 8

,4 9
10

1 11

/ Ip 12

associated labels and descriptions.

Standard
IEEE

Connector
Pin

Numbers

IEEE
Signal

Mnemonic

1 DI01
2 DI02
3 DI03
4 DI04
5 EOlv/
6 DAV^
7 NRFD^
8 NDAC^
9 IFC-

10 SRQ
11 ATN^
12 GND

Signal
Definition/Label

Data input/output line #1
Data input/output line #2
Data input/output line #3
Data input/output line #4
End or identify
Data valid
Not ready for data
Data not accepted
Interface clear
Service request
Attention
Chassis ground and IEEE

cable shield drain wire

Lower Pins
A. 13
B 14
C 15I
D 16
E 17

3 F 18

DI05
DI06
DI07
DI08
REN
GND

Data input/output line #5
Data input/output line #6
Data input/output line #7
Data input/output line #8
Remote enable(GivtfU*d^6
DAV ground____________ |

Table 2-1 continued on next page.
5

Table 2-1. PET contact identification characters (continued)

PET Pin
Characters

Standard
IEEE

Connector
Pin

Numbers

IEEE
Signal

Mnemonic
Signal

Definition/Label

Lower Pins
H 19 GND NRFD ground
J 20 GND NDAC ground
K 21 GND I FC ground
L 22 GND SRQ ground
M 23 GND ATN ground
N 24 GND Data ground (DI01-8)

2.1 Receptacles for the IEEE Interface
A list of frequently used 12 position, 24 contact receptacles that are
suitable for connection to the PET edge card connector J1 and J2 is
shown here:

Table 2-2. Receptacles recommended for PET IEEE-488
connectors or parallel user port.

Manufacturer Part Number

Cinch 251-12-90-160
Sylvania 6AG01-12-1A1-01
Amp 530657-3
Amp 530658-3
Amp 530654-3

2.2 IEEE-488 Connectors
The IEEE-488 standard receptacles are not directly connectable to
the PET edge connector; some of these are shown in Table 2-3, and
belong to the Cinch Series 57 or Champ Series (Amphenol). Also
shown are their matching plugs.

Table 2-3. IEEE standard connectors

Connector
Manufacturer Identifier Description

Cinch 5710240 Solder-plug
Cinch 5720240 Solder-receptacle
Amp 552301-1 Insulation displacement plug
Amp 552305-1 Insulation displacement receptacle

6

Commodore has available a 1 meter long IEEE-488 dual connector-
PET edge connector, cable. Please contact your local dealer or
Commodore for price and delivery.

3. Parallel User Port (Connector J2)

The lines for this interface are brought out from the PET main logic
board to a 12 position, 24 contact edge connector with .156 inch
spacing between contact centers. See Table 2-2 for suitable mating
connectors.

Keying slots are located between pins 1-2 and 10-11.

Table 3-1 shows the PET pin identification characters, the corre­
sponding labels and their descriptions.

Note that the connections 1-12, the top line of contacts (see Figure
1-2), are primarily intended for use by the PET service department or
qualified dealers. When using the incorporated ROM diagnostic, a
special connector is used; this jumpers some of the top contacts to
the bottom contacts. It is strongly advised that the top connectors
1-12 be used only with extreme caution.

Table 3-1. Parallel user port information.
PET pin identification characters, the corresponding

signal labels and their descriptions.

Table 3-1 continued on next page.

Pin
Identification

Character
Signal
Label

Signal
Description

1 Ground Digital ground.
2 lx TV. Video Video output used for external display,

used in diagnostic routine for verifying
the video circuit to the display board.

3 IEEE-SRQ Direct connection to the SRQ signal on
the IEEE-488 port. It is used in verify­
ing operation of the SRQ in the diag­
nostic routine.

4 IEEE-EOI Direct connection to the EOI signal on
the IEEE-488 port. It is used in verify­
ing operation of the EOI in the diag­
nostic routine.

5 Diagnostic
Sense

When this pin is held low during power
up the PET software jumps to the diag­
nostic routine, rather than the BASIC
routine.

Table 3-1. Parallel user port information (continued).

t

The signals CAI, PA0-7 and CB2 are directly connected to a standard

3.1 Versatile Interface Adapter
The lines on the bottom side of the user port connector originate
from a Versatile Interface Adapter (VIA MOS Technology part
#6522).

Pin
Identification

Character
Signal
Label

Signal
Description

6

7

8

9 t/

10 z

11, 12

A
) B

C"

D>

; e-
Fz

> J -

1 K

L.
M -

> N

Tape #1
READ

Tape #2
READ

Tape Write

T.V.
Vertical

T.V
Horizontal

GND

GND

CA1

PA0 V

PA1 1

PA2 Z
PA3 £

PA4

PA5

PA6
T ■

PA7

CB2

GND

Used with the diagnostic routine to
verify cassette tape #1 read function.

Used with the diagnostic routine to
verify cassette tape #2 read function.

Used with the diagnostic routine to
verify operation of the WRITE func­
tion of both cassette ports.

TV. vertical sync signal verified in
diagnostic. May be used for external
TV display.

T.V. horizontal signal verified in
diagnostic may be used for TV display.

Digital ground.

Digital ground.

Standard edge sensitive input of
6522VIA.

Input/output lines to peripherals,
__ and can be programmed independ­

ently of each other for input
or output.

Special I/O pin of VIA.

Digital ground.

8

6522 VIA located at hexadecimal address E840. (Decimal
address 59456).

The parallel port consists of eight programmable bi-directional I/O
lines PA0-7, an input handshake line for the eight lines, CAI, which
can also be used for other edge-sensitive inputs and a very powerful
connection, CB2. This has most of the abilities of CAI, but can also
act as the input or output of the VIA shift register.

A detailed specification for the VIA is attached. All signals on the
VIA that are not connected to the user port are utilized by the PET
for internal controls. Please note that the user should avoid inter­
facing with these signals in any way.

Table 3-2 shows the decimal and hexadecimal addresses in the PET
associated with the VIA.

Table 3-2. VIA 6522 Decimal and Hexadecimal addresses in PET.

Decimal Hexa­
Decimal $E840+ Addressed Location

59456 E840 0000 Output register for I/O port B.

59457 E841 0001 Output register for I/O port A
with handshaking.

59458 E842 0010 I/O Port B Data Direction
register.

59459 E843 0011 I/O Port A Data Direction
register.

59460 E844 0100 Read Timer 1 Counter low order
byte Write to Timer 1 Latch
low order byte.

59461 E845 0101 Read Timer 1 Counter high
order byte. Write to Timer 1
Latch high order byte and
initiate count.

59462 E846 0110 Access Timer 1 Latch low order
byte.

59463 E847 0111 Access Timer 1 Latch high order
byte.

59464 E848 1000 Read low order byte of Timer 2
and reset Counter interrupt.
Write to low order byte of
Timer 2 but do not reset
interrupt.

Table 3-2 continued on next page
9

Table 3*2. VIA 6522 Decimal and Hexadecimal addresses in PET (continued).

Decimal Hexa*
Decimal $E840+ Addressed Location

59465 E849 1001 Access high order byte of Timer
2; reset Counter interrupt on
write.

59466 E84A 1010 Serial I/O Shift register.

59467 E84B 1011 Auxiliary Control register.

59468 E84C 1100 Peripheral Control register.

59469 E84D 1101 Interrupt Flag register (IFR).

59470 E84E 1110 Interrupt Enable register.
59471 E84F 1111 Output register for I/O Port A,

without handshaking.

3.2 Programming the User Port
Data lines PA0-7 are individually programmed to function for input
or output as required. This is done by using a software POKE
59459 command to place a number into the data direction register.
This number must contain zeros on bits corresponding to lines
where inputs are required and ones where outputs are required.
Table 4-3 shows a practical example of input/output selection.
The programming need only be carried out at the beginning. From
then on POKE 59471 can be used to drive the pins programmed
as outputs, and PEEK(59471)will read all the inputs.

Table 4-3. Parallel user port example.
Programming of lines PA0-7 for input/output operation.

Command
Statement

Binary
Representation Lines Mode

POKE 59459,255 11111111 PA0-7 Output
POKE 59459,0 00000000 PA0-7 Input
POKE 59459,240 11110000 PA0-3 Input

PA4-7 Output

4. Second Cassette Interface (Connector J3)

This interface is brought out from the PET main logic board to a 6
position, 12 contact edge connector with .156 inch spacing between
contact centers (See Figure 4-1).

10

A keying slot is located between pins 2-3.

This port is intended for use with the Commodore second cassette
system only. Any other connections are made at the risk of the user.
Please note that the +5 volts is not intended for use as an external
power supply.

Table 4-1 shows the PET pin identification characters, labels and
descriptions. Table 4-2 shows some typical receptacles that are suit­
able for the second cassette connector.

FROM PET MAIN LOGIC ASSEMBLY BOARD

Top
View

Upper
Contact
(or Pin)

Lower
Contact
(or Pin)

Rear or Edge-on View through slot in PET

Figure 4-1. Simplified view of edge connector J3
with contact identification.

Table 4-1. Second cassette interface port.
PET pin identification characters, labels and associated descriptions.
Note A-1, B-2, etc., imply a pin A to pin1, pin B to pin 2, connection.
In some special units, pins 1 through 6 were not connected.

Pin
Identification

Characters
Label Description

A-1 GND Digital ground.

B-2 +5 Positive 5 volts to operate cassette circuitry
only.

C-3 Motor Computer controlled positive 6 volts for
cassette motor.

D-4 Read Read line from cassette.

E-5 Write Write line to cassette.

F-6 Sense Monitors closure of mechanical switch on
cassette when any button is pressed.

Table 4-2. A selection of suitable receptacles for connecting
with the PET second cassette edge connector J3.

Manufacturer Identifier

Sylvania 6AJ07-6-1A1-01
Viking 2KH6/1AB5
Viking 2KH6/9AB5
Viking 2KH6/21AB5
Amp 530692-1
Sullins ESM6-SREH
Cinch 250-06-90-170

5. Memory Expansion Connector (Connector J4)

The memory expansion connector provides access to the buffered
and decoded input/output lines from the 6502 microprocessor.
Figure 6-1 shows a simplified view of the 40 position-80 contact
edge connector used. The spacing between contact centers is 0.1
inch.

Note that the 40 top edge “B” connections (or pins) are ground
returns for the corresponding 40 lower edge “A” connections.

Table 5-1 shows the PET pin numbers, line labels and line descrip­
tions.

Upper
Contact
(or Pin)

Lower
Contact
(or Pin)

Figure 5-1. Simplified view of edge connector J4 with contact
identification. All side B contacts grounded.

12

Table 5-1. Memory expansion connector. PET pin numbers.
Line labels and line descriptions.

Table 5-1 continued on next page.

Side A
Pin Numbers

Line
Labels Line Description

A1 BA0 Address bit 0, used for memory expansion.
Buffered.

A2 BA1 Address bit 1, used for memory expansion.
Buffered.

A3 BA2 Address bit 2, used for memory expansion.
Buffered.

A4 BA3 Address bit 3, used for memory expansion.
Buffered.

A5 BA4 Address bit 4, used for memory expansion.
Buffered.

A6 BA5 Address bit 5, used for memory expansion.
Buffered.

A7 BA6 Address bit 6, used for memory expansion.
Buffered.

A8 BA7 Address bit 7, used for memory expansion.
Buffered.

A9 BA8 Address bit 8, used for memory expansion.
Buffered.

A10 BA9 Address bit 9, used for memory expansion.
Buffered.

A11 BA10 Address bit 10, used for memory expansion.
Buffered.

A12 BA11 Address bit 11, used for memory expansion.
Buffered.

A13 NC No connection.
A14 NC No connection.
A15 NC No connection.
A16 SEL 1 4K byte page address select for memory

locations 1000-1FFF.
A17 SEL 2 4K byte page address select for memory

locations 2000-2FFF.
A18 SEL 3 4K byte page address select for memory

locations 3000-3FFF.
A19 SEL 4 4K byte page address select for memory

locations 4000-4FFF.
A 20 SEL 5 4K byte page address select for memory

locations 5000-5FFF.
A21 SEL 6 4K byte page address select for memory

locations 6000-6FFF. *

13

Table 5-1. Memory expansion connector. PET pin numbers.
Line labels and line descriptions (continued).

Side A
Pin Numbers

Line
Labels Line Description

A22 SEL7 4K byte page address select for memory
locations 7000-7FFF.

A 23 SEL9 4K byte page address select for memory
locations 9000-9FFF.

A24 SELA 4K byte page address select for memory
locations A000-AFFF.

A25 SEL B 4K byte page address select for memory
locations B000-BFFF.

A26 NC No connection.
A27 RES . Reset for 6502 microprocessor. Note:

connected to 74LS00 output.
A28 IRQ Interrupt request line to the microprocessor.
A29 B02 Buffered phase 2 clock.
A30 R/W Buffered read/write from 6502 micro­

processor.
A31 NC No connection.
A32 NC No connection.
A33 BD0 Data bit 0. Buffered.
A34 BD1 Data bit 1. Buffered.
A35 BD2 Data bit 2. Buffered.
A36 BD3 Data bit 3. Buffered.
A37 BD4 Data bit 4. Buffered.
A38 BD5 Data bit 5. Buffered.
A39 BD6 Data bit 6. Buffered.
A40 BD7 Data bit 7. Buffered.

14

Commands and Operations
for Peripheral Devices

TABLE OF CONTENTS
1. Additional BASIC Commands 17
2. Input/Output Command Parameters 17

2.1 Logical Files 17
2.2 Device Numbers 18
2.3 Secondary Addresses 19
2.4 File Names 20

3. Tape Cassette Operation for Files 20
3.1 File Recording Technique 21
3.2 File Headers 21
3.3 Tape Buffers 22
3.4 Multiple Files 22

4. Logical File I/O Operations: General 23
5. Opening Files 24

5.1 Examples of OPEN Statements 24
5.2 LOAD 25
5.3 VERIFY 26
5.4 SAVE 27
5.5 IEEE488 Special Features 27
5.6 IEEE-488 OPEN Considerations 27

6. Tape File Operation Modes 28
6.1 OPEN for Write or Tape from PET 28
6.2 OPEN for Read from Tape to PET 28

7. Data Input: General 31
7.1 INPUT# —String and Variable Input 31

7.1.1 Example of INPUT# Statement 31
7.2 GET# —Character Transfers 32
7.3 Tape Input 32
7.4 IEEE-488 Device Input Sequences 32
7.5 Input Buffer Limitations 32

8. Data Output: General 33
8.1 PRINT# 33

8.1.1 Examples of PRINT# Statement 35
8.2 IEEE-488 Bus Output 36
8.3 CMD Command 36

8.3.1 Examples of CMD Command 37

15

9. Closing Files 37
9.1 Example of CLOSE Statement 38
9.2 Tape File Closure 38
9.3 IEEE-488 Named Device Closure 38

10. Error Detection: General 38
10.1 Status Word (ST) 38
10.2 IEEE Device Errors 39
10.3 Tape Unit Errors 39
10.4 Examples of ST Use 40

11. Polling Techniques 41
12. Default Parameters 41

16

1. Additional BASIC Commands
By this time, the user is probably familiar with the use of the com­
mands INPUT and PRINT. INPUT permits the entry of data from the
input keyboard and PRINT permits the output or display of data.
These commands are common to all forms of BASIC.

To add flexibility to the PET computer system, several commands
have been added to classical BASIC in the PET, and future Commo­
dore products will take advantage of the resulting bxtra capability.
In general, enhanced flexibility of data interchange between the PET
and peripheral devices is possible, thanks to the use of these extra
commands.

To communicate with any device, a combination of the additional
commands is used:

a) OPEN/CLOSE Open or close logical file.
b) PRINT# Write data from PET to I/O device.
c) CMD Same as PRINT# but leaves IEEE device an active

listener on bus after execution of command.
d) INPUT# Read data from I/O device to PET.
e) GET# PET accepts one character from I/O device.

2. Input/Output Command Parameters
In order to use the additional commands referred to in 1, above, four
parameters must be taken into consideration:

a) Logical file number (LF)
b) Device number (D)
c) Secondary address (SA)
d) File-name (FN)

These parameters can appear, for example, when using the OPEN#
command in the form of the statement:

OPEN#LF,D,SA,FN

These parameters are defined and explained in 2.1 through 2.4. The
default values for these parameters are listed in Tables 12-1 and 12-2,
on pages 41 and 42.

2.1 Logical Files
Files are used to store and retrieve data, as for example in the case of

17

a magnetic tape or disc file. A convenient extension of this idea is to
regard any device which can receive and/or generate data as a logical
file. To the PET operating system, data might just as well have come
from, or be going to, a storage system such as magnetic tape.

For example, imagine that an external digital voltmeter is set up so
that it can transmit voltage readings upon request to the PET via the
IEEE data bus. Sometime during the “voltmeter program” the pro­
grammer will have to open a file and assign a logical file number to
the voltmeter. Once this has been done, the PET can use a “read”
command (INPUT#) which uses the logical file number to refer to the
voltmeter. When no further data is required from the voltmeter, the
logical file can be closed.

More generally, the advantages offered by the use of logical files are:

a) Every device number secondary address combination can be
associated with its own unique logical file number within a program.

b) Multiple files within a single device can be referred to by means of
distinct logical file numbers. This approach is to be used in the newly
developed disc storage system for the PET.

c) Once a logical file number has been defined in an OPEN statement
within a program, only this single number need be used in the follow­
ing input/output statements. This eliminates the need for further
restatement of device number, secondary address (where used) and
file name (where used).

Although it is permissible to identify and use many logical files in a
given program, the PET operating system has to keep track of the
files that are currently in use in the program. The greatest number of
files that can be controlled by the PET at one time is ten. Note that
in the present version of the operating system, exceeding ten will
result in loss of PET operation; this can be restored by switching the
computer off and on. A logical file number can be any integer in the
range 1 through 255.

2.2 Device Numbers
All devices which the PET communicates with are assigned device
numbers. The first four of these are reserved for the following
peripherals:

Device
Number

0
Default — 1

2
3

Device
Keyboard
Cassette 1 panel mounted
Cassette 2 add-on
Video screen

18

All other devices are automatically assumed by the PET to be IEEE
devices, and control is transferred to the device which will have been
allocated a number within the range 4 through 30. Except in special
cases, a specific number would be allocated to each IEEE device to
allow the PET and a particular device to communicate using the
parallel IEEE-488 bus.

On many IEEE devices, the allocation of the device number is made
by means of a switch, or in the case of less expensive products, by the
connection of jumpers.

2.3 Secondary Addresses
The concept of a secondary address may be new to those people who
have never worked with the IEEE bus. The use of a secondary address
permits an intelligent peripheral to function in any one of the num­
ber of modes. For example, in the PET 2020 printer, there are six
secondary addresses:

Secondary
Address

Default — 0
1
2
3
4
5

Operation
Normal printing
Printing under format statement control
Transfer data from PET to format statement
Set variable lines per page
Use expanded diagnostic messages
Byte data for programmable character

In short, by changing the secondary address used to communicate
with a given physical device, its operating characteristics can be
totally changed, if so desired. Many of the IEEE devices have their
own particular secondary address conventions which must be fol­
lowed. Specific data on these conventions can be obtained by con­
sulting the manual for that particular device.

The PET tape units have a special set of secondary address rules:

Secondary
Address

Default — 0
1
2

Operation
Tape is being opened for "read"
Tape is being opened for "write"
Tape is being opened for "write" with an

"end of tape" header being forced when
the file is closed

The secondary address can have values over the range 0 through 31.

19

2.4 File Names
In random storage devices where there is more than one file to be
accessed, the use of names to identify files is mandatory. In the case
of tapes, a file name is desirable, even if there is only one file on the
tape, since it facilitates the identification of tapes.

For the two cassette tape units of the PET, a file name may be any
combination of up to 128 characters.

When a file name is searched for, it is matched on an ascending
character basis.

Assume that an eight character file name COUNTING was specified
when writing. If desired, this could be searched for with an abbre­
viated name such as COU. The first file header that is found with
these three consecutive characters will then be opened and positioned
on. In principle, this could include unwanted file names such as
COUNT or COUNTR Y, as well as the wanted COUNTING.

It is, therefore, advisable to specify the complete file name in order
to avoid errors.

For other devices which use named files, the individual description
of the device should be consulted in order to ascertain the specific
requirements for file name usage.

3. Tape Cassette Operation for Files
The PET devotes special attention to the two tape cassette units that
can be attached to it. The tape units are specially modified so that the
PET has control over the motor movement of the cassette.

It can also sense when the Play, Rewind, or Fast Forward buttons
have been pushed; this is done by means of a single switch mounted
in the tape unit.

Note that the same switch is used to sense all three buttons: if any
of the three is pushed, the PET will think that you pushed the Play
button and will respond accordingly.

Because of the type of mechanism used in the tape unit, the user
must rewind, fast forward, stop, load and eject tapes. He must also
put the unit into the write mode by pushing the record button either
simultaneously with, or before the Play button is pressed.

The PET has total control over the movement of the tape once the
appropriate buttons have been pushed to engage the motor.
20

I

Messages displayed throughout the program will tell the user when it
is necessary for him to initiate the function of play or record. Logic
dictates the times when the user should rewind and fast forward.

The two tape units of the PET are handled independently, and the
various control lines permit the reading of data from cassette #1, the
reading of data from cassette #2, motor control of cassette #1, motor
control for cassette #2 and a common write line.

3.1 File Recording Technique
The data structure embodied in tape files will ensure the maximum
memory utilization and maximum reliability of recording.

To accomplish this, the PET records data at two audio frequencies in
two consecutive blocks of data. All of the data is totally repeated,
and by means of error checking techniques incorporated in the PET
software, it is possible for most audio dropouts to be corrected by
the operating system utilizing the redundant data stored in the second
data block.

In order to correct for (a), the fact that tape units record at different
speeds, and (b), the normal drag characteristics of tapes, a speed
correlation technique is used during reading. To correct for the in­
dividual start/stop characteristics on the tape and synchronize cor­
rectly between each block on tape, a single tone is written between
blocks. This signal is used to synchronize both position and speed of
the tape. Varying lengths of tone are used at the beginning and
between the data blocks of the tape. By writing about ten seconds
of the tone on each opening of a file, the PET automatically corrects
for normal leader. Individual tape blocks are separated by shorter
tone durations.

3.2 File Headers
An important assumption underlying the tape system design was that
the user would often want to record more than one file of data on a
tape. In order to facilitate this and to allow for proper label checking,
the first physical data recorded on tape for any operation is a file
header. This file header looks exactly the same as the normal data
block, except that the first character of every block on tape contains
an identification character which enables the operating system to
differentiate between program blocks, data blocks, file headers and
end of tape headers.

The PET allows for up to 128 characters of a file name to be stored in
the file header. This is the name which is searched for and matched on
in the various OPEN/CLOSE options. 21

3.3 Tape Buffers
Another basic premise in the design of the tape operating system was
that the user would want to write tape independently of what is
occurring on tape at a given moment. This is accomplished in the
operating system by permanently assigning a block of memory as a
data buffer for each cassette tape. A 192 character buffer is located
at decimal address 634 for cassette #1, followed by a 192 character
buffer at decimal address 826 for cassette #2. The tape file header
is written into the buffer first and then written on tape.

Data files are accumulated in the tape buffer until 192 characters
are exceeded, then the contents are either written on tape for write,
or if the program is reading tape, the next block of data is read into
the buffer. Tape file headers and all data blocks are, therefore, 192
characters long.

Tape buffers are not used in the case of program files, since these are
written onto the tape directly from the memory in which the pro­
gram resides. In order to accommodate the variable memory location,
the file header for a program file contains the beginning and ending
address for the program. The full program is written onto tape in the
usual form of two consecutive redundant blocks.

3.4 Multiple Files
In order to have multiple files on tape, the user needs the ability to
add files to a tape and also know when the tape is at its end. It is,
therefore, important that the operating system give an “end of file”
and “end of tape” indication.

In the case of data files, an “end of file” marker is appended after
the last data character. This is available to the user in a status word
on reading; the “end of file” marker is automatically inserted when
a write file is closed.

In the case of program files, because all the data is always contained
in a single block, the end of the block signifies the end of the pro­
gram.

To signify that the end of tape has been reached, a special separate
file header is written. When this is encountered during a search for
files, the PET automatically stops the tape and indicates “file not
found” to the user. A typical multiple file tape could contain first
a data file, then a program file, followed by an “end of tape” header
as illustrated in the example of Figure 3-1.

22

10 seconds of leader

192 character file header block

2 seconds of leader

192 character data block

Data file

2 seconds of leader

Last block of this file

10 seconds of leader

192 character file header block

2 seconds of leader
Program file

10 byte
t

32K byte

program block

I 2 seconds of leader

optional 192 characters
 end of tape header

Figure 3-1. An example of multiple file structure.

4. Logical File I/O Operations: General
These operations can be subdivided into three steps:

a) Open the file — tell the PET everything it needs to know about the file.

b) Read data from, or write data to the logical files.

23

c) Close the file — allow the PET to clear up the device and terminate
the active file.

These steps are discussed in detail in Sections 5 through 9.

5. Opening Files
In order to tell BASIC about the file you want to operate on, it is
first necessary to open the file. This is done by the following
statement:

OPEN logical file, device, secondary address, file name

More specifically, the statement consists of the command OPEN
followed by the logical file number, then the device number to which
the file is assigned, then the secondary address data (if any) com­
municated during the interaction of BASIC with the file, and last,
the name of the physical file (if any).

This statement, or expression, is interpreted by BASIC, and could,
therefore, use computed logical file numbers, device numbers or
secondary address data. This capability is extremely useful when
handling multiple file devices such as discs.

The keyword OPEN and the logical file numbers are essential in
order to open a file; that is address a device in preparation for a
“read” (INPUT#) or a “write” (PRINT#).

The device number is optional; if not entered, the default value “1”
will be used (see Section 2.3 and Tables 12-1, 12-2.

A file name is optional, though preferred, for the tape units; a name
would be essential for a disc storage unit, however.

5.1 Examples of OPEN Statements
The statement OPEN 1,2,1 is interpreted by the operating system
as saying:

Parameter
(LF) Logical file #1 has been opened
(D) Logical file #1 has been assigned to tape unit #2
(SA) Tape unit #2 has been instructed to write on tape
(FN) A file name has not been assigned to the tape record

24

Similarly, OPEN 3 is interpreted as saying: (F)

Parameter
(LF) Logical file #3 has been opened
(D) Logical file #3 has been assigned to tape unit #1 (default "1")
(SA) Tape unit #1 has been instructed to read from tape

(default "0")
(FN) No file name referred to

If the PET 2020 printer is assigned “4” as a device number, then
OPEN 12,4,1 is interpreted as:

Parameter
(LF) Logical file #12 has been opened
(D) Logical file #12 has been assigned to device #4
(SA) Printer has been instructed to print under format statement

control (see Section 2.3)
(FN) File name not applicable

NOTE: The current version of PET has a problem with OPEN for
tape files. The opening of the tape file is automatic, but the tape
header may not always be written at the beginning of the tape buffer;
this implies that the operating system does not always correctly
initialize the buffer pointer. For consistent and reliable operation of
the tape file header, the following statements should be used:

1) For tape #1: POKE 243,122
POKE 244,2

2) For tape #2: POKE 243,58
POKE 244,3

These should be written prior to each OPEN for write.

This problem will be resolved in due course as a set of modified
ROMs will shortly be available. However, the two POKEs will not
cause any PET malfunction if the new ROMs are installed.

5.2 LOAD
A special case of the OPEN command is the LOAD of a named file: a
LOAD is done with the following statement:

LOAD name, device number

The operating system automatically generates an OPEN using the
appropriate secondary addresses for “load.” This OPEN causes the
loading device to search for a program name. After the program is

found, it is automatically read from the device and loaded into
memory starting at an address specified in the file header. Any read­
ing errors on the first pass through that program are automatically
fixed on the second pass, if possible.

At the end of the load cycle, a checksum of the total program is
made. If a checksum error, or if an unrecoverable read error occurred,
the operating system automatically prints ?LOAD ERROR and stops
the load program.

If the program load was from direct mode, the clear function is per­
formed at the end of the load, thereby, initializing all variables.

If the LOAD is called from a program, then the PET treats this LOAD
as an overlay. The new program is loaded into the space used by the
previous program, but the values of all of the variables are maintained
from the previous program. This allows for one program to call
another and pass parameters to the called programs.

The only restriction on this is that all called programs must fit in
the same, or less space as the first program.

Because BASIC totally replaces the current program, it is not directly
possible to have a single main program and several subroutine over­
lays, however, by including the main program with each overlay, the
same effect is obtained with some loss of speed.

The combination of the use of named files and overlays allows the
writing of very large structured programs of appreciable complexity.

5.3 VERIFY

This instruction is a special case of LOAD. It should be used after
every program SAVE.

The command causes BASIC to go through all the steps of a program
LOAD, with the exception that the data does not get loaded into
memory, but, instead, gets compared with memory. If either first or
second pass errors occur, the PET will type out 7VERIFY ERROR
which means that the program should be saved again before it is lost.
On VERIFY, the status word has the following meanings (see Section
10.1 for details):

Code Meaning
4 Short block
8 Long block

16 Any mismatches
32 Checksum ERROR on tape

26

5.4 SAVE
SAVE also performs an automatic open and close. The SAVE is
specified by the statement:

SAVE name, device number

If the physical device is one of the two tape units, the operating
system automatically initiates a tape header and opens a tape file
with the appropriate name. The file header is written with the begin­
ning and ending address.

If the device is an IEEE-488 device, a special open message is sent
indicating that the PET is sending a program file.

The program is then written directly from its memory locations to
the tape or the IEEE-488 bus.

If the SAVE is on tape, a checksum is computed and also saved and
then the whole program is written again to give the redundant re­
cording. At the end of the program, the tape is automatically stopped
and positioned for the next data.

5.5 IEEE-488 Special Features
In the tape, the program beginning and ending address are stored in
and retrieved from the tape file header.

In order to more efficiently use the IEEE-488 data, the starting
address of the program is sent as the first two bytes of data on a SAVE
and retrieved from those positions on a LOAD.

5.6 IEEE-488 OPEN Considerations
If the OPEN command selects a device which has a value of 4 or more,
the operating system assumes that the device is an IEEE-488 device.

If the OPEN does not specify a file name, then nothing is communi­
cated on the IEEE-488 bus. However, if a file name is specified, the
operating system sends a listen attention sequence to the device
number specified in the OPEN along with a secondary address which
is the OR of hexadecimal “F0” and the secondary address specified
in the OPEN statement.

Commodore-supplied peripherals, such as the floppy disc storage
system, will use this secondary address and also the file name, which
is then transmitted to the listening device in order to transfer data
later to the open file.

27

6. Tape File Operation Modes
Tape files can be opened for two distinct purposes:

a) In order to write from the PET onto tape.
b) In order to read from tape to the PET.

6.1 OPEN for Write on Tape from PET
The flow diagram of Figure 6-1 outlines the PET-user interaction and
PET function when opening a file for write on tape. The initial block
shows that there are two ways of opening the file:

a) OPEN for write—data tape.
b) SAVE —write a program tape.

Note that if the tape file is opened directly from the keyboard, then
the message WRITING NAME is displayed. If the file is opened under
program control, and the Play and Record buttons are depressed pre­
viously, then no message appears on the screen. In this manner, any
display material placed there by the current program is not disturbed.

6.2 OPEN for Read from Tape to PET
The flow diagram of Figure 6-2 outlines the PET-user interaction and
PET function when opening a file for reading on tape. The initial
block shows that there are two ways of opening the file:

a) OPEN for read data tape.
b) LOAD program into memory.

Note that if the file is opened directly, that is from the keyboard,
then the messages PRESS PLAY, SEARCHING FOR NAME and FOUND
NAME are displayed. If LOAD was used, then the BASIC variables
of the loaded program are initialized.

If the file is opened under program control and provided that the
Play button had been pressed previously, no messages appear on the
video screen in order not to disturb material displayed by the current
program. Initialization of the BASIC variables does not occur.

28

Figure 6-1.

29

OPEN for write from PET: PRINT#, CMD or SAVE.
OP = operating system takes over.

Message:
PRESS PLAY •<

AND RECORD

30

Figure 6-2. OPEN for read to PET: INPUT# or LOAD.
OP = Operating system takes over. B = BASIC takes over.

OPEN for
Read or LOAD

7. Data Input: General
The use of the word “input” in this context implies input of data to
the PET from any device.

7.1 INPUT#—String and Variable Input
INPUT# is the command used to initiate data transfer from I/O
devices to the operating system. The statement format is:

INPUT# logical file number, A,A$,B,B$, etc.

Where A,A$,B and B$ are numerical and string variables to be
inputted (read) from the selected logical file to the operating system
one character at a time.

Because the rules for the BASIC interpreter apply to these input
statements, all carriage returns, commas, terminate fields, nulls, pre-
ceeding blanks (except in strings), and other control characters are
automatically deleted.

It is not always possible to mix both numeric and alphabetic data on
an I/O device. If a numeric field is specified, only numeric data in the
standard form expected by BASIC is accepted, otherwise a ?BAD
DATA ERROR message is displayed.

If there is any ambiguity about the data coming in, the user should
input only to strings and then use the various string manipulation
commands to process the data into the appropriate variables.

7.1.1 Example of INPUT# Statement
If X represents a series of 50 numbers stored on a tape file named
Vector and we assume that the Play button has just been depressed
on tape unit #1. Then the following program will read the 50 num­
bers one at a time and display them on the video screen.

10 OPEN 1,1,0, "VECTOR"

20 FOR K=1 to 50

30 INPUT#1,X
40 PRINT X
50 NEXTK
60 CLOSE 1

Open logical file #1. Assign file to
cassette 1. Open tape for "read". Look
for physical file named VECTOR.
Read 50 numbers one at a time from
cassette 1.

Display numbers on video screen.

When fifty numbers have been read,
close logical file #1.

31

7.2 GET# — Character Transfers
Not all devices transfer data in a form which is acceptable directly to
BASIC. There is a series of binary data and combinations which
BASIC ignores and although many IEEE devices do correctly respond
with data formats which are acceptable to BASIC, not all do.

In addition, in some cases, it is desirable for the programmer to have
immediate access to characters as they are transferred to the system.
GET# fetches from the IEEE-488, or a tape device, a single character
at a time, putting a character in a field specified following the GET#.
The form is:

GET# logical file, field

7.3 Tape Input

When reading from the tape file, the data comes to the user I/O
independent. Each time BASIC starts on INPUT# or GET# from a
logical device which was opened for read on tape 1 or 2, a special
subroutine is called, which initiates tape input.
As each character is requested from BASIC, it is fetched from the
appropriate tape buffer. When the buffer is empty, the tape input
routine suspends the user program and reads the next data block
from tape into the buffer and then transfers the next character to
BASIC. If a read error occurs, it is noted in the status word.
When the end of file mark is encountered in the buffer, the end of
file position of the status word is set on and carriage returns are
forced automatically out until the command is finished.
At the end of a command, BASIC calls another routine which
reinitializes the input to be the keyboard and tells the end of file
operation that a command is complete.

7.4 IEEE-488 Device Input Sequences
All INPUT# or GET# commands go through the same sequence. When
the command is first encountered, the IEEE-488 input initiation
routine is called, which sends a talk attention sequence to the device
and secondary address which was specified for that logical file in the
OPEN sequence. At the end of the attention sequence, the PET
establishes itself in a listener mode and attempts to wait for a DAV
signal indicating a single character has been received. If the DAV is
is received within 65 milliseconds, that character is handed to BASIC
and/or to the other program calling the IEEE-488 routine. Each time
the IEEE-488 routine is called, it will go through the same sequence

32

of getting a single character while waiting for a time out to occur. If
the bus does not respond in 65 milliseconds, then the IEEE-488
routine will automatically terminate the sequence; giving a read error;
in the status word to indicate that it has terminated the sequence.

If during the course of reading the character, the IEEE-488 routine
senses an EOI line, it will indicate the end of information in the status
word and will continue to return carriage returns, until the command
it has been currently operating under has been terminated. At the end
of the command, BASIC calls a termination subroutine which re­
initializes the device to the keyboard and sends an untalk to the
IEEE-488 bus, thereby, freeing the bus for the next command.

7.5 Input Buffer Limitations
Although data is transferred from the operating system one character
at a time, in order to edit, BASIC accumulates these characters into
an 80 column input buffer. This buffer must be terminated by a
carriage return.

On current PETs, should more than 80 characters be read, the operat­
ing system will malfunction, as the operating system variables are
overwritten. The PET can be made to function again by switching the
line supply off and on.

Although this problem will be resolved in future versions, the 80
column limitation will still apply. This constraint must be kept in
mind when using tape and disc file systems.

This means that carriage returns must be written on tapes, discs, or
other I/O devices in such a way that not more than 80 characters per
field are written without being separated by carriage returns.

If an I/O device sends more than 80 characters, the GET command
can be used to build your own string without running into the buffer
limitation.

8. Data Output: General
The use of the words “print” and “write” refers to data output from
the PET to any device.

8.1 PRINT#

The command PRINT# must be followed by the logical file number,
and then a comma to separate the data that would follow PRINT:

33

PRINT# logical file number, data

Data is transferred a single character at a time to the physical device
correlated with the logical file specified in the relevant OPEN state­
ment. Many of the file delimiters such as commas are automatically
deleted by BASIC; although this does not greatly effect the printing,
it should be remembered that when reading back from tape or
another I/O device that file delimiters must be forced. This forcing
can be done by inserting a CHR$(44) or between fields or by
only printing single fields in each PRINT# statement which will force
carriage returns between fields. Example:

instead of writing
PRINT#LF,A;B$;C$

which will be sent as:
AB$C

with no delimiters:
PRINT#LF,A;CHR$(44);B$;CHR$(44);C$

or:
PRINT#LF,Ar7';B$/7';C$

which will output: (Note: CR means carriage return)
A,B$,C$,CR

or:
PRINT#LF,A
PRINT#LF,B$
PRINT#LF,C$

which will output:
A CR B$ CR C$ CR

Because BASIC always formats outputs to any devices as though it
were outputting to the screen, PRINT#LF,A,B has several skip charac­
ters between the values of A and B, while A ; B does not have any
extra skips.

An exception to this rule is the tape where the first skip on output is
suppressed.

Note: Although both the INPUT# and PRINT# commands operate in
virtually the same way as their equivalent INPUT and PRINT state­

34

merits do in BASIC, the abbreviated command ? which can be used
in place of PRINT, does not apply to PRINT#. ?# and PRINT# are
recognized and reduced to two different token characters when pro­
cessed by BASIC. ?# will look like PRINT# when listed but gives
7SYNTAX ERROR when an attempt is made to execute it.

8.1.1 Examples of PRINT# Statement
This program will print the series of numbers 1,2,3,. . .50, one at a
time on the PET 2020 printer.

10 OPEN 5,4,o Open logical file #5. Assign logical file #5 to
device #4 (2020 printer) in normal print mode
corresponding to secondary address "0".

20 FOR K=1 to 50 Print the series of fifty numbers on printer.

30 PRINT#5,K
40 NEXT K
50 CLOSE 5 Close logical file #5.

To write the above series of numbers on a cassette in tape unit #2,
only the OPEN line would have to be modified, if the same logical
file numbers were chosen:

10 OPEN 5,2,1

20 FOR K=1 to 50
30 PRINT#5,K
40 NEXT K
50 CLOSE 5

Open logical file #5. Assign logical #5 to
device #2 (tape unit #2) with a write without
"end of tape" designation corresponding to
secondary address *1*.
Record the series of fifty numbers on tape.

Close logical file #5.

In the above cassette example, the data would be accumulated in a
192 character buffer one character at a time. When the capacity of
the buffer is exceeded, then data entry is suspended, the tape started,
and the buffer contents written to tape. TJie buffer is initialized to
accept up to 192 characters and then the program is allowed to
proceed.

Note: Not all tape units currently operate with the same Start/Stop
characteristic as defined for the original tape operating system.
In order to obtain reliable operation of the tape recorders, the 192
characters of the buffer should be monitored by the program. Prior
to transferring 192 characters, the programmer should turn on the
appropriate cassette motor and then wait for at least. 1 second
before transferring the last character.

35

There are several ways to accomplish this. The simplest is to just
POKE 59411,53 for cassette #1 and POKE 59456,207 for cassette
#2 after every PRINT statement, this keeps the motor on all of the
time and eliminates the problem.

On the other hand, if your programs have time consuming functions
like human input, sorting, or other long program run times, you
should not run the motor all the time, but obtain the delay either
putting a delay loop before each print, or turning the motor off
with a POKE 59411,61 for cassette #1 or a POKE 59456,223 for
cassette #2 before the long function and turning it back on after it.

8.2 IEEE-488 Bus Output
The PRINT# command causes BASIC to call an output subroutine
which initializes an IEEE-488 device for output. The first step in
the command is that the PET reassigns its normal output from the
screen device to the physical device that was chosen for the logical
file in the open routine. A listen command is sent on the IEEE bus
to the physical device and a secondary address specified for that
logical file in the OPEN.

BASIC then hands one character at a time to another subroutine
which proceeds to transfer that character over the bus with the PET
acting as a talker and all addressed devices responding listeners.

When BASIC has finished the PRINT#, another subroutine in the
operating system is called and the PET sends an “unlisten” command
to the entire bus and restores the primary address to the screen. This
frees the whole bus for the next operation.

This unlisten sequence also sends an EOI signal on the bus, along with
the last character sent from BASIC. To accomplish this, each charac­
ter is stored in a buffer prior to transmission by the IEEE routines and
the previous character is sent.

8.3 CMD Command
Normally, each print command deals only with one logical device and
at the end of the command the entire bus is unlistened. In some
instances, it is advisable to have more than one device on the bus; in
order to facilitate this, the special command CMD is provided. CMD
is virtually identical to PRINT#, except that at the end of the data
transfer, the unlisten routine is not called, thereby leaving the device
on the bus as a listener.

36

The operating system continues to treat the last device to be com­
manded by CMD as the primary output device for BASIC. PRINT or
LIST commands are then directed to this primary device, rather than
to the video screen. More specifically, the CMD of the printer device,
followed by LIST, results in a hard copy printed listing, instead of a
video screen listing. However, since neither the CMD nor LIST com­
mand terminate bus operation for the device, a PRINT# is required
to terminate a CMD command.

8.3.1 Examples of CMD Command
To list:.

OPEN 3,4 where 4 is the printer device number.
CMD 3
LIST will list just the same as the screen, except

on the printer.

to print and write to a disc at the same time:
*CMD 3 where logical file 3 is open to the printer.

PRINT#15,A,B,C where 15 is the floppy disc logical file number
(previously opened)

will result in A,B, and C being stored on the floppy but also being
’ displayed on the printer.

To monitor an input device:
**CMD 3 turn on printer

INPUT#15,A,B,C read from floppy

This will result in the data coming from the floppy being transferred
to A, B and C but also being printed as they are being transferred.

9. Closing Files
Any logical files which have been opened during a program should
preferably be closed when no longer required, and in the case of tape
or disc files, must be closed before the program ends. The following
should be kept in mind:

a) If the total number of logical files currently open exceeds ten, then
loss of PET operation will result.

b) If a logical file assigned to a tape unit is not closed, no "end of file"
mark will be recorded at the end of the physical tape file. If this tape
is then loaded into memory, the PET will have no way of knowing the
file has ended, and if unwanted and erroneous data is present from a
previous recording, it will also be read into memory.

*Must be given each time because PRINT# unlistens the bus.
**Need not be given each time, more code may be included

between the instructions. >

9.1 Example of CLOSE Statement
To close any file, the following simple statement is sufficient:

CLOSE logical file

If it is required to close logical file number 5, then this becomes:
CLOSE 5

9.2 Tape File Closure
If a file had been opened on the tape, there are two operations that
occur: an “end of file” marker is recorded in the next data charac­
ter, then the tape buffer is forced out onto the cassette.

If during OPEN the “end of tape” option was chosen, an “end of
tape file” header block is also forced out on the cassette.

9.3 IEEE-488 Named Device Closure
For IEEE-488 devices, which were opened with file names, a special
listener command sequence, with the special secondary address of
hexadecimal E0 OR’ed with the secondary address from the OPEN is
sent. This allows devices such as disc files to be closed by the periph­
eral controller.

10. Error Detection: General
The basic concept of the PET operating system is that the user will
be allowed to operate in a free-form format; reading and writing on
tapes, discs, and printers, in the manner that is most comfortable for
him. Because I/O is totally free-form, it is important that the operating
system should have a means of informing the user when transmission
errors or end of data conditions occur. Sections 10.1 through 10.4
deal with error detection methods available to PET users.

10.1 Status Word (ST)
In order to facilitate Input/Output operation error detection, the
PET uses the “status word” concept in which a byte in memory is
manipulated by each of the I/O operations for the PET, and can be
sampled by the programmer at any time by calling the function ST.
Each bit in the status word has a general meaning for all operations
and a specific meaning for the individual I/O device.

Table 10-1 shows the errors as a function of the ST word value for
the tape cassette units, IEEE read/write operations, tape verify and
load operations.

38

Table 10-1. Status Word (ST) values correlated with
tape cassette, unit and IEEE bus read/write errors.

ST
Bit

Position

ST
Numeric

Value
Cassette

Read IEEE R/W
Tape
Verify
+ Load

0 1 Time out
on write

1 2 Time out
on read

2• 4 Short block Short block

3 8 Long block Long block

4 16 Unrecoverable
read error

Any
mismatch

5 32 Checksum
error

Checksum
error

6 64 End of file EOI line

7 -128 End of tape Device not
present

End of
tape

10.2 IEEE Device Errors
There are basically three errors that can occur during an IEEE-488
transfer. First, the entire bus does not respond to an attention
sequence. If this occurs, the IEEE-488 subroutine sets the device
not present bit (7 or -128). The PET also terminates the current
program with a 7DEVICE NOT PRESENT ERROR. If the bus
responds correctly to the attention, but when the PET goes to
write the first character to the bus and the physical device is not
present as indicated by having NRFD or NDAC low, the PET,
again, gives a device not present indication.
The second error occurs during the process of transferring data to
the device. The bus does not respond in the appropriate times and/
or if it ceases to respond by means of bringing NRFD and NDAC
both high, a write error indication is given in bit 0.
The third error occurs when during read on an IEEE-488, the IEEE
device has not sent DAV in less than 65 milliseconds; bit 1 of the
status word is then set. Whenever the EOI line is encountered, the
subroutine sets the bit 6 on in the status word and continues to
force carriage returns.

10.3 Tape Unit Errors
The cassette only checks data on read. The errors detected are:

39

1) SHORT BLOCK (4). When reading a block from tape, a spacer tone
was encountered before the expected number of bytes has been read
from that block. Possible cause: attempting to read a short load file
as a data record.

2) LONG BLOCK (8). When reading a block from tape, a spacer tone
was not encountered after the expected number of bytes had been
read from that block. Possible cause: reading a long load file as data.

3) UNRECOVERABLE READ ERROR (16). Cause: more than 31
errors on the first block of redundant blocks —or —an error that could
not be corrected because it occurred in the same place in both blocks.

4) CHECKSUM ERROR (32). After a LOAD or reading of data, a
checksum is computed over the bytes in RAM and compared to a
byte received from the input device. If they do not match, this bit
is set.

5) END OF FILE (64). This bit is set when the end of data file mark is
encountered in a tape record.

6) END OF TAPE (-128). An EOT record was read.

10.4 Examples of ST Use
As you can see, there is no status that the PET detects for the writing
of tapes, nor errors detected for printing to and reading from the
screen. There is an error on writing data out to the IEEE-488 and
there is also a series of errors detected on inputting from the IEEE-
488 or from tape.

The normal programming technique is to follow an INPUT# or a GET#
by either a test or storage of the value of status. Because this is only
a single byte of memory and the status changes on each new I/O
command, the status is very transient.

100 INPUT#2,A
110 INPUT#5,B
120 IF ST=0 THEN 200

This code only checks the result of the transfer of data from logical
file 5. The results of reading logical file 2 is forever lost. Similarly:

100 INPUT#2,A
110 PRINTA
120 IF ST=0THEN 200

In this case, the ST reflects the print status, rather than the results
of reading #2.

40

A correct way to use ST is the following:

100 INPUT#2,A,B,C
110 IFST=0THEN 200
120 IF ST=64THEN 300
130 IF ST=2 THEN 400

process normally
end of data processed with no errors
time out with no errors

Each error can now be processed with the following:
140 IF ST AND mask THEN Mask represents the bit being tested

11. Polling Techniques
One technique to poll slow IEEE-488 devices such as sampling
devices, which take many minutes to respond, is to use the INPUT#
from the device; then if the status indicates time out, process other
routines or loop on the INPUT# until no error occurs. If there are no
errors, the correct data has been finally read and one can process
that data information.

By using this sampling technique, a whole series of slow devices
can be serviced, along with running a foreground program by use
of the real time clock (TI,TI$) and the INPUT#/timeout error
sequence, to occasionally poll devices.

12. Default Parameters
Table 12-1. Default values.

Parameter Default Value Default Operation

Device # D=1 Cassette #1 selected

Secondary
address

SA=0 On tape files open for read
On IEEE-488 devices, no
secondary address is sent.

41

Table 12-2. Example of default parameters.

Statement
Equivalent
(Default)

Parameter Values
Operation

0PEN#1 OPEN 1,1,0 Open logical file #1 for cassette #1 read
no file name

OPEN#1,2 OPEN#1,2,0 Open logical file #1 for cassette #2 read
no file name

0PEN#1,2,1 OPEN#1,2,1 Open logical file #1 for cassette #2 write
no file name

OPEN#1,2,1,
"DAT"

OPEN#1,2,1,
"DAT"

Open logical file #1 for cassette #2 write
file named "DAT"

42

The IEEE-488 Bus
—A Short Description

TABLE OF CONTENTS

1. Introduction to the IEEE-488 Bus 44
1.1 Bus/Device Connection 44
1.2 The Data Bus 45

1.2.1 Data Transmission Modes 45
1.3 The Transfer Bus 45

1.3.1 The Handshake Procedure 46
1.3.2 PET/IEEE Bus Timing Constraints 49

1.4 The Management Bus 49

2. IEEE Signals and Definitions 49
2.1 Logic Level Convention 49

3. Status Word (ST) 51

4. IEEE-488 Register Addresses 51

43

1. Introduction to the IEEE-488 Bus
This bus consists essentially of 16 signal lines that are divided func­
tionally into three groups, those are:

a) The data transmission bus
b) The control bus
c) The management bus

Furthermore, the IEEE bus can support three classes of device:

a) Talkers: at any given moment, only one device is permitted to
transmit data to the data bus.

b) Listeners: as many devices as required may receive data simul­
taneously from the bus.

c) Controller: the PET is the only controller allowed on the IEEE bus.

The function and mode of operation of the data, control and man­
agement busses, are discussed in Sections 1.2 through 1.4.

1.1 Bus/Device Connection
The line-pin connections for the 12 position, 24 contact edge card
connector, emanate from the PET main assembly board (see Table
1-1). For further information, please refer to Figure 1-2 in “PET
Interfaces and Lines.”

Certain physical limitations should be noted when connecting devices
to the IEEE bus:

a) The maximum advisable bus extension from the PET is 20 meters.
b) The maximum interdevice spacing is 5 meters.
c) The maximum number of devices is 15.

Table 1-1. IEEE bus group, label and contact identification number.

PET
Contact
Identifi­
cation

Bus IEEE
Label

PET
Contact
Identifi­
cation

Label
Description

1 DATA DI01 1 Data INPUT/OUTPUT LINE #1
2 DI02 2 Data INPUT/OUTPUT LINE #2
3 DI03 3 Data INPUT/OUTPUT LINE #3
4 DI04 4 Data INPUT/OUTPUT LINE #4

5 MANAGER EOI 5 End or identify

6 TRANSFER DAV 6 Data valid
7 NRFD 7 Not ready for data
8 NDAC 8 Data not accepted

Table 1-1. IEEE bus group, label and contact identification number (continued)

PET
Contact
Identifi­
cation

Bus IEEE
Label

PET
Contact
Identifi­
cation

Label
Description

9 MANAGER IFC 9 Interface clear
Same as PET reset

10 SRQ 10 Service request
11 ATN 11 Attention
12 SHIELD 12 Chassis ground and IEEE

cable shield

A DATA DI05 13 Data INPUT/OUTPUT LINE #5
B DI06 14 Data INPUT/OUTPUT LINE #6
C DI07 15 Data INPUT/OUTPUT LINE #7
D DI08 16 Data INPUT/OUTPUT LINE #8

E MANAGER REN 17 Remote enable (REN) always
ground in the PET

F GROUNDS GND6 18 DAV ground
H GND7 19 NFRD ground
J GND8 20 NDAC ground
K GND9 21 IFC ground
L GND10 22 SRQ ground
M GND11 23 ATN ground
N LOGIC GND 24 Data ground (DI01-8)

1.2 The Data Bus
This bus is comprised of 8 bi-directional lines that transmit the active
low data signals DIO 1-8. The slowest device in use on the bus at a
given time controls the rate of data transfer; the mode of transfer is
one byte at a time, bit parallel.

Peripheral addresses and control information are also transmitted on
the data bus. They are differentiated from data by ATN (true) during
their transfer.

The most significant bit (MSB) is on line DI08.

For an explanation of signal abbreviations such as DIO 1-8, see
Section 2.

1.2.1 Data Transmission Modes
All possible bit patterns are valid on the data bus when sending data
to devices.

1.3 The Transfer Bus
This three line bus controls the transfer of data over the data bus. The
signals transmitted are used in the handshake procedure outlined
in Section 1.3.1. 45

These signals are:

a) NRFD
b) ND AC
c) DAV

Not ready for data
Data not accepted
Data valid

Note that the talker originates the DAV signal and the listeners the
NRFD and NDAC signals.

See Table 2-1 for detailed description of signals.

1.3.1 The Handshake Procedure
When a talker transmits a data byte to one or more listeners, this
control procedure is used in order to ensure that the operation is
successful.

The essential function of the handshake is to ensure:

a) All listeners are ready to accept data.
b) That there is valid data on the data bus.
c) That the data has been accepted by all listeners.

The transfer of data occurs at a rate determined by the slowest
active device on the bus; this allows the interconnection of devices
which handle data at different speeds.

The sequence of events that occur during the transfer of a data byte
from the talker to the listeners is shown in the flow diagram of
Figure 1-2.

Figure 1-1 shows the relative timing of transfer bus signals during a
typical handshake; the bracketed numbers in the following sequence
refer to the changes in signal logic levels in the Figure:

1) NRFD goes high (false) indicating that all listeners are ready for the
next byte of data.

2) The talker puts the next data byte on the data bus and allows the data
signals to settle. This could happen before, after or during (1).

3) The talker tests NRFD, when it is found to be high, the talker makes
DAV low (true) to inform listeners that the bus data is now valid.

4) As soon as a single listener detects that DAV is low, that listener sets
NRFD low; data is now accepted by all the individual listeners at their
own rate, each of whom release NDAC as they accept the data.

5) NDAC goes high (false) when the slowest of the listeners have accepted
the data.

6) The talker sets DAV high (false) indicating that the data bus signals
are now invalid.

46

7) The listeners note that DAV has gone high and sets NDAC low (true)
completing the handshake. When each listener has processed the data,
they release NRFD. This terminates the sequence for the first data
transfer. The sequence will repeat again, beginning at (a), until all re­
quired data transfers have been completed.

Not Greater than 64 msec.
(See Section 1.3.2)

NRFD
(Listener)

Ready for Data
Not Ready for Data

DAV
(Talker)

Data Not Valid
Data Valid

(3) [(6)

NDAC
(Listener) | (5) (7)

Data Accepted
Data Not (Being)
Accepted

Data Bus
Signals

Bit Value = 0
High Impedance
Bit Value = 1

Data Signal
Settling Interval

Figure 1-1. Transfer bus handshake sequence.
Numbers (1)- (7) refer to Section 1.3.1.

47

Figure 1-2. Sequence of events during a data byte transfer from the talker to the
listeners. Broken lines indicate the testing of transfer bus signal logic levels.

48

1.3.2 PET/IEEE Bus Timing Constraints
The following limitations should be noted in order to avoid a loss
of data:

a) When PET is a listener, it expects DAV to go low within 64 milli­
seconds after it has set NRFD high.

b) When PET is a talker, it expects NDAC to go high within 64
milliseconds after it has set NRFD high.

If these limitations are exceeded, the PET ceases to transfer and sets
the appropriate status word (ST). See Table 3-1.

1.4 The Management Bus
This group of five signal lines controls the state of the data bus and
defines its signals; these can be concerned with data, addresses, or
control information (device commands).

The five management signals are:

a) ATN Attention Assigns devices to act as listeners or talkers.

b) EOI End or
identify

Indicates that last data byte is being
transferred.

c) IFC Interface
clear

Initializes the data bus. Talkers and listeners
set idle. Same signal as reset in the PET.

d) SRQ Service
request

Device tells controller that service is required.
Not implemented in BASIC but available in
PET.

e) REN Remote
enable

Permanently tied to ground in the PET.

2. IEEE Signals and Definitions
The 16 transmission lines of the IEEE-488 bus are each assigned a
specific signal. Table 2-1 gives the bus group, name, abbreviation and
functional description for each of these signals.

2.1 Logic Level Convention
The “true” or logical “1” is low with common collector type outputs.
This allows any device to hold the bus in the “true” or logical “1”
state.

49

Table 2-1. IEEE-488 bus signal.

Table 2-1 continued on next page.

Bus
Group

Signal
Abbrev. Name

Functional
Description

Manager ATN Attention The PET (controller) sets this
signal low while it is sending
commands on the data bus.
When ATN is low, only periph­
eral addresses and control
messages are on the data bus.
When ATN is high, only pre-
veiously assigned devices can
transfer data.

Transfer DAV Data Valid When DAV is low, this signi­
fies that data is valid on
data bus.

Manager EOI End or
Identify

When the last byte of data is
being transferred, the talker
has the option of setting EOI
low. The PET always sets EOI
low while the last data byte is
being transferred from the
PET.

Manager IFC Interface
Clear

The PET sends its internal re­
set signal as IFC low (true) to
initialize all devices to the idle
state. When PET is switched
on or reset, IFC goes low for
about 100 milliseconds.

Transfer NDAC Data Not
Accepted

This signal is held low (true)
by the listener while reading.
When the data byte has been
read, the listener sets NDAC
high. This signals the talker
that data has been accepted.

Transfer NRFD Not Ready
for Data

When NRFD is low (true),
one or more listeners are not
ready for the next byte of
data. When all devices are
ready, NRFD goes high.

Manager SRQ Service
Request

Not implemented in BASIC,
but available to the PET user.

Manager

—

REN Remote
Enable

REN is held low by the bus
controller. The PET has a pin
grounded that keeps REN
permanently low.

50

Table 2-1. IEEE-488 bus signal (continued)

Bus
Group

Signal
Abbrev. Name Functional

Description

Data DI01-8 Data input/
output lines
1 through 8

These signals represent the bits
of information on the data bus.
When a DIO signal is low, it
represents 1 and when high 0.

General

•

GND Ground Ground connections: There
are six control and manage­
ment signal ground returns,
one data signal ground return
and one chassis shield ground
lead.

3. Status Word (ST)
ST is a BASIC variable which can be used to check the outcome of
Input/Output operations. ST can have certain values over the range
-128 to 127. Table 1-4 shows the status code that appertains to the
IEEE-488 bus.

Table 3-1. ST status code for IEEE-488 bus.

ST Error Explanation

1 Time
out on
listener

The IEEE device has not responded within the 65
milliseconds time out inverval.

2 Time
out on
talker

The IEEE device has not provided an active "data
valid" signal (DAV low) within the 65 millisecond
time out interval.

64 End or
identify
(EOI)

EOI has gone low (true), on the last byte of data
being transferred on IEEE bus. Note that all devices
do not generate an EOI signal. Consult relevant
instrument manual.

-128 Device
not
present

Device did not respond when addressed; this gen­
erates an error message and the operating system
returns the PET to BASIC command level.

4. IEEE-488 Register Addresses
Table 4-1 shows the IEEE-488 hardware addresses for the PET An
attempt to control the bus by means of the PEEK and POKE commands
will fail, if the time out intervals for the 488 devices are exceeded.

51

Table 4-1. IEEE-488 hardware addresses and signal information.

Hex
Address

Decimal
Address Bits IEEE Mode

E820 59424 0-7 DI01-8 Input

E822 59426 0-7 DI01-8 Output

E821 59425 3 NDAC Output

E823 59427 3 DAV Input
7 SRQ

E810 59408 6 EOI Input

E840 59456 0 NDAC Input
• 1 NRFD Output

2 ATN Output
6 NRFD Input
7 DAV Output

Table 4-2 gives the code assignments for the command mode of
operation on the IEEE bus.

52

Ta
bl

e
4-

2.
 Co

de
 as

si
gn

m
en

ts
 fo

r "
C

om
m

an
d M

od
e"

 o
f o

pe
ra

tio
n.

(S

EN
T A

N
D

 R
EC

EI
VE

D
 W

IT
H

 AT
N

 TR
U

E)

M
SG

I
-3C

I
]0C

I
d:

1
Jd /

1
kB 03 Ml: 3C

1
OK

1
UN'

1
</3 M-

r-

r-
r* Q. CT co 3 > 5 X > N --

D
EL

M
SG -3 JOC) d:3d >kB 03 Nl: 3C Dhiin'tf3 Al-

o
r—

r-
CD cu JD CJ ■U 03 M- o> .c — • “R — E c o

1M
SG — 0l/>i3C 0. L 0 3NEJIS!SV VI M-

d

1

LK

—

r—
O

V"
in Q. o CC CO H D > 5 X > N 1 (

M
SG □1/<3C 0. LG 3N!JIS SV VI Al

<

z
1X1

-

o
o

T“
© < CD o Q LU LL O I — X z o

1M
SG □ 1/ i3(0. L 0 BN!JIS SV VI Al- ►

r—
O

CO o CM CO tn CD co CT) V II A

M
SG q □1/ ,3C 0. . 0 3N‘)IS SV V~l Al__

1

R
SA

L
LI

SI

o
o

CXI SP — * 85 c3 * ♦ + * 1 •

M
SG g

D
C

L
PP

U

SP
E

O
dS

r“
O

O
r-

D
LE

D
C

1

D
C

2
D

C
3

D
C

4
N

AK

N
AS ET

B
C

AN
EM SU

B
ES

C

FS G
S

R
S co

D

1
1

ES
SE

D
 UN

IV
E

M
SG

G
TL

SD
C

©
O

dd G
ET

TC
T

o
o

o
o D

z

H
O

S
XIS

ET
X

O
LU EN

O
AC

K

LU
CD BS H

T
LF VT

LL

C
R

O
S

CD AD
D

R

1

t
z
□
□□

R
O

W
 4

o CXI co in CD co CT) o
r—

CM co in r—

2 o T— o r— o r— O r— o o v— o V“ o

CM
J3 o o r— o o V“ o o o o r— V“

2 - o o o o T“ T“ T“ o o o o V“ T— v— V“

2 o o o o o o o o V“ V“ r— r— v— T—

53

PR
IM

AR
Y C

O
M

M
AN

D
 GR

O
U

P (
PC

G
)

SE
C

O
N

D
AR

Y
N

O
TE

S:
 (D M

SG
 =

IN
TE

R
FA

C
E

M
ES

SA
G

E
C

O
M

M
AN

D
(2

)
b,

 =
D

I0
1.

..b
7=

D
I0

7
G
(S

C
G

)P

(3
)

R
EQ

U
IR

ES
 S

EC
O

N
D

AR
Y

 C
O

M
M

AN
D

(4
)

D
EN

SE
 S

U
BS

ET
 (C

O
LU

M
N

 2
TH

R
O

U
G

H
 5)

. A
LL

 C
H

AR
AC

TE
R

S
U

SE
D

 IN
 BO

TH
 C

O
M

M
AN

D
 &

 D
AT

A
M

O
D

ES
.

