
LEVEL 66
SOFTWARE
FORTRAN

SERIES 60 (LEVEL 66)

SOFTWARE

FORTRAN

SUBJECT
General Description, Capabilities, Rules and Definitions, User Interfaces,
Statements, Input/Output, and Subroutines of the FORTRAN Language.

SPECIAL INSTRUCTIONS
For Series 6000 systems, this manual replaces the manual of the same name,
Order No. BJ67, dated March 1973. Order No. BJ67 remains an active
publication for Series 600 systems and for Series 6000 systems on prior
software releases.

SOFTWARE SUPPORTED
Series 60 (Level 66) Software Release 2
Series 6000 Software Release H

Includes Update Pages Issued as Addendum A in
December 1975

ORDER NUMBER
DD02, Rev. 0 January 1975

Honeywell

PREFACE

This FORTRAN reference manual assumes that the reader is familiar with
FORTRAN programming principles and basic concepts. All necessary FORTRAN rules
and statements are included in this manual.

@ 1975, 1976, Honeywell Information Systems Inc. File No.: 1723,1P23

DD02

Honeywell
FORTRAN
ADDENDUM B

SERIES 60 (LEyEL^66)/6000

SOFTWARE

SUBJECT:

Additions and Changes to Series 60 (Level 66)/6000 FORTRAN.

SPECIAL INSTRUCTIONS:

This update. Order Number DD02B, is the second addendum to DD02, Rev. 0,
dated January 1975. The attached pages are to be inserted into the
manual as indicated in the collating instructions on the back of this
cover. Change bars in the page margins indicate technical additions and
changes; asterisks indicate deleted material. These changes will be
incorporated into the next revision of the manual.

NOTE: This cover should be placed following the manual cover to
indicate that the document has been updated with Addendum B.

SOFTWARE SUPPORTED:

Series 60 Level 66 Software Release 3
Series 6000 Software Release I

DATE:

September 1976

ORDER NUMBER:

DD02B, Rev. 0

21009
3678
Printed in U.S.A.

COLLATING INSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:

Remove

v thru x
2-3, 2-4

2-5, 2-6
2-9 thru 2-12
2-13 thru 2-16

2-19 thru 2-22
2- 25, 2-26
3- 1 thru 3-6

3-9 thru 3-26

3-33 thru 3-46
3- 47, blank
4- 1 thru 4-8

4-11,
4-19,
4-27,

4-12
4-20
4-28

4-45, 4-46
4-49, 4-50
4-53 thru 4-56
4- 61 thru 4-64
5- 1, 5-2
5-9, 5-10
5-13, 5-14
5-17 thru 5-28

Insert

v thru x
2-3, 2-4
2-4.1, blank
2-5, 2-6
2-9 thru 2-12
2-13, blank
2-13.1, 2-14
2-15, 2-16
2-19 thru 2-22
2- 25, 2-26
3- 1, 3-2
3-2.1, blank
3-3 thru 3-6
3-9 thru 3-14
3-14.1, blank
3-15, 3-16
3-16.1, blank
3-17 thru 3-26
3-33 thru 3-46
3- 47, blank
4- 1 thru 4-6
4-7, blank
4-7.1, 4-8
4-11, 4-12
4-19, 4-20
4-27, blank
4-27.1, 4-28
4-45, 4-46
4-49, 4-50
4-53 thru 4-56
4- 61 thru 4-64
5- 1, 5-2
5-9, 5-10
5-13, 5-14
5-17, blank
5-17.1, 5-18
5-19, blank
5-19.1, 5-20
5-21 thru 5-28

Remove

6-1, 6-2
6-7 thru 6-16

6-25 thru 6-32

6-35 thru 6-46

6-49, blank
B-l, B-2
B-31, B-32
B-33, blank
C-l, C-2

Insert

6-1, 6-2
6-7, 6-8
6-9, blank
6-9.1, 6-10
6-11 thru 6-16
6-25, blank
6-25.1, 6-26
6-27, blank
6-27.1, 6-28
6-29 thru 6-32
6-35 thru 6-42
6-42.1, blank
6-43 thru 6-46
6-49, blank
B-l, B-2
B-31, B-32
B-33, blank
C-l, C-2
F—1 thru F-24
F-25, blank

© 1977, Honeywell Information Systems Inc. File No.: 1723, 1P23

9/76 DD0 2B

FUNCTIONAL LISTING OF PUBLICATIONS
for

SERIES 60 (LEVEL 66) and SERIES 6000 SYSTEMS

FUNCTION APPLICABLE REFERENCE MANUAL
ORDER

TITLE__________________ __________ NO.
Series 60 (Level 66)/Series 6000:

Hardware reference:
Series 60 Level 66 System
Series 6000 System
DATANET 355 Processor
DATANET 6600 Processor

Operating system:
Basic Operating System
Job Control Language
Table Definitions
I/O Via MME GEINOS

System initialization:
System Startup
System Operation
Communications System
Communications System
DSS180 Subsystem Startup

Data management:
File System
Integrated Data Store
Integrated Data Store
File Processing
File Input/Output
File Input/Output

(I-D-S)
(I-D-S)

I-D-S Data Query System
I-D-S Data Query System

Program maintenance:
Object Program
System Editing

Test system:
Online Test Program
Test Descriptions
Error Analysis and Logging

Language processors:
Macro Assembly Language
COBOL-68 Language
COBOL-68 Usage
JOVIAL Language
FORTRAN Language

Generators:
Sorting
Merging

Series 60 Level 66 Summary Description DC64
Series 6000 Summary Description DA48
DATANET 355 Systems Manual BS03
DATANET 6600 Systems Manual DC88

General Comprehensive Operating
Supervisor (GCOS) DD19

Control Cards Reference Manual DD31
System Tables DD14
I/O Programming DB82

System Startup DD33
System Operating Techniques DD50
GRTS/355 and GRTS/6600 Startup
Procedures DD05

NPS Startup DD51
DSS180 Startup DD34

File Management Supervisor DD45
I-D-S/I Programmer’s Guide DC52
I-D-S/I User's Guide DC53
Indexed Sequential Processor DD38
File and Record Control DD07
Unified File Access System (UFAS) DC89

(Series 60 only)
I-D-S Data Query System Installation DD47
I-D-S Data Query System User’s Guide DD46

Source and Object Library Editor
System Library Editor

DD06
DD30

Total Online Test System
Total Online Test System

Test Pages
Honeywell Error Analysis

System (HEALS)

(TOLTS) DD39
(TOLTS)

DD49
and Logging

DD44

Macro Assembler Program DD08
COBOL DD25
COBOL User’s Guide DD26
JOVIAL DD23
FORTRAN DD02

Sort/Merge Program
Sort/Merge Program

DD09
DD09

DD02

FUNCTION APPLICABLE REFERENCE MANUAL
TITLE____________________________
Series 60 (Level 66)/Series 6000:

Simulators:
DATANET 355/6600 Simulation

Service and utility routines:
Loader
Utility Programs
Utility Programs
Media Conversion
System Accounting
FORTRAN
FNP Loader
Service Routines
Software Debugging

Time Sharing systems:
Operating System
System Programming
System Programming
BASIC Language
FORTRAN Language
Text Editing

Remote communications:
DATANET 30/305/355/6600 FNP
DATANET 355/6600 FNP
DATANET 700 RNP

Transaction processing:
User's Procedures

DATANET 355/6600 Simulator

General Loader
Utility
UTL2 Utility Routine (Series 60 only)
Bulk Media Conversion
Summary Edit Program
FORTRAN Subroutine Libraries
DATANET 355/6600 Relocatable Loader
Service Routines
Debug and Trace Routines

TSS General Information
TSS Terminal/Batch Interface
TSS System Programmer's Reference

Manual
Time Sharing BASIC
FORTRAN
Time Sharing Text Editor

Remote Terminal Supervisor (GRTS)
Network Processing Supervisor (NPS)
RNP/FNP Interface

Transaction Processing System User's
Guide

Handbooks:
Systern-operator communication

Pocket guides:
Control Card Formats
FORTRAN

System Console Messages

Control Cards and Abort Codes
FORTRAN Pocket Guide

ORDER
NO.

DD32

DD10
DD12
DC91
DD11
DD2 4
DD20
DD35
DD42
DD43

DD2 2
DD21

DD17
DD16
DD02
DD18

DD40
DD48
DB92

DD41

DD13

DD04
DD82

Rev. 7412 iv DD02

CONTENTS

Page
Section I Introduction.. 1-1

General.. 1-1
Capabilities 1-1

Section II Rules and Definitions 2-1
Character Set...................................... 2-1
Source Program Format............................. 2-3

Source Program File Types 2-3
Source Program File Characteristics 2-4
Format Rules for Lines......................... 2-4

FORM Formatted Lines....................... 2-4.1
NFORM Formatted Lines - NLNO............... 2-5
NFORM Formatted Lines - LNO................ . 2-5

Format Rules Common to FORM/NFORM 2-6
Symbol Formation 2-8
Data Types.. 2-8
Constants.. 2-9

Integer Constants (Fixed-Point Binary)........ 2-10
Octal Constants............................... 2-10
Real Constants (Floating-Point Binary)........ 2-10
Double Precision Constants..................... 2-11
Complex Constants 2-11
Logical Constants 2-12
Character Constants 2-12

Variables.. 2-13
Variable Type Definition....................... 2-13
Scalar Variable 2-13
External Variable 2-13
Parameter Symbols 2-13
Switch Variable 2-13.1
Character Variables 2-14
Array.. 2-14
Array Element.................................. 2-14
Subscripts...................................... 2-14
Form of Subscript............................. 2-14
Subscripted Variables 2-15
Array Element Successor Function............... 2-15
Array Declarator............................... 2-16
Adjustable Dimensions 2-16

Expressions.. 2-17
Arithmetic...................................... 2-17
Relational...................................... 2-19
Logical.. 2-20
Logical and Relational Constructions.......... 2-21
Operator Precedence 2-22
Typeless.. 2-22
Evaluation of Expressions 2-22
Unary Operators............................... 2-2 3

FORTRAN Statements 2-24
Types of FORTRAN Statements................... 2-24
Arithmetic Statements 2-24
Control Statements............................. 2-24
Input/Output Statements 2-24

9/76 v DD02B

CONTENTS (cont)

Subprogram Statements
Specification Statements
Compiler Control Statement
Index of Statements

Page
2-25
2-25
2-25
2-25

Section III

I
Section IV

User Interfaces...................................... 3-1
Batch Mode................ 3-1

Batch Call Card 3-1
Sample Batch Deck Setup 3-3

Time Sharing System Operation 3-3
Time Sharing System Command Language 3-4
Time Sharing Commands of the YFORTRAN and
FORTRAN Time Sharing Systems 3-4

Log-On Procedure 3-6
Entering Program-Statement Input 3-8
Format of Program-Statement Input 3-8

Significance of the Control Character. . . . 3-9
Blanks (or Spacing) Within a Line
of Input 3-10

Correcting or Modifying a Program 3-11
Input Error Recovery 3-12
Time Sharing System Definitions and File
Specification 3-12

The YFORTRAN Time Sharing System RUN Command. . 3-12
The FORTRAN Time Sharing System RUN Command . . 3-15
Information Common to the FORTRAN and
YFORTRAN Time Sharing Systems 3-17
Specify RUN Command as First Line
of Source File 3-19

TSS Run Examples 3-2 0
Batch Activity Spawned by the YFORTRAN
Time Sharing System RUN Command 3-21

Batch Activity to Build Time Sharing H* File. . 3-21
Time Sharing System RUNL Command for
Link/Overlay 3-22

Example of a Time Sharing Session 3-25
Supplying Direct-Mode Program Input 3-26
Emergency Termination of Execution 3-27
Paper Tape Input 3-27

Remote Batch Interface 3-27
File System Interface 3-27
Terminal/Batch Interface 3-28
ASCII/BCD Considerations 3-28
File Formats 3-29
Global Optimization 3-30
Batch Compilation Listings and Reports 3-32

Source Program Listing (LSTIN) 3-33
To-From Transfer Table (XREFS) 3-34
Program Preface Summary (LSTOU) 3-34
Storage Map (MAP)................. 3-35
Object Program Listing (LSTOU) 3-35
Debug Symbol Table (DEBUG) 3-36
Cross Reference List (XREF) 3-36
Miscellaneous Data 3-36

FORTRAN Statements 4-1
Statement Classification 4-1
Assignment Statements 4-1

Arithmetic Assignment Statement 4-2
Logical Assignment Statement 4-3
Character Assignment Statement 4-3
Label Assignment Statement 4-4

DD02B

CONTENTS (cont)

Page

Statement Formats................................. 4-6
ABNORMAL.. 4-7
ASSIGN.. 4-7.1
BACKSPACE...................................... 4-8
BLOCKDATA...................................... 4-9
CALL.. 4-10
CHARACTER..................................... 4-12
COMMON.. 4-13
COMPLEX.. 4-15
CONTINUE.. 4-16
DATA.. 4-17
DECODE.. 4-20
DIMENSION...................................... 4-21
DO.. 4-22
DOUBLE PRECISION............................... 4-26
ENCODE.. 4-27
END.. 4-28
ENDFILE.. 4-29
ENTRY.. 4-30
EQUIVALENCE................................... 4-31
EXTERNAL.. 4-34
FORMAT.. 4-35
FUNCTION.. 4-37
GO TO.. 4-40

GO TO, Unconditional...................... 4-4 0
GO TO, Assigned............................ 4-40
GO TO, Computed............................ 4-41

IF, ARITHMETIC................................. 4-42
IF, LOGICAL................................... 4-4 3
IMPLICIT.. 4-45
INTEGER.. 4-46
LOGICAL.. 4-46
NAMELIST.. 4-48
PARAMETER...................................... 4-49
PAUSE.. 4-50
PRINT.. 4-52
PUNCH.. 4-53
READ.. 4-54
REAL.. 4-56
RETURN.................. 4-57
REWIND.. 4-58
STOP.. 4-59
SUBROUTINE...................................... 4-60
TYPE.. 4-62
WRITE.. 4-64

Section V Input and Output...................................... 5-1
General Description............................... 5-1

File Designation............................... 5-3
List Specifications........................... 5-4

List Directed Formatted Input/Output Statements. . 5-6
NAMELIST Input/Output Statements................ 5-8
NAMELIST Input................................. 5-8
NAMELIST Output 5-8
Data Input Referring to a NAMELIST Statement. . 5-9
Data Output Referring to a NAMELIST
Statement...................................... 5-11

Formatted Input/Output Statements 5-14
Unformatted Sequential File Input/Output
Statements................................... 5-14

Unformatted Random File Input/Output
Statements.................................... 5-14

9/76 Vll DD02B

CONTENTS (cont)

Page

File Properties............................... 5-15
File Handling Statements.......... •............ 5-16
Internal Data Conversion 5-16
Multiple Record Processing 5-16
Editing Strings With ENCODE....................... 5-17
Conditional Format Selection 5-18
Construction of Formats With ENCODE............... 5-18
Output Device Control............................. 5-19
Format Specifications............................. 5-20

Field Separators............................... 5-20
Repeat Specification. • 5-20
Scale Factors................................. 5-20
Multiple Record Formats 5-21
Carriage Control............................... 5-2 2
Data Input Referring to a FORMAT
Statement...................................... 5-23

Numeric Field Descriptors 5-23
Complex Number Fields 5-26
Alphanumeric Fields 5-26
Logical Field Descriptor....................... 5-27
Character Positioning Field Descriptors 5-27
X Format Code................................. 5-2 7
T Format Code................................. 5-27
Variable Format Specifications................. 5-27

Section VI Subroutines, Functions, and Subprogram Statements . . 6-1
Naming Subroutines 6-1
Arithmetic Statement Functions 6-2

Defining Arithmetic Statement Functions 6-2
Arithmetic Statement Function Left of Equals. • 6-3
Referencing Arithmetic Statement Functions. • • 6-4
Arithmetic Statement Function Example 6-4

Supplied Intrinsic Functions 6-4
Argument Checking and Conversion for
Intrinsic Functions........................... 6-7

Automatic Typing of Intrinsic Functions 6-7
FLD.. 6-7
Typeless Intrinsic Functions................... 6-9

FUNCTION Subprograms 6-10
Defining FUNCTION Subprograms 6-10
Supplied FUNCTION Subprograms 6-11
Shift Functions............................... 6-14
Set/Reset Program Switch Word 6-14
Mode Determination............................. 6-15
Character String Compare....................... 6-15
Random Number Generators....................... 6-15
Referencing FUNCTION Subprograms.............. 6-16
Example of FUNCTION Subprogram................. 6-17

SUBROUTINE Subprograms 6-17
Defining SUBROUTINE Subprograms 6-18
Referencing SUBROUTINE Subprograms............ 6-18
SUBROUTINE Subprogram Examples................. 6-19
Returns From Function and Subroutine
Subprograms....................... 6-19

Multiple Entry Points Into a Subprogram 6-21
Dummy Argument................................. 6-22
Supplied SUBROUTINE Subprograms 6-23

ATTACH...................................... 6-2 6
CALLSS...................................... 6-27
CNSLIO...................................... 6-27
CONCAT...................................... 6-28
CORFL.. 6-2 8

9/76 viii DD02B

CONTENTS (cont)

Page
CORSEC..................................... 6-29
CREATE..................................... 6-29
DATIM.. 6-30
DEFIL.. 6-30
DETACH..................................... 6-31
DUMP [DUMPA], PDUMP [PDUMPA]................... 6-31
DVCHK, OVERFL, FXDVCK......................... 6-32
EXIT.. 6-33
FCLOSE..................................... 6-33
FILBSP, FILFSP............................... 6-33
FLGEOF..................................... 6-34
FLGERR..................................... 6-34
FLGFRC..................................... 6-34
FMEDIA..................................... 6-35
FPARAM..................................... 6-35
FXDVCK..................................... 6-36
FXEM (FORTRAN Execution Error Monitor) . . . 6-36
LINK and LLINK............................. 6-4 3
MEMSIZ..................................... 6-43
NASTRK..................................... ’ 6-4 3 I
OVERFL..................................... 6-4 3 I
PDUMP,PDUMPA 6-44 I
PTIME.. 6-44 I
RANSIZ..................................... 6-44
SETBUF..................................... 6-4 4
SETFCB..................................... 6-45
SETLGT..................................... 6-4 5
SLITE,SLITET 6-46
SORT 6—46
SORTD............................. 6-47
SSWTCH..................................... 6-4 8
TERMNO..................................... 6-4 8
TERMTM................ 6-49
TRACE.. 6-49
USRCOD..................................... 6-49
YASTRK..................................... 6-49 I

Appendix A ASCII/BCD Character Set A-l
Appendix B Diagnostic Error Comments B-l
Appendix C System Characteristics................................ C-l
Appendix D Time Sharing System Definitions and File

Description.. D-l
Appendix E FORTRAN Execution Error Monitor Examples............. E-l
Appendix F FORTRAN Debugging System............................. F-l I
Index... i-1

9/76 ix DD02B

ILLUSTRATIONS

Page

FORTRAN Coding Sheet and Program
Arithmetic Expressions +, -, *, and / .
Arithmetic Expressions - Exponent (**, ♦ or A). . .
Use of Relational Operators
Compilation Listings and Reports
Legal Combinations of Assignment Statements
Test Program for NAMELIST Output..................
NAMELIST Output of Fixed Point and Real Arrays. . .
Storage Allocation for Object Programs............
FXEM Example in Time Sharing Mode
FXEM Example in Batch Mode

2-7
2-18
2-18
2- 21
3- 37
4- 4
5- 12
5-13
C-2
E-2
E-3

TABLES

Table 2-1
Table 3-1
Table 4-1
Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 6-5
Table F-l
Table F-2
Table F-3
Table F-4
Table F-5
Table F-6
Table F-7
Table F-8

Alphabetical Listing of FORTRAN Statements
YFORTRAN and FORTRAN Time Sharing System Commands . .
Rules for Assignment of E to V
Supplied Intrinsic Functions
Supplied FUNCTION Subprograms, Mathematical
Supplied FUNCTION Subprograms, Nonmathematical. . . .
Supplied SUBROUTINE Subprograms
Error Codes and Meanings
FDS Example in the Batch Mode
FDS Example in the Batch Mode with Linked Overlays. .
FDS Example in the Time Sharing Mode
Example of a Symbolic Dump.
Example of FDS Program and Subroutine used
with FDUMP
Example of FDUMP Output
Timing Measurement System Parameters. .
Timing Measurement System in Time Sharing

2- 26
3- 5
4- 5
6-5
6-12
6-14
6-24
6-38
F-9
F-ll
F-12
F-15
F-16
F-17
F-19
F-20

9/76 X DD02B

SECTION I

INTRODUCTION

GENERAL

FORTRAN is a coding language closely resembling the ordinary language of
mathematics and providing the facility for expressing any problem requiring
numerical computation. In particular, problems involving large sets of equations
and containing many variables can be handled easily. FORTRAN is especially
suited for solving scientific and engineering problems, and it is also suitable
for many business applications.

The FORTRAN language consists of words and symbols arranged into
statements. A set of FORTRAN statements, describing each step in the solution of
a problem, constitutes a FORTRAN program (a source language program).

The FORTRAN compiler is a processor that translates a FORTRAN program into
machine language. This processor is provided as a part of the software system to
translate FORTRAN source language programs to machine language programs in the
form acceptable for execution with the General Comprehensive Operating
Supervisor (GCOS).

The FORTRAN language is augmented by a library of routines that accompany
the system. These routines evaluate the standard arithmetical functions, provide
all input/output for the program, and furnish the user with other services to
aid in the problem solution. Special purpose routines can be written by the user
for use as subprograms.

CAPABILITIES

The FORTRAN compiler services both batch and time sharing, using the same
compiler modules for both environments. Users have the capability of developing
programs for eventual use in the batch environment with the convenience of the
interactive time sharing environment, and after debug is complete, submitting
them to batch without concern for time sharing/batch language incompatibilities.

Users enter FORTRAN programs in exactly the same form regardless of the
input medium or location. The only difference in the input stream at the user
interface is the mandatory presence of GCOS control cards for local and remote
batch and the required use of command language in the time sharing environment.
Remote accessed use of GCOS, including both time sharing and remote batch,
contribute significantly to the job load at the Central Computer Site.

1-1 DD02

SECTION II

RULES AND DEFINITIONS

CHARACTER SET

FORTRAN utilizes two character sets - ASCII and BCD. The character set and
byte size of the internal representation of generated object code is controlled
by an option on the $ FORTY or $ FORTRAN card or the YFORTRAN or FORTRAN RUN
command. The byte size is 6 or 9 bits, depending on the option selected (BCD or
ASCII)• Appendix A contains the ASCII and BCD character set with the octal and
card representation for each character. The character set of the source program
is self-determining and requires no options.

The FORTRAN character set is a subset of the full 128 ASCII characters and
is used as follows:

1. FORTRAN statements and the verbs or prepositions do not differentiate
between upper and lower case alphabetic characters.

2. No distinction is made between the cases in forming variable,
function, common, etc. names.

3. Upper and lower case letters are recognized as different only in user
character data and literals.

4. Character restrictions may be necessary for certain external routine
procedures. For example, symbols in assembly language subroutines may
be restricted to upper case.

5. Any character in the ASCII character set is valid as literal data.

A program unit is written using the following characters:

A, B, C, D, E, F, G, H, I, J, K,
V, W, X, Y, Z, a, b, c, d, e, f,
q, r, s, t, u, v, w, x, y, z, 0,

L, M, N, O, P, Q, R, S, T, U,
g, h, i, j, k, 1, m, n, o, p,
1, 2, 3, 4, 5, 6, 7, 8, 9, and

2-1 DD02

CHARACTER NAME OF CHARACTER

f or a

Space
Equals
Plus
Minus
Vertical Arrow

or Caret
Asterisk
Ampersand
Slash
Left Parenthesis
Right Parenthesis
Comma
Radix Point
Currency Symbol
Apostrophe or Acute Accent
Semicolon
Quotation Marks

The order in which the characters are listed does not imply a collating
sequence. All are ASCII characters.

The following special characters are used for FORTRAN syntax punctuation:

Space "$()+-,/ ;=.’&* t A

The space character is not meaningful to the compiler except in character
literals and can be used freely to enhance readability of programs.

Quotation marks and apostrophes are used as character literal delimiters.
The apostrophe also precedes the record number in random file input/output
statements.

The currency symbol identifies statement numbers used as arguments. It also
serves as a delimiter of input data for NAMELIST read.

Parentheses are used to enclose subexpressions, complex constants,
equivalence groups, format specification, argument lists, subscripts, and
to specify the ranges of implied DO loops.

Plus sign indicates algebraic addition, printer carriage control, or a
unary operator.

Minus sign indicates algebraic subtraction or a unary operator.

The comma is used as a separator for data symbols and expressions for
parameter lists, equivalence groups, complex constants and format
specifications.

2-2 DD02

The slash is used to indicate algebraic division, as a delimiter for data
lists, labeled common statements, and as a record terminator in a format
statement.

The semicolon is used as a statement delimiter.

The equality sign indicates the assignment operator in arithmetic and
logical assignment statements, PARAMETER statements, DO statements, and
implied DO statements in I/O and data lists.

The asterisk designates a comment line or an alternate return argument in a
subroutine statement. The asterisk is also used as the multiplication
operator, and a double asterisk (**) is one of the exponentiation
operators. The quantity to the left of the sign is raised to the power
indicated on the right.

The period is used as a radix point and serves as a delimiter for symbolic
logical, and relational operators and logical constants.

The vertical arrow and caret serve as additional exponentiation operators.
They are alternates to the double asterisk and can be used interchangeably.

The ampersand serves as one of the continuation line indicators.

SOURCE PROGRAM FORMAT

Source Program File Types

Source programs generally originate as either punched cards or typed lines
on a terminal. They can also be the product of (output from) the execution of
some program, or one can be compressed in a compilation activity through use of
the COMDK option. These source programs can be kept in the form of decks, paper
tape, magnetic tape files, or permanent mass storage files. To be compiled,
decks and paper tape media programs must be copied to magnetic tape, or mass
storage first. The mass storage file need not be permanent; a normal deck setup
produces the compiler input file (S*) on a temporary file. The source program
file must be recorded in standard system format (see the File and Record Control
manual). The FORTRAN compiler accepts magnetic tape or mass storage files, in
standard system format, with any of the following media codes:

0 - formatted BCD line images, without slew control for the printer
1 - compressed BCD card images
2 - (uncompressed) BCD card images
3 - formatted BCD line images, with trailing printer slew control

information
5 - time sharing ASCII format (pre-Series 6000 Software Release E)
6 - time sharing ASCII standard system format
7 - ASCII print line images, with trailing printer slew control information
8 - TSS information record

2-3 DD02

Card images are limited to 80 characterst while line images are limited by
the device on which they were prepared. For simplification, wherever "card
images" and "line images" can both be used, this document simply uses the term,
"line".

Source Program File Characteristics

A source program file is made up of statements and comments. A statement
can be contained on from one to twenty lines. The first is called an initial
line and the rest are called continuation lines. A comment is contained on one
line, it is not considered as a statement, and merely provides information for
documentary purposes. Comment lines can be placed freely in the program file,
even between consecutive continuation lines.

Every program unit (subprogram, main program,
end line. This line contains an END statement and
program units. Any subsequent units must begin on

etc.) must terminate with an
serves to separate individual
a new line.

When the first line of a program unit is a comment line, page titles and
object deck labels are extracted from that line as follows:

Characters 2-7 are inserted by the compiler into the label field of the
heading line printed by the compiler. Only characters 2-5
are used by the compiler to construct the edit name of the
compiled module (columns 73-76 of object deck) which is
used by the Source and Object Library Editor to manipulate
the module.

Characters
A8-72 contain the page title for listings.

When the first line of a program unit is not a comment line, or columns 2
through 5 are blank on the first comment card, the deck label is the first six
characters of the program unit’s name (if a main program) . No page title
is generated. Any trailing digits in the object deck label are used as part of
the sequence number field in object decks to avoid sequence number errors.

Format Rules for Lines

A variety of source line formats are acceptable, ranging from the standard
80-character fixed format to the standard line formats used with the time
sharing system. Specification of format is via two options: FORM/NFORM and
LNO/NLNO. These options can appear on the $ FORTY or $ FORTRAN control card or
in the option list of the YFORTRAN or FORTRAN RUN command.

Source files in standard format should be processed using the FORM option.
Time sharing source files should normally use NFORM+LNO. These are the default
options when jobs originate from batch and time sharing, respectively. If
neither the LNO nor the NLNO option is specified with the NFORM option, LNO is
the default option.

9/76 2-4 DD02B

FORM FORMATTED LINES

Lines in FORM format have the following characteristics:

1. Comment lines are recognized by a C or * in character position 1.
2. Continuation lines are recognized by a nonblank, nonzero character in

position 6 or by an & as the first nonblank character.

9/76 2-4.1 DD02B

Lines containing more than 72 characters (e.g., card images) in FORM format
have these additional characteristics:

Character positions 73-80 can be used for sequence identification
information. This field is not considered part of the statement; it
is provided for convenience.
No more than 80 characters are processed. If more are present, they
are ignored.

FORM format files must not contain line numbers; therefore, the LNO option
must not be specified for FORM format files. Where such files are specified,
NLNO (rather than LNO) is the default option and the user must either specify
NLNO or ignore the option entirely.

NFORM FORMATTED LINES - NLNO

Lines in NFORM format with no line numbers (NLNO) have the following
characteristics:

1. Comment lines are recognized by a C or * in character position 1.
2. A continuation line is indicated by the ampersand character (&) as the

first nonblank character of the line.

Card images in this format also have the characteristic:

3. Character positions 73-80 can be used for sequence identification
information.

NFORM FORMATTED LINES - LNO

Lines in NFORM
characteristics:

format with line numbers (LNO) have the following

1. A line number field begins in character 1. The line number field can
contain up to eight characters and can contain leading blanks. The
magnitude of this line number is treated modulo 21® (262,144).

2. Line numbers less than eight characters in length must be terminated
by a nonnumeric character.

3. If the character following the line number is a #, it is ignored and
the next character is considered to be following the line number.

4. Comment lines are recognized by a C or * as the next character
following the line number.

5. A continuation line is indicated by the ampersand character (&) as the
first nonblank character following the line number.

Card images in this
identification information.

format do not reserve characters 73-80 for sequence
The statement text can extend into these positions.

2-5 DD02B

Format Rules Common to FORM/NFORM

The above rules indicate that the format options are used to control the
following functions:

1. Elimination of line numbers and sequence identification fields from
the lines.

2. Separation of comment lines from statement lines.
3. Distinction between initial statement lines and continuation lines.

Determination of the position numbers of the first and last characters
of the statement text.

Beyond this, the line format is the same. Initial lines can begin with a
statement number. The statement number can begin anywhere on the line but must
be in the range 1< n< 99999. There can be up to 19 continuation lines and the
statement text continues with the first character following the continuation
character.

A statement can be terminated by a semicolon on either an initial or
continuation line. The information remaining on the line is processed as an
initial line. The new statement can begin with a statement number and can be
continued. Note that it is not possible to put comments on the same line as the
statement line that ends with a semicolon.

Figure 2-1 illustrates the appearance and general properties of a FORTRAN
program written on a coding sheet. This example illustrates the FORM format.

2-6 DD02

0

2-7 DD02

FO
RT

RA
N

Co
di

ng
 S

he
et
 a

nd
 P

ro
gr

am

SYMBOL FORMATION

A symbolic name consists of one to eight alphanumeric characters, the first
of which must be alphabetic. Data types can be associated with a symbolic name
either implicitly or explicitly. The implicit associations are determined by the
first character of the symbol; integer if the name begins with the letters
I,J,K,L,M, or N; otherwise real. This default implicit associative rule can be
changed by the use of the IMPLICIT statement. This allows implicit association
for all data types - integer, real, double precision, complex, logical, or
character. An explicit declaration of type for some symbol always overrides its
implicit type. Data type is explicitly associated with a symbol when it appears
in one of the type statements: INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
LOGICAL, or CHARACTER, or when it appears in a FUNCTION statement with a type
prefix (e.g., REAL FUNCTION MPYM(A,B)).

No case distinction is made in forming symbols. The symbol ABC is identical
to the symbols abc and Abe.

A symbolic name representing a function, variable, or array has only one
data type association for each program unit. Once associated with a particular
data type, a specific name implies that type for any usage of that symbolic name
that requires a data type association throughout the program unit in which it is
defined.

DATA TYPES

The mathematical and representational properties for each of the data types
are defined below. The value zero is not considered positive or negative.

1. An integer datum is always an exact representation of an integer
value. It can assume positive, negative, or zero integral values. Each
integer datum requires one 36-bit word of storage in fixed point
format. The permissible range of values for integer type is -2^5 to
235-l.

2. A real datum is a processor approximation to the value of a real
number. It can assume positive, negative, or zero values, possibly
fractional. A real datum requires one 36-bit word of storage in
floating point format. The permissible range of values for real type
is approximately + 1Q38 to +10-38, with a precision of eight digits.

3. A double precision datum is a processor approximation to the value of
a real number. It can assume positive, negative, or zero values. A
double precision datum requires two consecutive 36-bit words of
storage in double precision floating point format. The permissible
range of values for double precision type is approximately +10^8 to
+10-38, with a precision of 18 digits.

2-8 DD02

4. A complex datum is a processor approximation to the value of a complex
number. The representation of the approximation is in the form of an
ordered pair of real data. The first of the pair represents the real
part and the second, the imaginary part. Each part has, accordingly,
the same degree of approximation as for a real datum. A complex datum
requires two consecutive words of storage, each in floating point
format. Each part of a complex datum has the same range of values and
precision as a real datum.

5. A logical datum is a representation of a logical value of true • or
false. The source representation of the logical value "true" can be
either .TRUE, or .T., and in DATA statements, the single character "T"
can also be used. For the value "false”, .FALSE. and .F. can be
generally used with "F" being allowable in DATA statements. A logical
datum requires one 36-bit word of storage with the value zero
representing "false", and nonzero representing "true". Where
input/output is involved, the external representations of "true" and
"false" are the single letters "T" and "F".

6. A character datum is a processor representation of a string of ASCII
or BCD characters. This string can consist of any characters capable
of being represented in the processor. The space character is a valid
and significant character in a character datum. Character strings are
delimited by quotes, apostrophes, or by preceding the string by nH.
The character set (BCD or ASCII) is declared by an option on the $
FORTY or $ FORTRAN control card or the YFORTRAN or FORTRAN RUN
command.

The term "reference" indicates an identification of a datum, implying that
the current value of the datum will be made available during the execution of
the statement containing the reference. If the datum is identified but not
necessarily made available, the datum is said to be "named". One case of special
interest in which the datum is named is that of assigning a value to a datum,
thus defining or redefining the datum.

CONSTANTS

There are three general types of constants
character. Single and double word constants are

- single word, double word, and
divided as follows:

1. Single Word Constants
a. Integer
b. Octal
c. Real
d. Logical

2. Double Word Constants
a. Double Precision
b. Complex

A constant is a value known prior to writing a FORTRAN statement and does
not change during program execution.

2-9 DD0 2

Integer Constants (Fixed-Point Binary)

An integer constant consists of one to 11 decimal digits with an accuracy
of ten digits. The decimal point of the integer must always be omitted;
however, it is always assumed to be immediately to the right of the last digit
in the string. An integer constant can be as large as (2)-l (=3.4x10),
except when used for the value of a subscript or as an index of a D0 ^or a DO
parameter, in which case the maximum value of the integer is (2)-l (=2.6x10).

Examples:

-7
152
843517

Octal Constants

An octal constant is written as a string of up to 12 octal digits preceded
by the letter O and an optional sign. The sign affects only bit 0 of the
resulting literal (complementation does not take place). Octal constants can be
used in preset data lists only (e.g., DATA statement).

Examples:

0 777000
O - 377777777

Real Constants (Floating-Point Binary)

A real constant is in floating-ooint mode and is contained in one computer
word (single precision)• This const* it consists of one of the following:

One to nine significant decimal digits written with a decimal point/
but not followed by a decimal exponent.

2. One to nine significant decimal digits written with or without a
decimal point, followed by a decimal exponent written as the letter E
followed by a signed or unsigned one-or two-digit integer constant.
When the decimal point is omitted, it is always assumed to be
immediately to the right of the rightmost digit. The exponent value
can be explicitly 0, and the field following the E cannot be blank.

9/76 2-10 DD02B

Examples:
75.

1234.
21.083
-3.2105
7.0E2
7E-3

(means 7.0 x 102; 700)
(means 7.0 x 10*3. .007)

A real constant has precision to
between the approximate limits of 10“38

eight digits. The magnitude
and 10 38 , Or must be zero.

must be

Double Precision Constants

A double precision constant is in floating-point mode and is contained in
two computer words. This constant consists of one of the following:

1. Ten to eighteen significant decimal digits written with a decimal
point, but not followed by a decimal exponent. In some cases, ten or
eleven significant decimal digits will not generate a double precision
constant because the mantissa of the real constant is less than 2^8.

2. Up to 18 significant decimal digits written with or without a decimal
point, followed by a decimal exponent written as the letter D followed
by a signed or unsigned one- or two-digit integer constant. When the
decimal point is omitted, it is always assumed to be immediately to
the right of the rightmost digit. The exponent value can be explicitly
0, and the field following the D cannot be blank.

Examples:

12.34567891
-13.57D0

.1234D0
7.0D4 (means 7.0 x 10^, 70000.)
7D-3 (means 7.0 x 10“3 , .007)

Double precision constants have precision to 18 digits. The magnitude of a
double precision constant must lie between the approximate limits of 10“38 and
1038 t or must be zero.

Complex Constants

A complex constant consists of an ordered
constants separated by a comma and enclosed in

pair of signed or
parentheses.

unsigned real

Examples:

(10.1, 7.03) is equal to 10.1 4- 7.03i
(5.41, 0.0) is equal to 5.41 + O.Oi
(7.0E4, 20.76) is equal to 70000. + 20.76i
where i is the square root of -1.

2-11 DD02

The first real constant represents the real part of the complex number; the
second real constant represents the imaginary part of the complex number. The
parentheses are required regardless of the context in which the complex constant
appears. Each part of the complex constant can be preceded by a plus sign or a
minus sign, or it can be unsigned.

Logical Constants

A logical constant can take either of the two forms:

.TRUE, (or .T.)

.FALSE, (or . F.)
and is represented in the machine as

TRUE / 0
FALSE = 0

Representation can be in either form in DATA statements or externally when
performing input/output operations.

Character Constants

Character constants are of two kinds, characterized by their representation
in either the ASCII or the BCD character set (see Appendix A). The kind is
determined by an option on the $ FORTY or $ FORTRAN card or the YFORTRAN or
FORTRAN RUN command. Character constants are formed in one of the following
ways:

1. Preceding the character string by nH.
2. Enclosing the string in quotation marks.
3. Enclosing the string in apostrophes.

Character constants can be used as arguments to external subprograms, as
literals in the DATA statement, as part of a FORMAT statement, as the display
object of the STOP and PAUSE statements, in a character assignment statement, or
in a relational expression.

The maximum length of a character constant is 500 characters in the ASCII
mode and 511 characters in the BCD mode.

The interpretation of quoted strings of both types is such that the
appearance of the string delimiter in two consecutive character positions within
a string is considered as a single occurrence of the delimiter as a member of
that string. For example, the representation: ,,abc”"ef" is represented
internally as the literal abc”ef. Alternatively, the other delimiter type can
be used (e.g. * 1abc"ef*).

9/76 2-12 DD02B

VARIABLES

Variable Type Definition

A variable is any quantity referred to by name rather than by value. A
variable can take on many values and can be changed during the execution of the
program.

The type of a variable is specified implicitly by its name, or explicitly
by use of a type statement.

1. Default implicit type association enables the declaration of real and
integer variables and function names according to the following rules:
a. If the first character of the name is I,J,K,L,M, or N, (upper or

lower case) it is an integer name.
b. If the first character is any other alphabetic character, it is a

real name.
2. The IMPLICIT type statement redefines the implicit typing. See the

IMPLICIT statement description in Section IV.
3. The explicit type statements assign a type to a variable or function

subprogram.
4. Function subprogram names can be typed on the FUNCTION statement by

use of the type prefix.

Scalar Variable

The six types of scalar variables are: character, integer, real, logical,
double precision, and complex. A scalar variable can take on any value its
corresponding constant may assume. A scalar variable occupies the same number of
storage locations as a constant of the same type.

External Variable

An external variable is the name of a subprogram that appears as an actual
argument in the calling sequence to some subprogram. It must appear in an
EXTERNAL statement before its first use in the source program.

Parameter Symbols

A parameter symbol is used when it is desired to compile a program several
times when the only changes from one compilation to the next are to certain
constants. The parameter symbol (described under the PARAMETER statement in
Section IV) is used under these circumstances.

2-13 DD02

Switch Variable

A switch variable is an independent entity derived from a scalar variable
and is associated only with an ASSIGN statement. Switch variables must be type
INTEGER but can have the same name as an integer variable. Refer to the
assigned GO TO statement in Section IV.

9/76 2-13.1 DD02B

Character Variables

Character variables can be implicitly typed via the IMPLICIT statement or
explicitly typed using the CHARACTER statement. Character variables are stored
internally left-justified and blank-filled. The limit is 500 characters per
character variable in the ASCII mode and 511 characters in the BCD mode.

Array

An array is an ordered set of data with from one to seven dimensions. The
array is referenced by a symbolic name. Identification of the entire ordered
set is achieved by the use of the array name.

Array Element

An array element is an item of data in an array. It
immediately following the array name with a subscript that
particular element of the array. In some instances the array
in unsubscripted notation to reference the first element of the

is identified by
points to the

name can be used
array.

Subscripts

A variable can be made to represent any element of an array containing from
one to seven dimensions by appending one to seven subscripts to the variable
name. Subscript expressions are separated by commas. The number of subscript
expressions must correspond with the declared dimensionality except in an
EQUIVALENCE statement. Following evaluation of all of the subscript
expressions, the array element successor function determines the identified
element.

Form of Subscript

A subscript expression can take the form of any legal FORTRAN arithmetic
expression.
use.

Examples:

The result of any such expression is truncated to an integer before

IMAS 8*IQUAN 9+J
J9 5*L+7 B**2
K2 H*M-3 6**A-(1-SQRT(3.14))/8
N+3 7+2*k LIST (J)

The value of a subscript expression must be greater than zero and not
greater than the corresponding array dimension. The value of a subscript
expression containing real variables is truncated to an integer after
evaluation. No check is made to verify that the subscript value is within the
bounds specified in the DIMENSION statement. The execution of a program
containing an error of this nature can cause various abnormal terminations.

9/76 2-14 DD02B

Subscripted Variables

A subscripted variable consists of a variable name, followed by
parentheses, enclosing one to seven subscripts separated by commas.

Examples:
A(I)
K(3)
BETA (8*J+2,K-2,L)
MAX (K,J,K,L,M,N)
1. During execution, the subscript is evaluated so that the

variable refers to a specific element of the array.
subscripted

2. Each variable that appears in subscripted form must have the size of
the array specified. This must be done by DIMENSION, COMMON, or type
statements that contain the dimension information. The specification
of dimensionality must precede the first reference to the array.

3. The first subscript refers to rows of the array, the second subscript
to columns, and the third subscript to planes consisting of rows and
columns.

Array Element Successor Function

The general algorithm to linearize a subscript involving n
array of n dimensions) is:

terms (for an

n
S = s ((e^l)

i=l
i-1

7r di) + 1
j=0

where each e^ is a subscript term and each dj an array dimension.

The term dg is the "zero-th dimension" of the array. It reflects the
number of words of memory required for one element. For example: integer,
logical, and real quantities require one word per element (dg = 1); double
precision and complex quantities require a word pair (dg = 2); and character
variables that use the size in bytes notation to provide the number of
characters per element can have a dg value of up to 86 in BCD (since they have a
maximum of 511 characters) and up to 126 in ASCII (since they have a maximum of
500 characters). The formula for reducing size in characters to size in words
is a function of the BCD/ASCII option. Let n be the number of characters
specified, and m be the number of characters per word (6 for BCD, 4 for ASCII).
Then dg is computed as:

dg = (n+m-l)/m

The following are examples using integer and complex quantities:
INTEGER X(3,2,4) (Array X has 3 rows, 2 columns, and 4 planes)
X(2,2,2)= 1
Expanding the algorithm for the three dimensions:

S = (e^-1)*dg + (e2-l)*d0*d1 + (e3-l)*d0*d1 *d2 +1
S = (2-l)*l + (2-l)*l*3 + (2-l)*l*3*2 + 1

9/76 2-15 DD02B

Looking at the array in storage in ascending order, the elements are:

X(l,l,l), X(2,l,l), X(3,l,l), X(l,2,l), X(2,2,l),
X(3,2,l), X(l,l,2), X(2,l,2), X(3,l,2),
X(l,2,2), X(2,2,2), X(3,2,4)

X(2,2,2) is the eleventh element of the array, the fifth member of plane two.

COMPLEX X (3 Z2Z4)
X(2,2,2) = (1.0, 0.0)

S = (2-1) *2 + (2-1) *2*3 + (2-1) *2*3*2 + 1

S = 21
In this example, the first word of the word pair for this element is the

twenty-first word of the array.

Array Declarator

An array declarator specifies an array used in a program unit. The array
declarator indicates the symbolic name, the number of dimensions (one to seven)
and the size of each dimension. The array declarator form can be in a type
statement, dimension statement, or common statement. An array declarator has the
form:

v(i) or v*n(i)
where v is the symbolic array name, n is the size-in-bytes of an element, and i
is the declarator subscript. Declarator subscript (i) is composed of from one
through seven elements each of which can be an integer constant, a parameter
symbol or an integer variable. Each element is separated by a comma (if more
than one).

The appearance of a declarator f ibscript in a declarator statement informs
the processor that the declarator ime is an array name. The number of
subscripts indicates the dimensions of the array. The magnitude of the value for
the subscript expressions indicates the maximum value that the subscript name
can attain in any array element reference.

Adjustable Dimensions

The name of an array and the constants that are its dimensions can be
passed as arguments to a subprogram. In this way a subprogram can perform
calculations on arrays whose sizes are not determined until the subprogram is
called. The following rules apply to the use of adjustable dimensions:

1. Variables can be used as dimensions of an array only in the array
declarator of a FUNCTION or SUBROUTINE subprogram. For any such array,
the array name and all the variables used as dimensions must appear as
dummy arguments in at least one FUNCTION, SUBROUTINE, or ENTRY
statement.

2-16 DD02

2. The adjustable dimensions cannot be altered within the subprogram.

3. The true dimensions of an actual array must be specified in a
DIMENSION, COMMON, or type statement of some calling program.

4. The calling program passes the specific dimensions to the subprogram.
These specific dimensions are those that appear in the DIMENSION,
COMMON, or type statement of the calling program. Variable dimension
size can be passed through more than one level of subprogram. The
specific dimensions passed to the subprogram as actual arguments
cannot exceed the true dimensions of the indicated array.

5. Variables used as dimensions must be integers. If the variables are
not implicitly typed by their initial letters, a type statement must
precede the dimension statement in which they are used as adjustable
dimensions.

6. If an adjustable array name or any of its adjustable dimensions
appears in a dummy argument list of a FUNCTION, SUBROUTINE, or ENTRY
statement, that array name and all its adjustable dimensions must
appear in the same dummy argument list.

Example:

DIMENSION K(I,L),J(M,N)
CALL SETFLG (K,J,4,5,2,3)

DO 20 NO = 1,1
DO 20 MO = 1,L
K(NO,MO) = 0

20 CONTINUE

EXPRESSIONS

Arithmetic

An arithmetic expression consists of certain legal sequences of constants,
subscripted and nonsubscripted variables, and arithmetic function references
separated by arithmetic operation symbols, commas, and parentheses.

The following are arithmetic operation symbols:

+ addition
subtraction

* multiplication
/ division* *

exponentiation

2-17 DD0 2

The rules for constructing arithmetic expressions are:

1. Figures 2-2 and 2-3 indicate which constants, variables, and functions
can be combined by the arithmetic operators to form arithmetic
expressions. The intersection of a row and column gives the type of
the result of such an expression. Figure 2-2 gives the valid
combinations with respect to the arithmetic operators and /.
Figure 2-3 gives the valid combinations with respect to the arithmetic
operators **, f , or a .

I R D C T

I I R D C T Legend
R R D c N C - Complex
D D D D c N

D
I

- Double precision
- Integer

C C C C c N
N
R

- Nonvalid
- Real

T T N N N T
T - Typeless

Figure 2-2. Arithmetic Expressions + , -, *, and /

POWER

B
S
E

I
R
D
C
T

I

I
R
D

R D C T

R D N N
R D N N
D D N N
C C C N
N N N N

Figure 2-3. Arithmetic Expressions - Exponent (** , t or a)

2. Any expression can be enclosed in parentheses.

3. Expressions can be connected by the arithmetic operation symbols to
form other expressions, provided that:
a. No two operators appear in sequence except **, which is a single

operator and denotes exponentiation.
b. No operation symbol is assumed to be present. For example,

(X) (Y) is not valid.

4. The expression A**B**C is evaluated as A**(B**C).

5. Preceding an expression by a plus or minus sign does not affect the
type of the expression.

2-18 DD02

6. In the hierarchy of operations, parentheses can be used in arithmetic
expressions to specify the order in which operations are to be
computed. Where parentheses are omitted, the order is understood to
be as follows:
a. Function Reference
b. **, | , or A Exponentiation
c. * and / Multiplication and Division
d. + and - Addition and Subtraction
This hierarchy is applied first to the expression within the innermost
set of parentheses in the statement; this procedure continues through
the outer parentheses until the entire expression has been evaluated.

7. Operations on the same level (e.g. A*B/C) are evaluated left to
right. Parentheses can be used to reorder this sequence if necessary.

The FORTRAN expression
A*6+Z/Y**(W+(A+B)/X**K)

represents the mathematical expression
Z

6 At ----------
"W + (A+B)

K
Y X

Relational

A relational expression consists of two arithmetic expressions connected by
a relational operator. Relational expressions always result in a true or false
evaluation. Relational expressions are logical operands and can be used in a
logical assignment statement, a logical IF statement, as arguments to
functions/subroutines, a PARAMETER statement, or an output list.

The six relational operator symbols are:

Symbol Definition
.GT. Greater than
.GE. Greater than or equal to
.LT. Less than
.LE. Less than or equal to
• EQ. Equal to
. NE. Not equal to

The preceding and following periods are an integral part of the relational
operator symbols.
Example:

A. GT.B has the value .TRUE, if the quantity A is greater than the quantity
B, and the value .FALSE, otherwise.

9/76 2-19 DD02B

Logical

A logical expression consists of certain sequences of logical constants,
logical variables, references to logical functions, and relational expressions
separated by logical operation symbols. A logical expression always results in
a true or false evaluation.

The logical operation symbols (where a and b are logical expressions) are:

Symbol
.NOT.a

a.AND.b

a.OR.b

Definition
This has the value .TRUE, only if a is .FALSE.; it has the value
.FALSE, only if a is .TRUE.
This has the value .TRUE, only if a and b are both .TRUE.; it
has the value .FALSE, if a or b or both are .FALSE.
(INCLUSIVE OR) This has the value .TRUE, if either a or b or both
are .TRUE.; it has the value .FALSE, only if both a and b are
.FALSE.

The logical operators NOT, AND, and OR must always be preceded and followed
by a period.

Logical expression evaluation proceeds to determine the true/false state of
the simpler subexpressions first, and stops (evaluation) as soon as the
true/false state for the complete expression has been determined. Thus, it is a
distinct possibility that the entire expression may not be evaluated. Since
this may be of significance to some applications, the following example is
given:

IF (RAND (X) .GT. 0 .OR. L) GO TO 100
Assuming that RAND is an external function and L is a logical variable, the

expression is true when either RAND(X) is greater than zero or L is true. The
second alternative is clearly simpler to determine than the first. Further,
since there is no need to evaluate RAND(X) .GT. 0 when L is true, the statement
will be optimized into an equivalent pair of statements:

IF (L) GO TO 100
IF (RAND(X) .GT. 0) GO TO 100

The significance of this is the fact that function RAND is called only when
L is false. If evaluation of RAND(X) can have side effects, this may. be of
consequence. For those applications impacted by this implementation, the
solution would be to make the evaluation of RAND(X) unconditional. For example:

T = RAND(X)
IF(T.GT. 0 .OR. L) GO TO 100

9/76 2-20 DD02B

Logical and Relational Constructions

The following rules are used for
expressions:

constructing logical and relational

1. Figure 2-4 indicates which constants, variables, functions, and
arithmetic expressions can be combined by the relational operators to
form a relational expression. In Figure 2-4, Y indicates a valid
combination and N indicates an invalid combination. The relational
expression has the value .TRUE. if the condition expressed by the
relational operator is met; otherwise, the relational expression has
the value .FALSE.

/

. GT. , . GE . ,

.LT., .LE.,

.EQ., .NE.
I D C L Ctr T Legend

I Y Y Y * N Y Y I = Integer
R = Real

R Y Y Y * N N N D = Double Precision
C = Complex

D Y Y Y * N N N L = Logical
Ctr = Character

C *

N
N
N

N
N

*

N
N
N

N
N

N
N

T = Typeless

Ctr Y N N N N Y N * = .EQ.,.NE.
only

T N N N N N Y = Valid
N = Invalid

Figure 2-4. Use of Relational Operators

2. The numeric relationships that determine the true or false evaluation
of relational expressions are:

a. For numeric values having unlike signs, the positive value is
considered larger than a negative value, regardless of the
respective magnitude, e.g.; + 3>-5 and +5>-5.

b. For numeric values having like signs, the magnitude of the values
determines the relationship, e.g.; +3 >+2 and -8<-4.

3. A logical term can consist of a relational expression, a single
logical constant, a logical variable, or a reference to a logical
function. A logical expression is a series of logical terms or
logical expressions connected by the logical operators .AND.,.OR.,
and .NOT.

4. The logical operator .NOT. must be followed by a logical or relational
expression, and the logical operators .AND. and .OR. must be preceded
and followed by logical or relational expressions.

5. Any logical expression can be enclosed in parentheses.

9/76 2-21 DD02B

Operator Precedence

In the hierarchy of operations, parentheses can be used in logical,
relational, and arithmetic expressions to specify the order in which operations
are to be computed. Where parentheses are omitted, the order is understood to
be as follows (from innermost operations to outermost operations):

1. Function Reference
2. **/!/ or A Exponentiation
3. + and - Unary Addition and Subtraction
4. * and / Multiplication and Division
5. + and - Addition and Subtraction
6. .LT.,.LE.,.EQ.,.NE.,.GT.,.GE.

7. .NOT.
8. .AND.
9. .OR.

This hierarchy is applied first to the expression within the innermost set
of parentheses in the statement; this procedure continues through the outermost
set of parentheses until the entire expression has been evaluated.

Typeless

The following functions are considered as typeless:

FLD
AND
OR
XOR
BOOL
COMPL

A typeless result is regarded as a special form of integer. Typeless
entities can be combined with integer or other typeless entities. With the
arithmetic operators the result is typeless; with relational operators the
result is logical; the logical operations cannot be used on typeless entities.
Whenever the right of equals yields a typeless result, the assignment operation
is integer. For example, if R is real, the statement

R = BOOL(R)+1
adds one to the least significant bit of the real value of R, using integer-add,
and stores a new value in R, using integer-store. This usage is not recommended
but is illustrated here to explain the properties of typeless entities.

Evaluation of Expressions

A part of an expression need be evaluated only if such action is necessary
to establish the value of the expression. The rules for formation of
expressions imply the binding strength of operators. It should be noted that
the range of the subtraction operator is the term that immediately succeeds it.

9/76 2-22 DD02B

When two elements are combined by an operator, the order of evaluation of
the elements is undefined because of possible reordering during optimization. If
mathematical use of operators is associative, commutative, or both, full use of
these facts can be made to revise orders of combinations, provided only that
integrity of parenthesized expressions is not violated. The value of an integer
element is the nearest integer whose magnitude does not exceed the magnitude of
the mathematical value represented by that element. The associative and
commutative laws do not apply in the evaluation of integer terms containing
division; hence the evaluation of such terms must effectively proceed from left
to right.

Any use of an array element name requires the evaluation of its subscript.
The evaluation of functions appearing in an expression cannot validly alter the
value of any other element within the expression, assignment statement, or call
statement in which a function reference or subscript appears. No factor can be
evaluated that requires a negative valued primary to be raised to a real or
double precision exponent. No factor can be evaluated that requires raising a
zero valued primary to a zero valued exponent. No element can be evaluated whose
value is not mathematically defined.

The mode of evaluation of arithmetic expressions is determined by the
following order of type dominance:

1. Complex
2. Double Precision
3. Real
4. Typeless
5. Integer

When two primaries are combined .by any of the arithmetic operators except
the exponentiation operator, their respective types are examined according to
the stated order of type dominance. The type of the recessive primary is
converted to that of the dominant primary (if necessary) and the operation is
performed.

Unary Operators

The unary operators, negative, positive, and logical not, can immediately
precede a constant or a variable in an expression; however, if the placement
causes the unary negative or positive operator to be adjacent to another
operator, it must be enclosed in parentheses with the constant or variable.

Examples:
A=+l.6
C=D/(-Z)*W
IF(-3.+T4)1,2,3
L1=R2.GT. (-2.)
L2=.NOT.L1
A=B** (-2)

2-23 DD02

FORTRAN STATEMENTS

Types of FORTRAN Statements

The basic unit of FORTRAN is the statement. Statements are classified
according to the following uses:

1. Arithmetic statements specifying numerical, character, or logical
value assignment.

2. Control statements governing the order of execution in the object
program.

3. Input/Output statements and input/output formats that describe the
form of the data.

4. Subprogram statements enabling the programmer to define and use
subprograms.

5. Specification statements providing information about variables used in
the program, information about storage allocation and data assigned.

6. Compiler control statements direct the compilation activity.

Arithmetic Statements

assignment statements
arithmetic statement functions

Control Statements

ASSIGN
CONTINUE
DO
GO TO
IF
PAUSE
STOP

Input/Output Statements

BACKSPACE
DECODE
ENCODE
END FILE
FORMAT
PRINT
PUNCH
READ
REWIND
WRITE

2-24 DD02

Subprogram Statements

BLOCK DATA
CALL
ENTRY
FUNCTION
RETURN
SUBROUTINE

Specification Statements

ABNORMAL
COMMON
DATA
DIMENSION
EQUIVALENCE
EXTERNAL
IMPLICIT
NAMELIST
type

INTEGER
REAL
DOUBLE PRECISION
COMPLEX
LOGICAL
CHARACTER

PARAMETER

Compiler Control Statement

END

Index of Statements

Table 2-1 contains an alphabetical listing of FORTRAN statements giving an
example with the page number for the statement in Section IV.

2-25 DD02

Table 2-1. Alphabetical Listing of FORTRAN Statements

Statement Example Page

arithmetic statement
function

F(X,Y)=(X+l)*Y(I) 4-2

assignment statement A=4*B-SINE(C**2) 4-2

ABNORMAL ABNORMAL SINE 4-7

ASSIGN ASSIGN 2 TO K 4-7.1

BACKSPACE BACKSPACE 5 4-8

BLOCK DATA BLOCK DATA 4-9

CALL CALL MATMPY (X,5,10,4,Z) 4-10

CHARACTER CHARACTER ARRAY*14(10,10) 4-12

COMMON COMMON X,Y,Z 4-13

COMPLEX COMPLEX T,N1,D1 4-15
CONTINUE CONTINUE 4-16

DATA DATA A,B,C /3.5,2.9,6.0/ 4-17

DECODE DECODE (CHARS,95 01) A,I(3),X 4-20

DIMENSION DIMENSION A(50) 4-21

DO DO 35 K=10,20,2 4-22

DOUBLE PRECISION DOUBLE PRECISION DENOM,PREF 4-26

ENCODE ENCODE (CHARS(6),9001)A,I(3),X 4-27
END END 4-28

ENDFILE ENDFILE 5 4-29

ENTRY ENTRY INVRT (B,C,D) 4-30

EQUIVALENCE EQUIVALENCE (A,B,C) 4-31

EXTERNAL EXTERNAL SIN,COS,RESULT 4-34

FORMAT 10 FORMAT (E17.2,F20.0) 4-35
FUNCTION FUNCTION CALC (B,C,D) 4-37
GO TO, assigned GO TO S4, (3,4,7) 4-40
GO TO, computed GO TO (3,4,7) ,K 4-41
GO TO, unconditional GO TO 20 4-40
IF,arithmetic IF (A(J,K)-B)10,4,30 4-42

IF,logical IF (A.GT.B) GO TO 3 4-43
IMPLICIT IMPLICIT INTEGER (A-F,X,Y) 4-45

9/76 2-26 DD02B

Table 2-1 (cont). Alphabetical Listing of FORTRAN Statements

Statement Example Page
INTEGER INTEGER I,ABC 4-46
LOGICAL LOGICAL A1,K 4-47
NAMELIST NAMELIST/LIST/ R,S,T,U,V 4-48
PARAMETER PARAMETER 1=5/2,J=I*3 4-49
PAUSE PAUSE 1234 4-50
PRINT, list directed PRINT,A 4-52
PRINT fformatted PRINT 20,A 4-52

PRINT,namelist PRINT LIST 4-52

PUNCH,list directed PUNCH,A 4-53

PUNCH,formatted PUNCH 20,A 4-53

PUNCH,namelist PUNCH LIST 4-53

READ,list directed READ,A 4-54

READ,formatted READ 20,A 4-54

READ,namelist READ LIST 4-54

READ,formatted file READ(5,20,END=90,ERR=95) A 4-54

READ,unformatted file READ(5,END=90,ERR=95) A 4-55

READ,random binary file READ(8'I)A 4-55

READ,namelist file READ(5,LIST) 4-55

REAL REAL J 4-56

RETURN RETURN 4-57
REWIND REWIND 5 4-58

STOP STOP 100 4-59

SUBROUTINE SUBROUTINE ALPHA (B,C,D) 4-60
type INTEGER A,B,C,D 4-62

WRITE,formatted file WRITE(6,30,ERR=S4)A 4-64

WRITE,unformatted file WRITE(6,ERR=S4)A 4-64

WRITE,namelist file WRITE(6,LIST) 4-64
WRITE,random binary WRITE(8’I)A 4-64

2-27 DD0 2

SECTION III

USER INTERFACES

Users create programs.by entering FORTRAN statements into remote and local
peripheral or terminal devices connected to a computer operating under GCOS.

The interface between the user and the FORTRAN system consists of the
transmission to the user’s I/O device of compilation error messages and run-time
diagnostics. The messages transmitted are sufficient to locate for the user the
line on which the error occurred, and the form of the message is such that the
error is explicitly defined.

Three modes of operation are available to the user: local batch, remote
batch, and time sharing. The only user differences among the three modes are
the I/O device assignments for the system output and input files, the presence
of necessary user-GCOS communication via control cards or command language, and
the assumed compiler options for the compilation process.

BATCH MODE

In the local batch mode, the system I/O devices are the card reader, card
punch, andline printer. The user communicates directly with GCOS for system
services via the GCOS control cards and the usable slave mode instructions. The
execution of user programs submitted via the local batch mode is carried out
directly under GCOS and the user’s program exists under GCOS as a separate batch
job. Input processing is performed by System Input and allocation by the GCOS
allocator.

The remote batch mode is equivalent to the local batch mode in capability.
The only difference is the assignment of the system I/O device to the remote
computer as remote files rather than to the local card reader and local
printer/punch. Refer to the Remote Terminal Supervisor (GRTS) and the Network
Processing Supervisor (NPS) manuals for additional communication information•

Batch Call Card

The system call card for FORTRAN in batch mode is:

1 8 16

$ FORTY Options
or

$ FORTRAN Options

9/76 3-1 DD02B

Operand Field:
The operand field specifies the system options. Options available with
time sharing FORTRAN are listed under the time sharing paragraph in this
section. The following options are available with batch FORTRAN (default
options are underlined):

LSTIN - A listing of source input is prepared by the FORTRAN compiler.

NLSTIN - No listing of the source input is prepared.
LSTOU - A listing of the compiled object program output is prepared.
NLSTOU - No listing of the compiled object program output is prepared.

DECK - A binary object program deck is prepared as output.
NDECK - No binary object program deck is prepared.
COMDK - A compressed source deck is prepared as output.
NCOMDK - No compressed source deck is prepared as output.
MAP - A storage map of the program labels, variables, and constants is
prepared as output.
NOMAP - No storage map is prepared.
XREF — A cross-reference report is prepared as output. A TO-FROM transfer
table is generated.
NXREF - No cross-reference report is prepared.
DEBUG - A run time debug symbol table (.SYMT.) is included in the object
program.

NOTE: This debug symbol table is used for debugging in the batch mode
only. Refer to the General Loader manual for use of the debug
feature and the debug symbol table.

NDEBUG - No debug symbol table is prepared.
BCD - The execution time character set is standard BCD (see Appendix A).
ASCII - The execution time character set is ASCII (see Appendix A).

FORM - The source program is in standard statement format.

NFORM - The source program is "free form".
LNO - The source input records are line numbered beginning in Column 1 and
terminating with the first nonnumeric character. This option is only
operable with the NFORM option (assumed option for NFORM).
NLNO - The source records are not line numbered (assumed option for FORM).

NJREST - Do not restart this job following system interruption.

jREST - Enable job restart following system interruption.
NREST - Do not restart this job with current activity following system
interruption.

9/76 3-2 DD02B

REST ” Enable activity restart following system interruption.
OPTZ - A global optimization procedure
program produced is highly efficient,
slows the compilation rate, though not

is performed, so that the object
It should be noted that this option

significantly.

9/76 3-2.1 DD02B

NOPTZ - Global optimization of the object program is not performed.
DUMP - Slave memory dump is given if the compilation activity terminates
abnormally.
NDUMP - Program registers, upper SSA, and slave program prefix is dumped if
the compilation activity terminates abnormally.
NWARN - Do not print any compilation warning messages.
FDS - Enables the FORTRAN Debugging System (FDS). See Appendix F. |

NOTE: Independent of the DUMP/NDUMP option, FORTRAN has the
capability of producing a symbolic dump of the internal tables
in the event of a compiler abort. The presence of a $ SYSOUT
*F control card activates this process.

Sample Batch Deck Setup

The following are the required control cards for the compilation and
execution of a batch FORTRAN activity. The control cards are fully described in
the Control Cards reference manual.

$
$
$
$

SNUMB
I DENT FORTRAN

FORTRAN
Options or $ FORTRAN Options

OPTION
FORTY

FORTRAN Source Deck(s)

$
$
$
$

EXECUTE Options
File Cards
FFILE Cards
ENDJOB

TIME SHARING SYSTEM OPERATION

From a user point of view there are two time sharing versions of the
FORTRAN compiler. Each version is invoked by a different call. These versions
and the language call for each are as follows:

Language Call
(at system level)
YFORTRAN
FORTRAN

In this document, the batch based time sharing interface is referred to as
the YFORTRAN Time Sharing System and the time sharing based system is referred
to as the FORTRAN Time Sharing System. The time sharing based FORTRAN compiler
compiles under the time sharing system (rather than being spawned as in the case
of the batch based time sharing compiler) and differs from the batch based time
sharing compiler in the following areas.

1. Compiles under the GCOS Time Sharing System.
2. Eliminates the need for configuring batch memory; YFORTRAN compiles

through DRL TASK. (Refer to the TSS System Programmer1s Reference
Manual.)

9/76 3-3 DD02B

3. Retains essentially the current RUN syntax with modifications as noted
in this section.

4. Interfaces with 4K time sharing loader module (YLDA).
5. Significant overhead reduction in FORTRAN time sharing system.
6. Blank common allocation is common to both time sharing and batch.
7. "CORE=" clause is not required for compiles.
8. Compilers are identical except for the executive phase (YEXC vs YTEX).

The only user differences, other than those noted above, are the I/O device
assignments for the system output and input files, the presence of necessary
user GCOS communication via control cards or command language, and the assumed
compiler options for the compilation process.

Time Sharing System Command Language

The standard means of communication with the GCOS Time Sharing System
(TSS) is by way of a terminal. The user may choose either the keyboard/printer
or paper-tape terminal unit for input/output, or combine both. In either case,
the information transmitted to and from the system is displayed on the
terminal-printer. Keyboard input is used for purposes of description;
instructions for the use of paper tape are given under "Paper Tape Input" in
this section.

The user "controls" the time sharing system primarily by means of a command
language, a language distinct from any of the specialized programming languages
that are recognized by the individual time sharing compilers/processors (e.g.,
the time sharing FORTRAN language). The command language is, for the most part,
the same for users of any component of the time sharing system; i.e., FORTRAN,
BASIC, Text Editor, etc. A few of the commands pertain to only one or another of
the component time sharing systems, but the majority of them are, in form and
meaning, common to all component systems.

The commands relate to the generation, modification, and disposition of
program and data files, and program compilation/execution requests. The complete
time sharing command language is described in TSS General Information manual.

Once communication with the system has been established, any question or
request from the system must be answered within ten minutes, except for the
initial requests for user identification (user-ID) and sign-on password, that
must be given within one minute. If these time limits are exceeded, the user’s
terminal is disconnected.

Time Sharing Commands of the YFORTRAN and FORTRAN Time Sharing Systems

The valid time sharing system commands are listed in Table 3-1. These
commands are fully described in the TSS General Information manual. The RUN
command for the YFORTRAN and FORTRAN Time Sharing Systems is more fully
described in this manual.

3-4 DD02

Table 3-1. YFORTRAN and FORTRAN Time Sharing System Commands

Command

ABC
ACCESS
AFT
ASCASC
ASCBCD
AUTOMATIC
BCDASC
BPRINT
BRUNCH
BYE
CATALOG
DELETE
DONE a
EDIT
ERASE
FDUMP
GET
HELP
HOLD
JABT
JOUT
JSTS
LENGTH
LIBa
LIST
NEWa
NEWUSER
NO PARITY
OLDa
PARITY
PERM
PRINT
PURGE
RECOVER

RECOVER
RELEASE
REMOVE
RESAVE
RESEQUENCE3
ROLLBACK
#ROLLBACK
RUNa
SAVE
SCAN
SEND
STATUS
SYSTEMa
TAPE

aNot an applicable response to SYSTEM?

Applicable
At

Build Mode

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes

3-5 DD02

Log-On Procedure

The user, to initiate communication with the Time Sharing System, performs
the following steps:

1. Activates the terminal unit.
2. Obtains a dial tone.

3. Dials one of the numbers of the time sharing center.

The user then receives either a high-pitched tone indicating that the
terminal has been connected to the computer or a busy signal. The busy signal
indicates that no free line is presently available.

Once the user’s terminal has been connected to the computer, the time
sharing system begins the log-on procedure after the user depresses the return
(’CR’) key by transmitting a message similar to the following:

HIS SERIES 60 ON(date)AT(time)CHANNEL(nnnn)

where time is given in hours and thousandths of hours (hh.hhh), and nnnn is the
user’s line number.

Following the message, the system asks for the user’s identification:

USER ID —

The user responds, on the same line, with the user identification (user-ID)
that has been assigned by the time sharing installation management. This
user-ID uniquely identifies a particular user already known to the system, for
the purposes of locating user programs and files and accounting for usage of the
time sharing resources allocated. An example request and response might be:

USER ID — J.P.JONES

NOTE: A carriage return must be given following any complete response,
command, or line of information typed by the user.

(The user’s response is underlined here for illustration.) After the user
responds with user-ID, the system asks for the sign-on password that was
assigned along with user-ID, as follows:

PASSWORD
XKKBEK8HXXKK

9/76 3-6 DD02B

The user types the password directly on the "strikeover" mask provided
below the request PASSWORD. The password is used by the system as a check on the
legitimacy of the named user. The "strikeover" mask insures that the password,
when typed, cannot be read by another person. (In the event that either the
user-ID or password is twice given incorrectly, the user’s terminal is
immediately disconnected from the system.) At this point, if the accumulated
charges for the user’s past time sharing usage equals or slightly exceeds 100
per cent of current resource allocation, the user receives a warning message. If
accumulated charges exceeds 110 per cent of current resources, the user receives
the message:

RESOURCES EXHAUSTED - CANNOT ACCEPT YOU

and the terminal is immediately disconnected. (The user may also receive the
following information message if the situation warrants it:

n BLOCKS FILE SPACE AVAILABLE

This condition does not affect the log-on procedure.)

Assuming that the user has responded with a legitimate user-ID and password
and has not over extended resources, the time sharing system then asks the user
to select the processing system that the user wants to work with; this is called
the system-selection request. In this case, the user would respond with YFORTRAN
or FORTRAN (can be abbreviated to YFORT or FORT):

SYSTEM ? YFORTRAN or FORTRAN

The user is then asked whether a new program (NEW) is to be entered
the user wants to retrieve and work with a previously entered and saved
(OLD); the request message is:

or if
program

OLD OR NEW -

If the user wishes to
the response is simply:

start a new program (i.e., build a new source file) ,

NEW

If, on the other hand,
the response is:

the user wants to recall an old source-program file,

OLD filename

where filename is the name of the file on which the old program was saved during
a previous session at the terminal (see the SAVE command).

Following either response, the system types the message READY, returns the
carriage, and prints an asterisk in the first character position of the next
line:

READY*

3-7 DD0 2

An example of a complete log-on procedure, up to the point where the
YFORTRAN or FORTRAN system is ready to accept program input or control commands,
might be as follows:

HIS SERIES 60 ON 07/26/74 AT 17.768 CHANNEL 0012

USER ID - J.P.JONES
PASSWORD
XKKNKKKHXXKE - (user's password is typed
SYSTEM-YFORTRAN or FORTRAN
OLD OR NEW - NEW - (NEW is shown arbitrarily
READY
* - (the user begins entering

over the mask)
for illustration)
input on this line)

Entering Program-Statement Input

After the message:

READY

the system is in build-mode (as indicated by the initial asterisk) and is ready
to accept FORTRAN program-statement input or control commands. All lines of
input other than control commands are accumulated on the user’s current file.
Normally the current file is the file that contains the program the user wants
to compile and run at this session. If the user is building a new file (NEW
response to OLD OR NEW—), the current file is initially empty. If an old file
(OLD filename) is recalled the content of the named old file is initially on
current file, and any input typed by the user — excepting control commands
will be either added to, merged into, or will replace lines in the current file,
depending upon the relative line numbering of the lines in the file and the new
input. (This process is explained under the heading "Correcting or Modifying a
Program," below.)

Following each line of noncommand-language input and
carriage response, the system supplies another initial asterisk
it is ready to accept more input.

the terminating
indicating that

Format of Program-Statement Input

A line of FORTRAN input — as distinct from a control command — can
contain one of the following:

1. One or more FORTRAN statements.
2. A partial statement.
3. A continuation of a statement left incomplete in the preceding line of

input.
4. A comment.
5. A combination of (3) and (1) or (2) , in that order.
6. A combination of (1) and (2).

3-8 DD02

A line of input may begin with a line-sequence number of from one to eight
numeric characters. The line-sequence number facilitates correction and
modification of the source program (described below); hereinafter, the
line-sequence number will be referred to simply as the "line number". (Note that
a line number is distinct from a statement number; a statement number is a part
of the FORTRAN language statement itself.)

The line number is always terminated with (i.e., immediately followed by) a
single control character that can be a blank, an ampersand, a number sign, an
asterisk, or the letter C. The control character merely serves to indicate what
type information is to follow (new statement, continuation, or comment) and is
not compiled as part of the program.

The semicolon can be used to indicate the end of one complete FORTRAN
statement and the beginning of another on the same line of input. A carriage
return must, of course, be used to terminate a complete line of input.

This line format is suitable for direct processing by the FORTRAN compiler
with the options NFORM and LNO.

The general format of a line of FORTRAN input is then as follows:

nnnnnnnncstatement or continuation ;statement...;statement
or

nnnnnnnnc comment

where: nnn...n

c

is a numeric line number, the magnitude of which is less
than 218 (262,144), and

is a single-character control character that can be a
blank, an ampersand, an asterisk, a number sign, or the
letter C, and must immediately follow the last digit of
the line number.

SIGNIFICANCE OF THE CONTROL CHARACTER

The control character identifies the type of information that follows it.

]6 (blank)

& (ampersand)

- If the character position immediately following the last
digit of the line number contains a blank, and the next
nonblank character is not an ampersand, then the next
nonblank character is assumed to begin a new FORTRAN
statement. In this case, the next nonblank character may
begin a FORTRAN statement number (i.e., mm...m
statement-text).

- If an ampersand is the first nonblank character following
the line number, the next significant character is
assumed to be a continuation of the previous statement in
the previous line of input. (A blank character is
significant only as a continuation of a character string
from a preceding line.) The effect of is to suppress
the previous carriage return as an end-of-statement
indicator.

9/76 3-9 DD02B

* (asterisk) or C - If the line number is terminated with an asterisk or
the letter C, the information following is assumed to
be a comment. The comment itself is terminated by a
carriage return.

(number sign) - If a numeric character is desired in column 1 of the
card image and line numbers exist in the source file, a
number sign (#) character immediately following the
line number causes the character following it to be
placed into column 1.

A semicolon within a noncomment line indicates both the end of the
preceding statement and that any significant information (nonblank, noncarriage
return) following it begins a new statement. The new statement can include a
FORTRAN statement number, mm...m.

The format of a statement, as entered following a blank control character,
is :

. . . nn# mm. . ,m FORTRAN-language text

(The statement-format portion is underlined.)

where : /. . .]6 are optional blanks, and
is an optional numeric statement number that must be equal
to or less than 99999

mm...m

BLANKS (OR SPACING) WITHIN A LINE OF INPUT

Initial, embedded, or trailing blanks in a line of input have no
significance in its interpretation, except that blanks are illegal within the
line number and that the nonnumeric character (including Y>) immediately
following the line number is interpreted as a control character. Thus, spacing
can be used quite freely within a line of input in the interest of legibility.
(Blanks within character constants and nH fields — i.e., alphanumeric
information — are meaningful however, and are retained in the object program
coding.)

Note that the line/statement format is, except for the relative position of
the control character, completely free-form, or position independent.

To this point, the discussion of line format has been oriented to the NFORM
form described earlier in this discussion. This is generally the most
convenient form to use in time sharing. It is not mandatory, however. The
source file can be built using the Text Editor and be without line numbers. The
NLNO option permits this. Or, the source can be in "fixed" format (without line
numbers). The FORM option can be used to indicate this. The full spectrum of
line formats and source file recording modes is available to the time sharing
user.

9/76 3-10 DD02B

Correcting or Modifying a Program

Keyboard input is sent to the computer and written onto the user's current
file in units of complete lines. A line of terminal input is terminated by a
carriage return and no part of the line is transmitted to the system until that
carriage return is given. Therefore, corrections or modifications can be done at
the terminal at two distinct levels:

1. Correction of a line-in-progress (i.e., a partial line not yet
terminated).

2. Correction or modification of the program (i.e., the contents of the
user's current source file) by the replacement or deletion of lines
contained therein, or the insertion of new lines.

The correction of a typing error that is detected by the user before the
line is terminated can be done in one of two ways; delete one or more characters
from the end of the partial line or cancel the incomplete line and start over.
Use of the delete control character deletes from the line the character
preceding the deletion character; use of n consecutive deletion characters
deletes the n preceding characters (including blanks). Delete control characters
differ between makes of terminals.

Correction or modification of the
of line numbers and proceeds according

current source file is done on the
to the following rules:

basis

1. Replacement. A numbered line replaces any identically numbered lire
that was previously typed or contained on the current file (i.e., the
last entered line numbered nnn will be the only line numbered nnn in
the file).

2. Deletion. A "line" consisting of only a line number (i.e.,
the deletion of any identically numbered line that was
typed or contained on the current file.

nnn) causes
previously

3. Insertion. A line with a line-number value that falls between the
line-number values of two pre-existing lines is inserted in the file
between those two lines. If the line number is less than the first
line number it is inserted at the beginning of the file; if greater
than the largest line number, it is inserted at the end of the file.

3-11 DD02

At any point in the process of entering program statement input, the LIST
command can be given, which results in an up-to-date copy of the current file
being printed. In this way, the results of any previous corrections or
modifications can be verified visually. Following the response (or command) OLD
filename, the LIST command can be used initially to inspect the contents of the
current source file (i.e., the "old" program).

Input Error Recovery

The decimal input/output routine permits the time sharing user (BCD or
ASCII) to correct a string of characters entered from a terminal when a
character is illegal for the current format conversion. For example: a decimal
point is illegal in an "I" field. The current input line is printed on the
terminal with a pointer to the illegal character. The user can now enter a
correction to replace the corresponding characters previously entered. The
input/output routine resumes with the new string. If the user responds with a
carriage return, an error message is printed.

Time Sharing System Definitions and File Specification

An explanation of time sharing terms and file specification is given in
Appendix D.

The YFORTRAN Time Sharing System RUN Command

The YFORTRAN time sharing RUN command can be written as either RUN or RUNH.
The RUNH form is used to display a heading line on the terminal giving date,
time, and SNUMB. Any of the seven following options can be specified with the
RUN (or RUNH) command:

-nnn fs = fh ;fc (opt) ulib #fe

If any of the options fh, ;fc,
used, the equal sign (=) must
options are described below:

or (opt) of the RUN or RUNH command are
be included in the string. The RUN command

-nnn nnn is the maximum processor time the program is to be allowed for
execution (in seconds).
is the set of file descriptors (separated by semicolons) for source
files in the standard BCD card image format, in compressed card
image format (COMDK), or in time sharing ASCII standard system
format and/or descriptors for binary card image object files.
These files serve as inputs to the compiler and/or loader. Where a
BCD or COMDK source file is supplied, fs can also include a
descriptor for an alter file in BCD format. The alter file must
begin with a $ UPDATE card and must be in alter number sequence.
If there are many BCD or COMDK source files in the list, the alter
file updates the first. Alternatively, the list fs can consist of
a single file descriptor that points to a previously generated
system loadable (H*) file. Concatenation of source files is
provided by using a separate semicolon between each file
descriptor.

A file descriptor consisting
the current file (*SRC). The
missing, indicates that only
compiled.

of the single character * indicates
fs list is optional and, when
the current file (*SRC) is to be

9/76 3-12 DD02B

fh is a single file descriptor of a random file into which the system
loadable file (H*) produced by the General Loader is saved if the
compilation is successful. This file is written if no fatal errors
occur during compilation. If the named file does not exist, a
permanent random file of 36 blocks (llinks) is created and added to
the user's catalog. If the field is missing, the H* file is
generated into a temporary file. The presence of this option is
valid only when the program indicated by the list fs, the FORTRAN
library, and the user library (if any) is bindable (no outstanding
SYMREFs). If the General Loader indicates that outstanding SYMREFs
exist, an executable H* file is created, but any reference to an
unsatisfied SYMREF causes the program to be abnormally terminated.
(The General Loader inserts a MME GEBORT at references to
unsatisfied SYMREFs. When a MME is encountered during the
execution of a time sharing subsystem, GOOS and the Time Sharing
Executive simulate an illegal operation fault.)

;fc is a single file descriptor (preceded by a semicolon) of a
sequential file into which the compiler is to place the binary (C*)
result of any indicated compilation(s)• One object module is
written to this file for each source program in the file(s) given
by fs. If the named file does not exist, a permanent linked file
of three blocks is created and added to the user’s catalog. This
file expands as necessary to hold the object decks. In this case,
the field fs plus the libraries need not indicate a complete
program (individual or collections of subroutines can be compiled
and saved). When this optional field is missing, a C* file is not
generated. When present, the DECK option is activated for the
compilation process.

(opt) is a list of options which, when specified, must be separated by
commas. Some of these options affect the compilation process and
some affect the loading process. The following options are
available for time sharing; the default options are underlined.
DEBUG - Generate run time debug symbol table.

NOTE: This debug symbol table is used for debugging in the batch
mode only. Refer to the General Loader manual for use of
the debug feature and the debug symbol table.

NDEBUG - No run time debug symbol table is generated.
BCD - Object character set is BCD. If applicable, this option

must be specified whenever General Loader is to be called.
This is required for compile, compile and load, and load
activities; it is not required for execute only runs (run
H* 'file).

ASCII - Object character set is ASCII.
FORM - Source is in "fixed" format (LNO option is not valid with

FORM).
NFORM - Source is in "free" format.
LNO - Source is line numbered (default option if FORM is not

specified).
NLNO - Source is not line numbered (default option if FORM is

specified).
OPTZ - Optimize the object module.
NOPTZ - Do not optimize the object module.

9/76 3-13 DD02B

NWARN - Do not print any compilation warning messages
CORE=nn - The compilation activity memory requirement is set to

nnK+6K or 26K, whichever is larger. If not specified, nn
is set to 20.

- Enables the FORTRAN Debugging SystemFDS (FDS). See Appendix

The remaining options concern the loading process. The underlined option
is the default (i.e., assumed) case:

GO - The program is executed at the completion of compilation.
NOGO - The program is not executed at the completion of the

compilation. If specified, the object program is saved. If
no object (H*) save file is specified, only the compilation
is performed (General Loader is not called).

ULIB - File descriptors exist following the end of the options
field that allocate user libraries to be searched for
missing routines prior to searching for them in the system
library.

NOLIB - No user libraries are to be used.
TIME=nnn- The batch compilation and/or General Loader activity time

limits are set to nnn seconds; where nnn < 180. If not
specified, nnn is set to 60.

URGC=nn - The urgency for the batch compilation and/or General Loader
activity is set to nn, where nn < 40. If not specified, nn
is set to 40.

TEST - A test version of the compiler is to be used for the
activity. There must be an accessed file (in the AFT) with
the name FORTRANY. If these two conditions are met, then
file FORTRANY is allocated as file code ** in the activity.

REMO - All temporary files are removed from the AFT as they are no
longer needed. This option keeps the number of files in the
AFT down to a minimum but causes more time to be spent
processing each RUN command.

NAME=name-Provides a name for the main link of the saved H* file. Can
be used both at time of creation of this file and
subsequently as it is reused. This name is placed in the
SAVE/field of the $ OPTION card.

ulib A list of file descriptors (separated by semicolons)
pointing to random files containing user libraries to be
searched before the system library. This list must be
provided by the user when the ULIB option is specified.

#fe A list of file descriptors (the first preceded by a number
sign) for files required during execution. Each
catalog/file description is separated by a semicolon (see
Time Sharing Command Language and File Usage in the TSS
General Information manual). The file description can be in
any of the following formats:
1. filename specifying a filename in the form nn where 01

< nn < 43 and nn represents a logical file code
referenced by the I/O statements in the program.

9/76 3-14 DD02B

2. filedescr specifying a full description.
a. filename
b. filename$password
c• userid/catalog$password...

9/76 3-14.1 DD02B

The FORTRAN Time Sharing System RUN Command

The FORTRAN time sharing RUN command can be written as either RUN or RUNH.
The RUNH form is used to display a heading line on the terminal giving date and
time. Any of the seven following options can be specified with the RUN (or
RUNH) command:

-nnn fs = fh ;fc (opt) ulib #fe

If any of the options fh, ;fc, or (opt) of the RUN or RUNH command are
used, the equal sign (=) must be included in the string. The RUN command
options are described below:

-nnn

f s

is the maximum processor time the compiled object program is to be
allowed for execution (in seconds).

is the set of semicolon-separated file descriptors for source files
in the time sharing ASCII standard system format, in the standard
BCD format, in COMDK form, and/or descriptors for binary card image
object files. These files serve as inputs to the compiler and/or
time sharing loader. When a BCD or COMDK source file is supplied,
fs may also include a descriptor for an alter file in BCD format.
The $ ALTER file must begin with a $ UPDATE card and must be in
alter number sequence. If there is more than one BCD or COMDK
source file in the list, the alter file updates the first. The
list fs can also consist of a single file descriptor that points to
a previously generated system loadable (H*) file. Concatenation of
source files is provided by using a separate semicolon between each
file descriptor.

fh

A file descriptor consisting of the single character * indicates
the current file (*SRC). The fs list is optional and, when
missing, indicates that only the current file (*SRC) is to be
compiled.
is a single file descriptor of a random file into which the system
loadable file (H*) produced by the time sharing loader is saved if
the compilation is successful. If the named file does not exist, a
permanent (quick access) random file of 36 llinks is created and
added to the users’ catalog. If the field is missing, no temporary
H* file is created; instead, the time sharing loader creates a
complete bound memory-image of the object execution program,
"releases" itself via DRL RELMEM, and enters the execution
directly.
If the time sharing loader indicates that outstanding SYMREFs
exist, any reference to them during object program execution causes
abnormal termination via a DRL ABORT.

;fc is a single file descriptor (preceded by a semicolon) of a
sequential file into which the compiler is to place the binary
object (C*) result of any indicated compilation(s). One object
module is written to this file for each source program in the
file(s) given by fs.
If the named file does not exist, a quick access permanent file of
three llinks is created. This file expands as necessary up to a
maximum of 20 llinks to hold the object deck(s). When C* is
specified, a compiler temporary file (*1 scratch) file of 48 llinks
is defined and its name is placed into the AFT.

(opt) is a list of comma-separated compiler/loader options available in
the time sharing based FORTRAN system. Those options available
with the YFORTRAN RUN command but not specified here are not
currently used with the FORTRAN RUN command. They are ignored if
specified. Default options are underlined.

9/76 3-15 DD02B

specified).

BCD ■ The internal character set for object program execution is
BCD. If applicable, this option must be specified whenever
the time sharing loader is called. This is required for
compile, compile and load, and load activities; it is not
required (or interpreted) for execute only runs (from H*
save file). The user should not load object deck files
compiled under different options; i.e., one under BCD and
another under ASCII, since execution results would be
unpredictable.

ASCII -- Internal character set for the object program execution is
ASCII.

FORM -- Source is in "fixed" format (LNO is not valid with FORM).

NFORM -- Source is in "free" format.

LNO - Source is line numbered (default option if FORM is not

NWARN - Do not print any compilation warning messages.

NLNO -- Source is not line numbered (default option if FORM is
specified).

OPTZ -- Optimizer phase is called.

NOPTZ -- Optimizer phase is not called.

FDS - Enables the FORTRAN Debugging System (FDS). See Appendix
F.

The following remaining options concern the loading process:

GO - The program is executed at the successful completion of the
compile-load process.

NOGO - The program is not executed at the completion of the
compilation. If specified, the object program is saved.
If no object (H*) save file is specified, only the
compilation is performed.

ULIB - File descriptors exist following the end of the options
field that allocate user libraries to be searched for
missing routines prior to searching for them in the system
library. Up to nine user library files can be specified,
separated by semicolons.

NOLIB - No user libraries are searched. Specification of user
libraries in this case causes a RUN diagnostic.

CORE = nn where nn is additional memory (mod 1024) to be added to
the standard time sharing loader allocation of 25K. This
should be done if the message "<F> PROGRAM EXCEEDS STORE
SIZE" appears. The compiler attempts to estimate the space
requirements for the load process by accumulating the size
of the generated memory, .DATA. region, labeled common and
blank common for each subprogram compiled; then adding a
constant (11K for the standard library) to this to arrive
at the size of a load space requirement. If the message
’NOT ENOUGH CORE TO RUN JOB’ appears, TSS allocation is too
small to compile/load this program.

9/76 3-16 DD02B

ulib - A list of file descriptors (separated by semicolons) pointing to
file(s) containing subprograms that have SYMDEF symbols that
satisfy the undefined SYMREFs in the load table. The list must be
provided by the user when the ULIB option is specified. The user
library or libraries are searched in the order they are encountered
and before the system subroutine library. Each user library must
be created as a random permanent file by using the batch procedures
UTILITY, RANLIB, and the Object File Editor.

9/76 3-16.1 DD02B

#fe - A list of file descriptors (the first preceded by a number sign)
for files required during execution. Each catalog/file description
is separated by a semicolon (see Time Sharing Command Language and
File Usage in the TSS General Information manual). The file
description can be in any of the following formats:

filename specifying a filename in the form nn where 01< nn <43
and nn represents a logical file code referenced by the I/O
statements in the program.

2. filedescr specifying a full description.

a. filename
b. filename$password
c• userid/catalog$password ...

Example:

1. Create a random file to contain the user’s library with the ACCESS
subsystem. ACCESS CF,/ULIB1,B/50,50/,R,MODE/R/

2. Deck setup for creating and saving a user library file (through CARDIN
or batch).
1_ 8 16

$ IDENT
$ USERID UMC$PASSWD

A$ FILEDIT NOSOURCE,OBJECT,INITIALIZE
$ FILE R*,F1S,1OL
$ DATA *C,,COPY
$ SELECTD UMC/OBJDECK1
$ SELECTD UMC/OBJDECK2
$ SELECTD UMC/OBJDECK3
$ ENDEDIT
$ ENDCOPY

A$ PROGRAM RANLIB
$ PRMFL A4,W,R,UMC/UL1B1
$ FILE R*,F1R,1OL
$ ENDJOB

Information Common to the FORTRAN and YFORTRAN Time Sharing Systems

Descriptions of compiler diagnostics are included in Appendix B.

For files required during execution the user will, most commonly, apply an
alternate name specified in the following format.

filedescr "altname" where altname = nn; attaching the logical file code nn
to the specified file.

9/76 3-17 DD02B

File codes 05, 06, 41, 42, and 43 are implicitly
directed I/O and need not be mentioned in the RUN command
directed to a file. Other logical file codes can be
specifying a descriptor of the form "nn". For example:

defined for terminal
unless I/O is to be
terminal-directed by

RUN#"IO"

If a given file descriptor consists of only an unquoted 2-digit logical
file code, a temporary file is created for the user unless a quick-access
permanent file with the same name already exists. The PERM command can
subsequently be used to make the temporary file permanent. Alternatively, such
temporary files can be made permanent at the time the user logs off. For
example:

RUN PROGRAM#10

If no file exists in the user's catalog with the name 10, a linked
temporary file is created with that name and I/O directed to the logical file
code 10 is routed to the temporary file.

The fe list of the RUN command serves two additional functions: creation of
a file control block and association of the logical file code with some specific
file or the terminal. When this association involves a catalog file descriptor,
that file is accessed (or created if so indicated) and added to the user's
available file table (AFT). The file is then said to be allocated to the
process. This is analogous to the allocation by the $ PRMFL and $ FILE control
cards in a batch operation.

When a file is first referenced by an executing program, a general file
"open" function is invoked. At this time, the file control block comes into
play. There are three possibilities.

1. There is no file control block for the referenced file.
2. The file control block indicates that the terminal is to be used.
3. The file control block indicates that a file is to be used.

If there is no file control block, one is automatically generated
indicating that a file is to be used. When the file control block indicates that
the terminal is to be used, the device attachment is completed and I/O proceeds.
When the file control block indicates that a file is to be used (cases 1 and 3),
the AFT is searched. If a match is found (some allocated file has a 2-digit file
code/name equivalent to the file description in the I/O statement), attachment
is made to that file and I/O proceeds. If no match is found (there has been no
file allocation for the current file designator), a comment is displayed on the
terminal identifying the undefined file designator as follows:

FILE XX NOT IN AFT. ACCESS CALLED

XX is the 2-digit file designator being referenced by the running program.
At this point, the ACCESS subsystem is called (as indicated by the above
message) and the following is displayed (by ACCESS):

FUNCTION?

3-18 DD02

Commands can now be given to ACCESS. When the dialogue is finished, ACCESS
returns to the user’s program. The "open” routine then makes a fresh search of
the AFT. If a match is now found (indicating the user accessed some file),
attachment is made to that file and I/O proceeds. If a match is not found, the
file control block is changed to indicate attachment to the terminal and I/O
proceeds. For example, consider that PROGRAM contains I/O statements with a file
designator of 10 and the following dialogue has transpired:

SYSTEM? YFORTRAN or FORTRAN
OLD OR NEW — OLD PROGRAM
READY
*RUN
FILE 10 NOT IN AFT. ACCESS CALLED
FUNCTION?

If the user responds with a carriage return, the terminal is used for file
10. If the user responds:

AF,/MYFILE"10",R,W
the ACCESS subsystem accesses the file MYFILE of the user’s master catalog under1
the alternate name 10 with read and write permissions. ACCESS then repeats the
query "FUNCTION?". If the user now responds with a carriage return, I/O for file
10 is directed to MYFILE.

One additional option exists for the purpose of collecting the results of a
compiler abort. If at the time the RUN command is issued there exists a file in
the AFT of name ABRT, that file is allocated to the compilation activity as file
code *F. In the event of a compiler abort, a memory dump and symbolic display of
the internal tables is written to this file in a form suitable for printing.

Specify RUN Command as First Line of Source File

A user can include the RUN command as the first line
file subject to the following restrictions:

or lines of his source

This feature is available on time sharing ASCII files only.
2. The line can be in the current file (*SRC) or a referenced perm-file;

however, it must begin with the first line of the first source file.
3. The first two characters following the line number must be *#;

intervening blanks are not permitted.

4. Multiple *# lines can appear in a source file, provided the total
number of characters does not exceed 480 (six 80-character lines).

5. The lines must conform with the RUN syntax continuation; i.e., each
line, except the last, must be terminated by a field separating
delimiter such as the following: equal sign, left parenthesis, right
parenthesis, comma, or pound sign.

6. The line(s) are
7. The user can

indicating save

treated as comment line(s) by the FORTRAN compiler.
override the first-line contained RUN command by
files, options, or concatenation on his RUN type-in.

3-19 DD02

The following example illustrates this capability.

*SYSTEM? YFORTRAN or FORTRAN
OLD OR NEW? NEW
010#RUN *(20,30)=HSTAR(BCD,NOGO)
*020 PRINT, ’’ HELLO DOLLY ..."
*030 STOP; END
*RUN (Invokes first line syntax)

TSS Run Examples

1. RUN
The current *SRC FORTRAN source file is compiled and executed.

2. RUNH-20 FR001=HSTAR; CSTAR1 (ULIB) ABC; XYZ #
INPUT "01" ; OUTPUT "02"
FORTRAN program file FR001 is to be compiled and executed. The H* is
saved on file HSTAR and C* on file CSTAR1. For the execution, the
random user libraries ABC and XYZ are scanned for outstanding SYMREFs
in FR001. Logical file codes 01 and 02 have been used as alternate
names for the quick-access permanent files INPUT and OUTPUT. A
heading line for date and time is displayed and the object program is
limited to 20 seconds of execution time.

3. RUN #"10"
The current *SRC file is compiled and executed and I/O through logical
file code 10 is directed to/from the terminal.

4. RUN BCDIOM = ; CSTAR2 (BCD,NOGO)
FORTRAN file BCDIOM is compiled and the object deck is saved on file
CSTAR2. The user intends to execute the object file in the BCD mode.

5. RUN HSTAR #02
Execute a previously bound and saved H* file. The quick-access file
"02" is accessed by the RUN subsystem. If no such file exists, a
temporary file is created.

6. RUN = HSTAR (TIME=60, CORE=22, ULIB) SEARCH
Compile and execute the current *SRC file, saving the bound H* file on
random file HSTAR. Limit the compile time to 60 seconds and increase
the memory limits. The random user library ’SEARCH1 is searched to
satisfy outstanding SYMREFs prior to searching the standard system
library.

7. RUNH * (10,190) ; SCRLIB(300,)
Compile and execute the program by concatenating the current file
lines 10 through 190 and file SCRLIB lines 300 through the last line
of the file.

8. RUN *; CSTAR1; CSTAR2

Compile and execute the current *SRC file and bind it with two
previously saved C* files: CSTAR1 and CSTAR2.

9/76 3-20 DD02B

Additional examples are given in Section V under "File Designation" and in
Time Sharing Applications Library Guidef Volume III Industry manual.

Batch Activity Spawned by the YFORTRAN Time Sharing System RUN Command

As an example of the simplest case, consider that some source file is
current in *SRC, and a RUN command is typed with none of the optional fields. A
job setup comparable to the following is dispatched to the batch system.

$ SNUMB nnnnT,40
$ USERID
$ IDENT
$ LOWLOAD
$ USE •GRBG./36/
$ OPTION NOFCB,FORTRAN
$ OPTION NOGO,NOSREF,NOMAP,SAVE/OBJECT
$ USE .GTLIT,.TSGF. ,.FTSU.,.FXEMA

A$ FORTY NLSTIN,NFORM,ASCII
$ LIMITS 2,26K
$ FILE S*,X1R (source file *SRC)
$ FILE P*,X2S (diagnostic report only)

A$ EXECUTE
$ FILE P*,X2R
$ FILE H*,X3R,3R (bound program)
$ ENDJOB

The results of compilation and loading are returned on files P* and H*. P*
is read and scanned for compiler and/or loader diagnostics. These are displayed
on the terminal and if there have been no fatal errors, the fully bound program
is loaded from H* and execution proceeds.

Batch Activity to Build Time Sharing H* File

The following example
sharing H* file in batch.

program illustrates a method of building a time

$ SNUMB
$ IDENT
$ LOWLOAD
$ LIBRARY DC, JT
$ USE .GRBG./36/
$ OPTION NOFCB,NOGO,SAVE/OBJECT
$ USE .GTLIT,.TSGF.,.FTSU.,.FXEMA

A$ FORTY NFORM,NLND,ASCII,NWARN
$ SELECTA RDCNET/SSTAR

A$ EXECUTE DUMP
$ PRMFL JT,R,R,FY/F8LIB
$ PRMFL DC,R,R,FY/ULIB
$ PRMFL H*,R/W,R,FY/HSTAR
$ ENDJOB

NOTE: The inclusion of the $ USE .GRBG./36/ control card in this example
causes the first 36 words in the blank common storage area to be
lost.

9/76 3-21 DD02B

Time Sharing System RUNL Command for Link/Overlay

A special form of the RUN command, RUNL, permits link/overlay H* files to
be constructed. When a bound object program is too large for execution under
time sharing, segmentation using the RUNL command offers an alternative.

Before the RUNL command can be used, a separate RUN command with, the NOGO
option must have been specified to create each of the C* files that will be use
in the RUNL command.

The RUNL command has the form:
RUNL C*file list = H*file (options) £ulib files^j ; link list

The command is RUNL or RUNLH. The latter form displays heading with date
and time (and SNUMB if YFORTRAN).

C* file list - The set of file descriptors for the binary object image
files for the nonoverlayed main program link.

H* file

options:
ULIB

CORE = nn

— a single file descriptor of a random file into which the
system loadable file produced by the loader is saved if the
load process is successful. If the named file does not
exist, a file of 216 llinks (random temporary) is created.

- File descriptors exist following the end of the options
field that locate user libraries to be searched prior to
searching the system library. The load process for each
link involves searching the same set of user libraries
first.

- The YFORTRAN memory requirements are set to nn+6K or 26K,
whichever is larger. If not specified, nn is set to 20.
The FORTRAN link loader memory requirement is nnK if < 23K
or nnK if nn > 23.

NAME = name

MAP

GO

- Provides a name for the main link of the saved H* file;
when not provided, the name "//////" is used.

- If the user has previously defined a file with the name
PSTR, a load map of the link/overlay save file is written to
that file. Otherwise, a temporary file is created by that
name and the output is written to that file. This feature
is currently available only under the YFORTRAN system.

- Allows a user to enter execution directly from the RUNL
command; the default is NOGO. The user must provide for run
time file definition and dynamic attaching through "CALL
ATTACH", etc. If it is necessary to specify through RUN the
necessary object time files, the user must explicitly use
the RUN syntax after creating the link/overlay H* file. For
example,
RUN HSTAR#INPUT"01";OUTPUT"02"

9/76 3-22 DD02B

link list - A sequence of link phrases wherein each link phrase is used to
specify the position at which segmentation is to take place.
When the link phrase is encountered in the RUNL command, all
object deck files for the link being terminated have been
copied to the loader input file R*. The link phrase is parsed,
resulting in the generation of a $ LINK card image and possibly
a $ ENTRY card image being written to R*. The link phrase has
the following formats:

LINK(name1,name2) C*file list for namel
LINK(namel,name2,entry) C*file list for namel
LINK(namel,,entry) C*file list for namel
Namel (a five- or six-character constant or variable) is a
unique identifier for the new link; name2f if present, is the
identifier of previously loaded link to be overlayed. The new
link assumes the origin of the old link. All links to be
overlayed are written in system loadable format. Entry, if
specified, is the name of the desired primary or secondary
SYMDEF entry point of a subprogram in the current link.

Subprograms contained in any other link can always reference
subprograms in the main link. Only cross-references between
subprograms in links that reside in memory at the same time can
reference each other. For example, if link B is loaded as an
overlay of link A (LINK (B,A)), the subprograms of link B
cannot reference subprograms of link A.

Notes on Use of RUNL Command

1. To ascertain the size required to allocate to a permanent H* save
file, create a temporary file by means of RUNL. Then use the LENGTH
command to display "used" number of llinks. This number can be used
as a current size on the permanent H* save file creation. A temporary
H* file created by RUNL has a size of 216 llinks.

2. The "PSTR" load map generated by the General Loader can be sent to a
remote station or central site printer, provided it is a permanent
file. For example:
PERM PSTR;PS Make file permanent if temp used
SCAN PS
FORM? LOAD Print number of errors
000 ERRORS
EDIT? YES For multiple-blank suppression
?BATCH
STATION CODE Reply XX or carriage return

XX - remote station code
carriage return - central site printer

$ IDENT Input batch $ IDENT card
Alternatively, a BMC run in batch can print the file.

3. A temporary H* save file cannot be command-loaded; use the LODT
command (not LODX). The YFORTRAN or FORTRAN RUN command should be
used, since run time files can then be specified.

4. The name of the main link is //////, unless NAME=name is used as an
option. The user must specify the name when loading the H* save file.

9/76 3-23 DD02B

Creating a multiple-line embedded RUNL command is the best way to
deal with a long, complex command. For example:
1*#RUNLH MAIN; SUB1?SUB2=HSTAR (ULIB,MAP)
2*#FY/SDL7LIB,R;
3*#LINK (A)SUB3;SUB4;
4*#LINK (B,A,ENTRY5)SUB5;SUB6;
5*#LINK (C,B)SUB7;SUB8
Observe rules for line termination.
After the loader builds the H* save file containing the links
necessary to
program function,
library l
callable from the
transfer control
SYMDEF must be specified in
can be called to
in the program
follows:

to reload these links in the order required to achieve the
Reloading is done by means of a time sharing

routine (FTLK) that has two entries, LINK and LLINK. LINK is
FORTRAN source to load a particular link and
to a predesignated entry within that link. This

“ * L "entry" field of the link phrase. LLINK
load a particular link and return control to the part
at which LLINK has been called. The two calls are as

CALL LINK ("A ")
CALL LLINK ("B ")
The link names must be either five or six characters in length, blank
filled as needed.

7. When using FORTRAN random I/O, the CALL RANSIZ statement must be
placed in the main link. This assures proper file .wrapup by forcing
the random I/O subroutine FRRD to reside with the main link in memory
at all times.

Example of RUNL Inputs and Link H* Creation

Ten subroutines plus a main program are to be executed under time sharing.
The first overlay, link A, is to have three subroutines. The second. overlay,
link B, four subroutines, and the third overlay, link C, three subroutines.

1. Compile and save the C* object deck files (CSTAR) for each program.

RUN MAIN = ;CSTAR1(NOGO)
RUN SUBA;SUBB;SUBC =;CSTAR2(NOGO)
RUN SUBD;SUBE;SUBF;SUBG =;CSTAR3(NOGO)
RUN SUBH;SUBI;SUBJ =;CSTAR4(NOGO)

2. Create a link overlay H* file (HSTAR) using RUNL.
RUNL CSTAR1 = HSTAR(ULIB,MAP) ULIB1;
LINK(A) CSTAR2; LINK(B,A,ENTRYB)CSTAR3;LINK(C,B) CSTAR4

3. Load and execute the H* save file and specify run time input/output
files.

RUN HSTAR#INPUT"41";OUTPUT"13"

9/76 3-24 DD02B

Examples of use of LINK/LLINK
1. Compile and save C* object deck files for main program and two

subroutines.
010 PRINT,"MAIN EXECUTING"
020 CALL LLINK ("A ")
030 CALL SUBA
040 CALL LINK ("B ")
050 STOPjEND
RUN =;MAIN(NOGO)

010 SUBROUTINE SUBA
020 PRINT,"LINKA EXECUTING"
030 RETURN; END
RUN=; ALINK(NOGO)

010 SUBROUTINE SUBB
020 PRINT, "LINKB EXECUTING"
030 RETURN; END
RUN=;BLINK(NOGO)

2. Create a link overlay H* file using RUNL.
RUNL MAIN=HSTAR;LINK(A) ALINK;LINK(B,A,SUBB)BLINK

3. Load and execute H* file.
RUN HSTAR

Example of Loader Input File

The following control card setup would appear on R* for the example above
illustrating use of LINK/LLINK.

$ LOWLOAD
$ USE .GRGB./36/
$ USE •GTLIT,.TSGF.,.FTSU.,.FXEMA,.FTLK
$ OPTION NOMAP
$ OPTION NOGO
$ OBJECT
$ DKEND
$ LINK A
$ OBJECT SUBA
$ DKEND SUBA
$ LINK B,A
$ ENTRY SUBB
$ OBJECT SUBB
$ DKEND SUBB

A$ EXECUTE

Example of a Time Sharing Session

A comprehensive example of program creation, testing, correction and
modification follows. Replies to the user from the system are underlined; in
actual use, no underlining is done. Explanations are enclosed in parentheses;
they are not part of the printout.

9/76 3-25 DD02B

USER ID - J.P.JONES
PASSWORD—
KEEBEK&HXXKKX
SYSTEM?YFORTRAN or FORTRAN
0LD 0R NEW-NEW
READY
*AUT0X - (enter automatic-line-number mode)
^0010 READ,A,B,C
*0020 X1=A*B/C
*0030 X2=A**2;B**2
*0040 ANS=X2/X1
*0050 PRINT 1O,X1,X2, ASN@@@ANS (typing error correction)
*0060 10 F0RMAT(IX,"Xl=”,F6.S@2,”X2=”,F7.2,"ANS=",
*0070& F6.2)
*0000 ST0P
*0090 END
*0100 (end automatic mode by carriage return)
j^0030 X2=A**2+B**2-C (replacement of line 30)
^SAVE F0RTO1
DATA SAVED—F0RTO1
j^LIST (display corrected program)
0010 READ,A,B,C
0020 X1=A*B/C
0030 X2=A**2+B**2-C
0040 ANS=X2/X1
0050 PRINT 1O,X1,X2, ANS
0060 10 F0RMAT(IX,"Xl=",F6.2,"X2=",F7.2,"ANS=",
0070& F6.2)
0080 ST0P
0090 END

READY
j^RUN (run program)
= 3.2,10.5,2.2 (type input data)
Xl= 15.27X2= 118.29ANS= 7.75 (output - correct,

but poor format)

^0060 10 F0RMAT (IX, ,,X1=" ,F6.2,” X2=",F7.2," ANS=",
(correct format statement)

*RUN
= 3.2,10.5,2.2
XT= 15.27 X2= 118.29 ANS= 7.75 (improved output format)
j^RESAVE F0RTO1
DATA SAVED—F0RTO1 (corrected.version of program saved)
*BYE (finished)
t*RES0URCES USED $ 2.08, USED T0 DATE $ 263.85= 27%
**TIME SHARING 0FF AT 15.421 0N 10/10/74

Supplying Direct-Mode Program Input

During program execution, keyboard input may need
one or more READ statements in the program. Each time
equal-sign character, "=", is printed at the terminal,
the input immediately following the equal sign.

to be supplied to satisfy
input is required, the
The user begins typing

3-26 DD02

It is also possible to input data from a paper tape. The actual characters
transmitted to the terminal from a READ statement are: carriage return (CR),
line feed (LF), equal sign (=), and sign-on (X-ON). The sign-on character
activates the paper tape reader if the reader is in the ready state. A ready
state is achieved by having the paper tape "loaded" and the reader switch set
on. Paper tapes which are to be used in this way should end each line with the
characters: carriage return (CR)r line feed (LF), rubout (RO). The sign-off
character, X-OFF, turns off the reader but leaves it in a ready state for any
subsequent READS.

Terminal output from the PUNCH statement automatically appends this control
information to the end of each line, facilitating preparation of tapes. In any
event the user must manually begin such tapes with an appropriate leader of RO
characters.

Emergency Termination of Execution

The use of the BREAK key terminates program execution. The terminal buffer
is flushed. Control returns to the build-mode after the use of the break key.

Paper Tape Input

In order to supply build-mode input from paper tape, the user gives the
command TAPE. The system responds with READY. At this point, the user should
position the tape in the leader and start the device. Input is terminated when
either the end-of-tape occurs, the user turns off the reader, an X-OFF character
is read by the paper tape reader, or a jammed tape causes a delay of over one
second between the transmission of characters.

At present a maximum of 80 characters are permitted per line of paper tape
input. Excessive lines are truncated at 80 characters with the remaining data
placed in the next line. A maximum of two disk links (7680 words) of paper tape
input is collected during a single input procedure. All data in excess of two
disk links is lost.

REMOTE BATCH INTERFACE

Refer to the Network
Supervisor (G RT S) manua1s
submitting a batch job from

Processing Supervisor
for descriptions of

a remote computer.

(NPS) and Remote Terminal
deck setups required for

FILE SYSTEM INTERFACE

The file system provides multiprocessor access to a common data base. The
file system allocates permanent file space and controls file access for users in
local and remote batch and time sharing. The file system is fully described in
the File Management Supervisor manual.

3-27 DD02

TERMINAL/BATCH INTERFACE

The CARDIN time sharing subsystem allows the user to submit a batch job
from a time sharing terminal. This capability is fully described in the TSS
Terminal/Batch Interface Facility reference manual.

ASCII/BCD CONSIDERATIONS

FORTRAN enables the programmer to choose the character set that best meets
the needs of the application or that is most convenient for the normal mode of
execution.

Specification of BCD or ASCII is possible in both batch and time sharing.
In batch, the $ FORTY or $ FORTRAN card provides BCD by default. In time
sharing, the RUN command provides ASCII by default. The selection is made at
compile time and need not normally be designated for execute-only runs. One
exception exists, and that is when running in time sharing in the BCD mode,
where the run consists of object decks only (no compilations required; not
running a saved H*). In this case the BCD option must be given in the RUN
command.

When BCD is elected, internal character data and FORMATS are carried in
BCD; storage is allocated at a rate of six characters per word; and for I/O,
ENCODE, PAUSE, etc., library calls are made to the entry names which work with
BCD.

Similarly, when ASCII is elected, the object module will have all ASCII
properties. Character data and FORMATS are carried in ASCII; storage is
allocated at a rate of four characters per word; and, for I/O, ENCODE, PAUSE,
etc., library calls are made to the entry names which work with ASCII.

Therefore, one generally cannot mix object modules of contradicting
character sets. Conflicts arise over which routines are to be loaded from the
library, how to index through character arrays, how to analyze FORMAT
statements, etc.

BCD or ASCII internal programs execute in either batch or time sharing with
certain automatic convenience functions for dealing with the variety of file and
device types accessible to the program. In terms of specific problems, automatic
file transliteration and/or reformatting on a logical record basis is provided
for the following:

1. Execution of a BCD program under time sharing.
a. Input and output can be directed to the terminal.
b. Input files can be ASCII.

2. Execution of an ASCII program in the batch mode.

a. Input and output can be directed to the reader, printer, punch,
or SYSOUT.

b. Input files can be BCD (media 0, 2, or 3) or ASCII.

3. Execution of a BCD program in the batch mode. Input files can be
ASCII. ‘

3-28 DD02

4. Execution of an ASCII program under time sharing. Input files can be
ASCII or BCD (media 0, 2, or 3).

Use of the word "can" in the lists above implies an optional capability.
This capability capitalizes on the existence of a collection of alternate entry
names in the File and Record Control called from FORTRAN library modules.
Specification of this optional capability in batch is under programmer control.
The proper linkage is accomplished when the following control card is presented
to the General Loader:

$ USE .GTLIT
In YFORTRAN time sharing, the RUN command places the $ USE .GTLIT control

card on the R* file.

Files not requiring transliteration and/or reformatting are, of course,
acceptable as input. Output files are always recorded in the media code relative
to the internal character set of the executing program independent of the
batch/time sharing environment. BCD programs output files with media codes 0, 2,
3 only; ASCII programs output files with media code 6 only.

FILE FORMATS

All output files generated by FORTRAN, whether formatted or unformatted,
ASCII or BCD, sequential or random, generated in time sharing or batch, are in
standard system format (as described in the File and Record Control reference
manual) .

Files generated in time sharing in the build-mode or by the Text Editor can
be used directly as ASCII input data files for a FORTRAN object program. BCD
file output can be listed (using the SCAN subsystem) at either the user's
terminal or at a high speed line printer (BATCH verb of SCAN).

Random files can optionally be treated as nonstandard format. The file format
consists of fixed length records without record control words and block control
words. See Section V, "Unformatted Random File Input/Output Statements".

3-29 DD0 2

GLOBAL OPTIMIZATION

Global optimization gives the user some control over the balance between
compilation and object program efficiency. This analysis has been collected into
a single optional compiler phase that is elected by the OPTZ option on the
$ FORTY or $ FORTRAN control card or the FORTRAN or YFORTRAN Time Sharing System
RUN command. The analyses performed include:

1. Common Subexpression Analysis - This analysis provides a determination
of multiple occurrences of the same subexpression within a program
block. The goal is to perform a given computation only one time.

2. Expression Compute Point Analysi s - This analysis provides a
determination of the optimal place and time for the computation of
some expression in relation to the loop structure of the program and
the redefinition points of the expression’s constituent elements.

3. Induction Variable Expression Analysis - This analysis determines the
optimal computation sequence. Its intent is to reduce expressions to
simple operations upon an index register at the loop boundaries.

4. Loop Collapsing Analysis - This analysis attempts to reduce two or
more nested loops into a single loop.

5. Register Management Analysis - This analysis determines how registers
and temporary storage are to be allocated. Priorities are assigned
according to the number of references to an expression and the loop
level of these references. Candidates for global assignment over one
or more program loops are selected.
Induction Variable Materialization
the necessity for materializing in
index.

Analysis - This analysis determines
memory the current value of a DO

The use of global optimization does not always result in a faster running
program; furthermore, there are situations where the object code generated by
global optimization is not an exact functional equivalent of
no-global-optimization generated code using the same source. For example:

1. If a program contains multiple references to invariant expressions,
code for the evaluation of that expression follows the program
prologue. This placement could result in the unnecessary evaluation of
the expressions, if references were from statements conditionally
executed; i.e., the conditions can be such that the expressions are
not to be referenced. For example:

COMMON A,B,C, L1,L2,L3

1
2
3

4
5

6

IF(L1) 1,2,1
Z=A+B
Y=A+B
IF(L2) 3,4,3
Z2=(B+C)
Z3—(B+C)
IF(L3) 5,6,5
Y1=(A+C) + (A+C)**2
Y2=(A+C)
CONTINUE

3-30 DD02

Expressions (A+B), (B+C) and (A+C) have multiple references under
conditional code.

They are pre-calculated following the prologue. However, if Ll, L2 ,
and L3 were all zero, this evaluation will have been done
unnecessarily.

Another example demonstrates how results can actually be different
(OPTZ vs NOPTZ). Consider the following example where the programmer
is attempting to avoid a divide check fault.

FUNCTION FX(A,B)

10 IF(B) 1,2,1
1 FX=A/B+(A/B)**2+(A/B)**3

GO TO 3
2 FX=A+A**2+A**3
3 CONTINUE

END

The OPTZ generation sometimes produces a divide check when (A/B)
evaluated following the prologue; i.e., whenever B = 0.

This situation can be avoided in either of two ways.

a. The above example could be rewritten as:

FUNCTION FX(A,B)
10 IF(B.NE.O.)FX=A/B+(A/B)**2+(A/B)**3

IF(B.EQ.O)FX=A+A**2+A**3
CONTINUE
END

The optimization phase is ’’sensitive” to logical IF statements.
Expressions that are only referenced within the truth clause of a
logical IF statement are not removed from such a conditional
setting.

b. The following modification to the original example eliminates the
side effect.

FUNCTION FX(A,B)
10 IF(B) 1,2,1
1 Z=A/B

FX=Z+Z**2+Z**3
GO TO 3

2 FX=A+A**2+A**3
3 CONTINUE

END

3-31 DD0 2

2. Another situation results from using certain outdated library "flag"
routines. For example, if a program uses FLGEOF, FLGERR to set an
end-of-file or error flag, expressions involving these flag variables
may appear to the optimizer as invariant over some range of statements
when there actually may be a redefinition due to input/output. For
example:

INTEGER UNT
CALL FLGEOF(UNT,IF)
DO 100 1=1,N
READ(UNT)VI,V2
IF (IF.EQ.0)READ(UNT)V3,V4
IF (IF.EQ.0)READ(UNT)V5,V6

100 CONTINUE

Since the optimizer does not consider each of the READ statements as a
potential redefinition point for the variable IF, the expression
(IF.EQ.O) is removed from the DO 100 1=1,N loop. Thus, in this case,
the EOF is never sensed; however, the use of the END= clause avoids
this problem. For example,

DO 100 1=1,N
READ(UNT,END=10)VI,V2
READ(UNT,END=10)V3,V4

100 READ(UNT,END=10)V5,V6
10 PRINT,"END OF FILE ON",UNT

.In summary, global optimization does not guarantee the generation of faster
running programs, and in some instances undesirable faults can be introduced.
However, analysis of this optimization technique has shown that in general
significant improvement of object code usually results. '

BATCH COMPILATION LISTINGS AND REPORTS

The compilation listings and reports produced by the system are controlled
by options on the $ FORTY or $ FORTRAN control card.

The following listings and reports are produced when the indicated options
are specified (default options are underlined).

Option Listing or Report Produced
LSTIN Source Program Listing.
LSTOU Source and Object Program Listing with a Program

Preface Summary.
XREF Cross Reference Report, TO-FROM Transfer Table,

and GMAP offset on LSTIN report.
MAP Storage Map and Program Preface Summary.
DEBUG Debug Symbol Table

3-32 DD02

Any diagnostics pertinent to the program are included in the LSTIN report
if it is not suppressed. When the NLSTIN option vis present, the diagnostics
appear as a free-standing report.

The Compilation Statistics Report is produced .if any other report is
produced or DECK or COMDK is called for.

Figure 3-1 contains an example program with all reports. The following
descriptions explain each report in more detail, using Figure 3-1 as a base for
the description.

Source Program Listing (LSTIN)

Each line of this report, (page 1 of Figure 3-1), is divided into three
fields. The left-most field contains the line or alter number for each source
line. If the source program is line-numbered (NFORM and LNO options specified),
the actual line number is displayed in this field. If the source program is not
line-numbered (FORM or NFORM and NLNO options specified), this field contains
the alter number (relative sequence number of the line).

The second field contains the text of the source statement and is separated
from the first field by six blank characters.

The third field is separated from the second by six blank characters and
contains optional sequence/identification information (columns 73-80) from the
source line.

Diagnostics are recorded immediately following the source line to which
they apply. Diagnostics that do not apply to a particular source line appear at
the end of the source listing. Comment cards may appear between the source line
and the appropriate diagnostic.

Each diagnostic line begins with five asterisks followed by the. character^
W, F, or T to indicate a warning; a fatal error; or premature termination of
compilation, respectively. A complete description of the diagnostics generated
in the compiler is included in Appendix B.

In Figure 3-1, a warning diagnostic appears after line 5. Correct code is
generated and the program runs as expected. To be error free, a specification
statement should be added to the program typing EOF as INTEGER.

If the XREF option is on, the GMAP offset is printed in the leftmost column
of the report. This gives the relative location in the object code of each
executable source statement.

3-33 DD02

To-From Transfer Table (XREFS)

This table, page 2 of Figure 3-1, lists the transfers that exist in the
source program logic. The report is sorted into descending line number
sequence, keying on the originating line number, and displays up to five
transfers on one report line. The destination line number field may indicate
the word EXIT or RETURN if the transfer statement is a STOP or RETURN statement.
For assigned GOTO statements, where no label list is provided, the label
variable name is displayed. In Figure 3-1, page 2, lines 28 and 29 contain
transfers. Line 29 includes the statement GOTO 7; statement 7 begins on line
10; the first entry in the transfer report indicates this path. Line 28
contains a STOP statement; the second entry in the transfer report indicates
this. A From-To table is also provided in the same format.

If the line numbers of the source file are not sequentially increased by
one, the actual line number is the one that has a value that is less than or
equal to the line number printed.

Program Preface Summary (LSTOU)

The Program Preface summary, page 3 of Figure 3-1, documents the object
module preface (card) information in a format similar to that printed by GMAP.

The source program memory requirements and blank common size are displayed
in octal and decimal followed by the number of the V count bits as used in
instructions with special (type 3) relocation.

The SYMDEFs entry shows the relative offset
corresponding to that symbol definition, in octal.

of the internal location

Next is a list of labeled common blocks known or referenced by this module.
Associated with each symbol are three octal and one decimal fields. The first
gives the global symbol number associated, for this compilation, with the common
name. This is the number that will appear in the V field of any instruction
referencing this labeled common region. The number will appear justified
according to the V field. Thus if labeled common SPACE is global symbol 2, and
the V field is five bits wide, the display will be 020000 (bit zero is the sign
bit). If the V field is six bits wide, the display will be 010000. The second
field contains the size, in octal, of the labeled common region. The third
decimal field continues the same size in decimal.

Two labeled common regions, .DATA, and .SYMT., receive special treatment by
the loader. Although they are not actually labeled common names, they are
included in this portion of the Program Preface summary. The first, .DATA., is
allocated space to contain all local data required by the program. This
includes arrays and scalars not appearing in common or as arguments, constants,
encoded FORMAT information, NAMELIST lists, temporary storage for intermediate
results, argument pointers, the error linkage pair (.E.L..), etc. The second,
.SYMT., is generated when the DEBUG option is employed. This block contains a
symbol table for all program variables and statement numbers and can be used for
symbolic debugging.

A list of external symbol references (SYMREFs) is also included with their
associated global symbol number, justified as described above, for labeled
common names.

9/76 3-34 DD02B

Storage Map (MAP)

This report, page 4 of Figure 3-1, provides information on the allocation
of storage for identifiable program elements. This report is divided into three
parts: variables and arrays, statement numbers, and constants.

The first part of the report lists all program variables and arrays in
alphabetical order. It contains four fields as follows:

The first field contains the global symbol name relative to which the
variable is defined. Local variables and arrays are defined relative
to the origin of the .DATA, space. When a variable or array belongs
to some labeled common block, the name of its common is shown; when it
belongs to blank common, the field is empty. Argument variables and
arrays appear as variables of .DATA.; the indicated location is
reserved for a pointer to the actual argument and is initialized on
entry to the procedure.

2. The two OFFSET fields provide the location relative to the origin of
the indicated global name assigned to this variable or array. For
arrays, this is the starting location; subsequent elements of the
array are allocated higher order locations. The offset is provided in
both octal and decimal for the convenience of the programmer.

3. The MODE field provides the type associated with each identifier.
Switch variables are indicated by an empty field.

The second part of the report lists all referenced statement numbers in
numerical order. The four fields to the right of each entry are the same as
defined above. The ORIGIN fields for FORMAT statement numbers are always .DATA,
and the MODE field indicates FORMAT. For executable statement numbers, the MODE
field is always blank; the ORIGIN field is either eight dots () if this
is a main program, or the first SYMDEF if this is a subprogram. The OFFSET
field is as described above.

The third part of
requiring unique storage.
.DATA. block. The two

this report lists all numeric and character constants
All constants are allocated storage relative to the
OFFSET fields and the MODE field are as described for

variables and arrays,
constants.

Only the first 17 characters are displayed for character

Object Program Listing (LSTOU)

This report, pages 5-8 of Figure 3-1, gives a full listing of the generated
object program. The original source statement is identified in the object
listing by "SOURCE LINE xxx" and the source line. The individual instruction
line format is similar to that produced by GMAP. The first field is the
location field; next is the compiled machine language instruction, usually
divided into address, operation code, and modifier field. The location field
and machine language instruction field are in octal. The next three digits are
the relocation bits applicable to the instruction.

Following these is the symbolic equivalent of the generated instruction.
This consists of a label field, an operation code field, and a variable field
for address and modifier symbols. Referenced statement numbers appear in the
label field prefixed by the characters ".S". SYMDEF symbols (such as ENTRY
names) also appear in the label field. Operation code and modifier mnemonics
are the same as the standard GMAP mnemonics except for some of the
pseudo-operation codes.

9/76 3-35 DD02B

Data initialization, constants, formats, symbol table entries, etc. are
displayed at the end of the report following the source END line. No object END
instruction is produced.

Debug Symbol Table (DEBUG)

A table of all symbols used in the source program is given on page 9 of
Figure 3-1.

Cross Reference List (XREF)

This report, page 10 of Figure 3-1, lists in alphabetical order all
referenced variables, arrays, statement numbers, SYMREFs and SYMDEFs. Each
element results in four or more entries being produced across the line. The
first field is the octal location (offset) of the item relative to its global
symbol. The second field is the item name or symbol. Statement numbers are
shown with a prefix of ’’.S". The third field is the applicable global symbol.
The fourth field is the line number (alter number) of the first reference. When
there are more references, additional line numbers are displayed across the
line. Where required, additional lines are written.

This report is divided into two parts: the second part for statement
labels, the first part for everything else.

Miscellaneous Data

Additional compilation data is printed at the end of the report listing
when the report is produced. This data consists of the edit date, the software
release under which this report has been compiled, the processor time and
compilation speed in terms of source lines per minute, the number of diagnostics
printed, and the amount of memory space required for the compilation.

9/76 3-36 DD02B

LABEL PAGE 1
3349T ill 07-30-76 Ot.Slt

1 LOGICAL diosort 00000100

2 CONMON CID SORT/SPACE/B 00000110
j CHARACTER A*72 (100),8*72 00000120
*♦ □ATA J/1Z 00000130

5 ASSIGN 1 TO EOF 00000140
1293 EOF IS USED AS A SWITCH II* ASSIGN STATEMENT AND IS NOT TYPED INTEGER

6 1 DC 9 1=1,100 00000150
r RE AC (5 , ll,END=150) AW ootreoieo
8 IF(A(I)«NE•”***ENG***") GOTO 9 00000170
9 11 FORMAT(A72) ooo onia o

10 7 N = 1-1 00000190

11 GOTC 13 00000200
12 9 CONTINUE 00000210

13 N = 100 00000220
!*♦ 13 UlDSORT = .FALSc. 00000230
15 OO 90 I=i,N-l 00000240
lo IF (A(I+1).GE.A(I)) GOTO 90 00000250
17 OIDSORT = .TRUE. 00000260
18 8 = A(I) 00000270
19 A(I) = A(I+1) 00000200
20 A(I+1) = S 00000290
21 90 CONTINUE 00000300
22 IF(GIOSCRT) GOTO 13 00000310
23 77 WR1TE(5,12) J, (AW ,1*1,N) 00000320
2-» J=J + 1 00000330
25 12 FORMAT (“1 ALPHABETIC SORT - LIST“,IS//(“ ~',A30)T 00000300
26 GC TO EOF, (1,149) 00000350
27 149 1 = 1 00000360
28 150 IF(1 .EG. 1) STOP "ENO ALPHABETIC SORT” 00000370
29 ASSIGN 149 TO EOF? GO TO 7 00000380
30 END 00000390

Source Program Listing

Figure 3-1. Compilation Listings and Reports

9/76 3-37 DD02B

r r LABEL PAGE 2
3349T 01 07-30-76 08.516

transfers..•.

FROM LlNc.# TO LINE# FROM line# TO line# FROM lINl# to line#

10 28 EXIT to o
16 21 11 1* 8 12

Fkoh ulNu# TO LlNt# FROM lINE# TO uINE#

2o 27 22 Im
7 28

To-From Transfer Table

Figure 3—1 (cont) • Compilation Listings and Reports

9/76 3-38 DD02B

3PAGELABEL

Od .51b07-30-763349 T 0 1

PROGRAM PRcFACc
PROGRAM BREAK 201
COMMON LENGTH 1
V COUNT BITo

SYMOEFS
0

LABELLED COMMON l i N C T h
.DATA. OldOUO 2314
.BYMT. 0 2 J 0 0 0 *♦2
SPACE U3000U 14

SYMREFS
.FCOM. OhJOOO
.FCXT. OsdOOO
.FGERR ObOUOG
.FFIL. 0 70 0 d U
.FRTN. 1000G0
.FCNVC llJOLd
.FCNVI 1200GD
.FWRC. 130000
.FRDD. 1^+0 00 0

Program Prefix Summary

Figure 3-1 (cont). Compilation Listings and Reports

9/76 3-39 DD02B

3349T 31 07-30-76 Od. 516
LABEL PAGE 4

storage map

SYMBOLIC ORIGIN OFFStT(lfl) MODE OFFSET(d)

• E.L.. .DATA. 1201 OOUBlE 2261
A .DATA. 0 CHARACTER 0
8 SPACE 0 CHARACTER 0
OIOSORT 0 logical 0
EOF .DATA. 1204 22o4
I .DATA. 1205 INTEGER 22b5
J •DATA. 1203 INTEGER 2263
N •DATA. 1213 INTEGER 2275

STATEMENT NUMBERS

1 2
32

2
407

3 36 44
11 .DATA. 1206 FORMAT 2270
12 .DATA.
13

1217
42

FORMAT 2301
52

99 80 120
149 116 164
150 118 166

CONSTANTS (.DATA.)

5 1207 INTEGER 2267
♦•♦END*** 1210 CHARACTER 2272

1212 CHARACTER 2274
6 1216 INTEGER e300

ENO ALPHABETIC SO 1224 CHARACTER 2310

Storage Map

Figure 3-1 (cont). Compilation Listings and Reports

9/76 3-40 DD02B

LABEL PAGE 5

33*91 01 07- 30-76 &C.51E

u OC GO G ,. NULL
SOURCE LINE 1 logical oiosort

SOURCE LINE £ COMMON JIDSORT/SPACE/B
SOURCE ulNE 3 CHARACTER A*72 (10 0),8*72
SOURCt wINE 4 umTA J/l/
SOURCE ulNt 5 ASSXuN 1 TO EOF

000000 000302 6200 GO 010 uAXO .SI
oooooi 012264 7400 00 030 STXO EOF

SOURCE uINE 6 1 UL i 1=1,100
OOCCu? .SI NULL

000002 uuUJUi 2310 C 7 000 lDQ 1, £»l

000003 012265 7560 00 030 STQ 1
30000* 00031* * 0 2 G C7 000 MPY 12 ,0u

SOURCE LINE 7 READ (5,11, END=151)) A(I)
000005 0122o6 7560 00 030 STQ .DATA.*1206
000006 1*0000 7010 00 030 TSX1 •FROD.
000007 000015 7100 CO 010 TRA ♦♦6
000010 012261 000007 030 ZERO •£.L..,7
000011 012267 0000 00 030 ARG .DATA.*1207
000012 012270 0000 00 030 ARG .Sil
000013 000000 0000 00 000 ARG 0
000014 030166 7100 00 CIO TRA • S150
300015 012266 7220 00 030 LXL2 .DAT A. + 12 Jo
aoooib 41001* 6350 12 030 EAA A-12,2
000017 110000 7010 00 030 TSX1 •FCNVC
000020 030110 0110 07 000 NOP 72,DL
000021 IJGOOu 7Glu CO 030 TSX1 •FRTN.

SOURCE LINE 8 IF (4(1) . NE• *’***£ND***M) GOTO 9
000022 012265 2360 06 u3J lDQ I
J00023 000014 4020 07 000 MPY 12 ,OL
000024 000000 6220 06 000 EAX2 0 , GL
000025 012272 6270 00 030 uAX7 .DATA.*1210
000026 410014 6210 12 U30 EAX1 A-ld,2
000027 0056*0 5602 Cl 000 RPC 2,1,TNZ
000030 000000 2350 17 000 lUA 0,7
000031 000000 1150 11 000 CMPA 0,1
100032 000004 6010 04 000 TNZ 4,1C
000033 012274 2350 CO 030 LOA • DATA. *1^:12
00003* 02*2*0 5202 01 000 RPT 10,1,TNZ
000035 000000 1150 11 000 CMPA 0,1
000036 030040 6000 00 010 TZE ♦ + £
100037 000044 7100 00 CIO TRA • S9

SOURCE LINE 9 11 FORMAT4A72)
SOURCE LINE 1U 7 N = 1-1

000040 .^7 NULL
000040 0x22b5 2360 CO 030 lDQ I
0 00041 OOOUOl 17o0 07 000 SBQ 1, Lu
000042 012275 75o0 CO 030 STC N

SOURCE ulNE 11 GUTO lo
000043 000052 7100 GO CIO TRA • 513

SOURCE LlNt 12 9 CuNTlNvE
000044 • S9 null

Object Program Listing

Figure 3—1 (cont)• Compilation Listings and Reports

9/76 3-41 DD02B

33*»9T 01 07-30-76 U 6 • 51c LABEL PAGE 6

JC0044 012265 2360 CO 030 uDQ I
000045 OOOOul 0760 07 000 ADC l,Du
J 0 u (3 46 030145 llbO C7 GOu GHPQ 101,Dl
000047 000003 6040 CO 010 TNI ♦-3b

SOURCE lINE 13 N = 100
J0005J 030144 2360 G7 000 lDQ 10 0,Ul
000051 012275 7560 CO 030 STQ N

SOURCE LINE 14 13 DIOsORl = .FALSE.
000052 . S13 NULL

<3 00052 00000(3 2360 C7 000 lDQ 0 , Dl
000053 00000G 7560 CO 020 STQ DIusORT

SOURCE lINE 15 DU 90 1=1,N-l
000054 00001^ 2220 03 000 lDX2 12 ,OU
000055 012275 2360 00 030 LDQ N
000056 000001 1760 07 000 SBQ 1,DL
000057 012276 7560 GO 030 STQ .DATA.+1414
000060 000000 5330 00 000 NEGt 0
000061 000000 0760 (77 000 ADQ 0,DL
000062 000002 6G40 04 000 TNI 2, IC
000063 000001 3360 C7 000 LCQ 1,OL
000064 012277 7560 00 030 STQ .DATA.41215

SOURCE LINE 16 IF (A (141).Gc.A(I)) GOTO 90
000065 OlOOcG 6270 12 L30 EAX7 A,2
000066 410014 6210 12 030 EAX1 A-12,2
000067 031640 5602 01 000 RPD 12,1,TNZ
000070 000000 2350 17 000 UDA 0,7
000071 OJOOOO 1150 11 GOO CMPA 0,1
000072 Ou0074 6020 60 010 TNC ♦42
000073 000120 7100 00 010 TRA . S90

SOURCE LINE 17 D1DSOR1 = .TRUt.
>000074 000001 2360 07 000 lDQ 1, Dl
000075 000000 7560 00 020 STQ D1DSORT

SOURCE lINE 18 6 = 4(1)
0 00(176 410014 6270 12 030 EAX7 A-12,2
000077 030000 6210 00 030 EAX1 8
000100 (300000 U110 07 000 NOP 0,DL
000101 031o00 5b02 01 000 RPD 12,1
000102 300000 2350 17 000 lDA 0,7
000103 000000 7550 11 000 STA 0,1

SOURCE LINE 1? A(I) = ACI41)
000104 010000 6270 12 030 EAX7 A,2
000105 410014 6210 12 030 EAX1 A-12,2
000106 000000 C110 G7 000 NOP 0 ,OL
000107 UjloOO 56fr2 €•! 000 RPO 12,1
000110 000000 2350 17 000 LOA 0,7
000111 000(300 7550 11 000 STA 0,1

SOURCc LINE 20 4(141) = B
000112 OouuGO 6270 CO 030 EAX7 8
000113 010000 6210 12 030 tAXl A,2
000114 000000 0110 C7 000 NOP 0,DL
000115 031600 5602 Cl 000 RPD 12,1
000116 OuOOuO 2350 17 000 LDA 0,7

Object Program Listing (cont)

Figure 3-1 (cont). Compilation Listings and Reports

9/76 3-42 DD02B

LABEL PAGE 7
33*9T 01 07-30-76 06.51E

000117

300120

OuOOOii 7550 11 COO oTA

NULL
ADLX2

90 CONTINUE

12 ,DU

SOURCE LINE

000

21
• S9G000120

0U001* 0220 03
000121 012277 05*0 00 030 AOS •DATA.+lcib
000122 000065 6010 00 010 TNZ ♦-29

300123
SOURCE uINE

000000 23*0 00 020
22

SZN
IF(uiuiJRT) GOTO 13

DIDSORT
00012* 000052 6010 00 GIO TNZ .SIS

000125
SOURCE LINE

130000 7010 CO 030
23

TSX1
77 wRITL(o,12) J, (A (I) ,I=1,N)
.FWRD.

0 0012o 000132 7100 00 010 TRA ♦ + *
000127 012261 0L0027 030 ZERO .E.L..,23
000130 012300 0000 00 030 ARG •DATA•+1216
000131 012301 0000 00 030 ARG • S12
000132 012263 2350 00 030 lOA J
000133 120000 7010 00 030 TSX1 •FCNVI
00013* 00001* 2220 L3 000 uOX2 12,DU
000135 012275 3360 GO 030 LOG N
000136 00002 60*0 O*“m TMI 2 , IC
000137 000001 3360 C7 000 lCQ 1 ,UL
0001*0 012277 T560 CO 030 STQ •DATA.+1215
0001*1 *1001* 6350 12 030 E AA A-12,2
0001*2 110000 7010 00 030 TSX1 •FCNVC
0001*3 000110 0110 C7 OOU NOP 72,Ou
0001** 00G01* 0220 03 00G 4DLX2 12,DU
0001*5 012277 05*0 00 030 AOS .DATA.+1215
0 004*6 00fri*l 6010 60 010 TltZ ♦-5
0001*7 070000 7C10 00 030 TSX1 •FFIu.

000150
SOURCE LINE

012263 05*0 00 030
2*

AOS
J = u + 1

J

000-151

-SOURCt LINE
SOURCE LINE

000006 6210 0* 000

25
2o

EAX1

12 FORMAT(“1 ALFHAStTIC SORT - L 1ST“115//t“-“ , A301 >
GO TG uDF,(1,1*9)

6,1C
000152 01226* 6350 51 030 EAA EOF,I
000153 00*300 5202 01 0 00 RPT 2,l,TZt
00015* OOOOGO 1150 11 000 CMPA 0,1
000155 777777 6000 31 >00 TZE -1,1*
000156 000003 7100 C* 000 TRA 3,1C
000157 000002 0C00 00 010 ARG .Si
000160 00016* 0000 00 010 ARG • Sl*9
000161 >60000 7010 00 630 TSX4 •FGERR
000162 0001b* 7100 00 010 TRA ♦ + 2
000163 012261 006032 630 ZERO • t.L..,26

00016*

SOURCE LINE
00016*

000001 2360 07 uJO

27
• Sl*9 NULL

LOG

1*9 1=1

1,CL
000165 012265 75b0 00 030 STQ I

000166

SOURCE LINE
000166

OOudOl 2360 07 000

28
. i 1 50 NULL

<_DQ

150 1F(I .cG. 1) STOP “ENO ALPHABETIC SORT"

1, Du
000167 012265 1160 CO 630 CMPQ £

Object Program Listing (cont)

Figure 3-1 (cont). Compilation Listings and Reports

9/76 3-43 DD02B

LABEL PAGE 8

3349T 01 07-30-76 1 06.516

000170 00017b oOlO 00 010 TNZ ♦*b
000171 050000 7010 00 030 TSX1 •FCXT.
000172 00G17b 7100 GO 010 TRA ♦♦4
000173 012261 000034 030 ZERO •E.L.•,28
000174 012310 0000 00 030 ARG •SATA.*1224
000175 005023 0005 07 000 ARG 19,DL

SOURCE LINE 29 ASSIGN 149 TO EOF J
000176 090164 6200 00 010 EAXO . S149
000177 012264 7luC uO 030 STXO EOF
000200 000040 7100 00 010 TRA • S7

SOURCE i_INE 30 END

002261 ORG .□ATA.*1201
002261 J JOJOOOOuOOO 000 • E • L • • OCT
002262 333333333333 0 09 ETC
002263 000000000001 000 J □ EC 1

002267 ORG •DATA.+1207
002267 090000000005 000 □EC 5
002270 352107025520 000 .Sil SCI (A72)

002272 ORG •DATA.*121G
0022-72---- 545'45425 45 24 009 SCI
002273 5454542 02 02 0 000 SCI ♦ ♦ ♦
002274 202020202020 000 SCI

502300 ORG .DATA.*1216
002300 000000006006 000 □ EC 6
002301 357o01262143 060 .S12 SCI (“1 AL
002302 t73tJ212225o3 0G0 SCI PhASET
902303 31232 0t>24b5 1 COO 3C I IC SOR
00230** o32052204331 000 dC I T - Li
002305 o2b376733105 000 SCI ST”,15
002306 6161357 62 076 000 SCI // (" "
002307 732103905555 000 SCI ,A30))
002310 254524202143 000 SCI ENO AL
002311 473021222563 000 SCI PHABET
002312 312320624651 000 SCI IC SOR
002313 632020202020 000 SCI T

GO TO 7

Object Program Listing (cont)

Figure 3-1 (cont). Compilation Listings and Reports

9/76 3-44 DD02B

LABEL PAGE 9

3349T 01 07-30-76 06.516

DEBUG SYMBOL TABLc (.bYMT.)

000000 332533433333 000 VTABF • E.L.•,OOUBll
000801 012261000023 030
000002 2*3124624651 000 VTABF OIDSORT.LOGIuAl
000003 000000300025 020
ooooow 222020202020 000 VTA6F B,GHARACTcR
J 00009 030000000020 030
000006 212020202020 000 VTABF A,CHARACTER
000007 010000000020 030
000010 412020202020 000 VTABF j,INTEGER
000011 012263000021 030
000012 012020202020 000 LTABF .SI
000013 000002000077 010
000014 254626202020 000 VTABF EOF,CHARACTER
000015 012264000020 030
000016 312020202020 000 VTABF I,INTEuER
000017 012265000021 030
000020 112020202020 000 uTABF • S9
000021 000044000077 CIO
000022 010120202020 000 LTABF .Sil
000023 012270000077 030
000024 010500202020 000 lTABF • S150
000025 000166000077 010
000026 07202020^020 000 LTABF • S7
000027 000040000077 010
000030 *♦52020202020 000 VTABF N,INTEGER
000031 012275000021 030
000032 010320202020 000 lTABF .S13
000033 000052000077 010
00003* 110020202020 000 lTABF • S90
000035 0001201)00077 010
000036 010220202020 000 uTABF • S12
000037 012301000077 030
000040 010*11202020 000 LTABF • Sl*9
000041 000164000077 010

Debug Symbol Table

Figure 3-1 (cont). Compilation Listings and Reports

9/76 3-45 DD02B

LAdcL •••••• PAGE

3349T 01 07-30-76 08.516

ORIGIN SYM3LuIS AtFERENCEb bY (uTtFi NUMBER

0 • ••••••• • ••••••• a
11 .FCNVG 7 23
12 .FC.MVI 2 o

if .FCOM.
5 .FCXT. 28
7 •FFIL. 23
o •FGERR 2o

14 .FROG. 7
10 .FRTN. 7
13 .FWR0. 23

22ol .E._.. ,UMTA, u 7 23 2b 28
0 A .OaTA. 7 8 16 18 19 4U 23
3 8 SPACE 18 20
0 DICSORT 14 17 22

2 264 EOF .ua r a. 5 2c 29
2265 I .DATA. 0 8 10 14 47 28
2263 J .OATA. 4 23 c4
2275 N •OATA. 10 13 15 23

0 .SO FORMAT
2 . SI 5 o 26

40 • S7 10 29
4 4 • S9 8 12

2273 .Sil FORMAT 7
23J1 . S12 FORMAT 23

? 2 • SIS 11 14 22
0 .S77

120 .S90 16 21
104 • S149 2o 27 29
lob .5150 7 2t

Cross Reference List

Figure 3-1 (cont) Compilation Listings and Reports

10

9/76 3-46 DD02B

EDIT DATE 02-21-76 **SR3I**
ELAPSED TIME (SEC) 1.05 LINES/MINUTE 1704

I

THERE WERE 1 DIAGNOSTICS IN ABOVE COMPILATION
26K WORDS WERE USED FOR THIS COMPILATION

Miscellaneous Data

Figure 3-1 (cont)• Compilation Listings and Reports

9/76 3-47 DD02B

SECTION IV

FORTRAN STATEMENTS

(see Table
(see below).

A FORTRAN statement is a sequence of syntactic items preceded by a keyword
The assignment statements are exceptions to this definition

The syntactic items are formed using letters/ digitst and special
characters of the FORTRAN character set (see Section II and Appendix A). The
basic syntactic items of the FORTRAN language are constants, symbolic names,
statement labels, keywords, operators, and special characters used for syntax
punctuation.

Constants, symbolic names, operators, and the special characters are
defined in Section II.

A statement label takes the form of an unsigned integer constant and is
used to refer to individual statements. Any statement except an END statement
may be labeled, but only labeled executable statements and FORMAT statements may
be referenced.

A keyword consists of a specified sequence of letters; the keyword that
begins a FORTRAN statement is used to identify that statement. For example, a
DATA statement begins with the keyword DATA.

STATEMENT CLASSIFICATION

Each FORTRAN statement is classified as executable or nonexecutable.
Executable statements specify activities to be accomplished. Nonexecutable
statements describe the characteristics, arrangement, and initial values of
data; contain editing information; specify statement functions; classify program
units, and specify entry points within subprograms.

ASSIGNMENT STATEMENTS

The execution of an assignment statement causes an entity to be defined
(given a value). There are four types of assignment statements:

1. Arithmetic assignment statement.
2. Logical assignment statement.
3. Character assignment statement.
4. Label assignment (ASSIGN) statement.

9/76 4-1 DD02B

Arithmetic Assignment Statement

An arithmetic assignment statement has the form

where: v is an unsigned variable name or array element name of an arithmetic
type (integer, real, double-precision, complex).
e is an arithmetic expression.

An arithmetic assignment statement causes FORTRAN to compute the value of
the expression on the right and to assign that value to the variable on the left
of the equal sign.

The following examples show various arithmetic assignment statements:
where:

R1 and R2
Cl and C2
D
I

are real variables
are complex variables
is a double-precision variable
is an integer variable

Rl = R2 R2 replaces R1
I = R2 R2 is truncated to an integer and stored in I.
Rl = I
Rl = 3*R2

Rl = R2*D+I

I is converted to a real variable and stored in Rl.
The expression contains a real variable and an integer
constant. The statement is compiled as Rl = 3.*R2.
Multiply R2 by D using double-precision arithmetic, add
the double-precision equivalent of I to that result,
store the most significant part of the result as a real
variable Rl.

Cl = C2* (3.7,2.0) Multiply using complex arithmetic and store the result
in Cl as a complex number.

C2 = R2 Replace the real part of C2 by the current value of R2.
Set the imaginary part of C2 to zero.

DD02B

Logical Assignment Statement

A logical assignment statement has the form:

where v is a logical variable name or logical array element and e is a logical
expression. Thus if L1,L2, etc. are logical variables/ logical assignment
statements can be written:

LI = .TRUE.
L2 = .F.
L3 = A.GT.25.0
L4 = I.EQ.O .OR.A.GT.25.0
L5 = L6

The first two are the logical equivalent of statements of the form

variable = constant

L3 would be set .TRUE, if the value of the real variable A is greater than 25.0,
and to .FALSE, if A is equal to or less than 25.0. L4 would be set to .TRUE, if
the value of I was zero or A is greater than 25.0 and to .FALSE, otherwise. L5
would be set to the same truth value as L6 currently has.

Character Assignment Statement

A character assignment statement has the form

where v is a character variable name or character array element name and e is a
character constant, variable, function or array element. Characters are stored
left-adjusted in the destination location with trailing blanks if applicable.
If the declared length of v is less than e, then e is truncated to the size of v
for the assignment, and the leftmost characters are assigned. Thus if Cl, C2,
etc. are character variables, character assignment statements can be written:

Cl = "ABCD" The
C2 = Cl
C3 = 1ABCDEFGHIJKLMNOP1

four characters are assigned to variable Cl.

9/76 4-3 DD02B

Label Assignment Statement

A label assignment statement has the form:

ASSIGN k TO i

where k is a statement number and. i is a nonsubscripted
statement number must refer to an executable statement
in which the ASSIGN statement appears. For example:

switch variable. The
in the same program unit

ASSIGN 24 TO M

GO TO M,(1,22,41,24,36)

Figure 4-1 presents an abbreviated summary of the legitimate combinations
of expressions and variables in the assignment statements.

Variable
Expression

Legend

I R D C L Ctr T

I I I I I N N I I = Integer

R R R R N N R
R = Real
D = Double Precision

D D D D D N N N
C = Complex
L = Logical

C C C C C N N N
Ctr = Character

T = Typeless

L
Ctr

N
N

N
N

N
N

N
N

L
N

N
H N

N = Illegal

Figure 4-1. Legal Combinations of Assignment Statements

When the arithmetic assignment, logical assignment, and character
assignment statements are executed, the evaluation of the expression e and the
alteration of the expression ’v’ is performed in accordance with the rules given
in Table 4-1.

9/76 4-4 DD02B

Table 4-1. Rules for Assignment of E to V

IF V TYPE IS: AND E TYPE IS: THE ASSIGNMENT RULE IS;

Integer Real Fix and Assign
Integer Integer Assign
Integer Double Precision Fix and Assign
Integer Complex Fix the Most Significant Real

Part and Assign
Integer Character Illegal
Integer Typeless Assign
Integer Logical Illegal
Real Integer Float and Assign
Real Real Real Assign
Real Double Precision Assign the Most Significant

Part as Real
Real Complex Assign the Real Part
Real Character Illegal
Real Typeless Assign
Real Logical Illegal
Double Precision Integer Float and Assign as

Double Precision
Double Precision Real Real Assign as Double Precision
Double Precision Double Precision Assign
Double Precision Complex Assign Real Part as

Double Precision
Double Precision Character Illegal
Double Precision Typeless Illegal
Double Precision Logical Illegal
Complex Integer Float and Assign to the

Real Part and Assign Zero
to the Imaginary Part

Complex Real Assign to the Real Part,
Assign 0 to Imaginary Part

Complex Double Precision Assign the Most Significant
Part to the Real Part and
Assign 0 to the Imaginary
Part

Complex Complex Assign
Complex Character Illegal
Complex Typeless Illegal
Complex Logical Illegal
Character Integer Illegal
Character Real Illegal
Character Double Precision Illegal
Character Complex Illegal
Character Character Assign
Character Typeless Illegal
Character Logical Illegal
Logical Integer Illegal
Logical Real Illegal
Logical Double Precision Illegal
Logical Complex Illegal
Logical Character Illegal
Logical Typeless Assign
Logical Logical Assign

9/76 4-5 DD02B

Table 4-1 (cont). Rules for Assignment of E to V

NOTES: 1.

2.

3.

4.
5.

6.

Assign means transmit the resulting value, without change, to
the entity.
Real assign means transmit to the entity as much precision of
the most significant part of the resulting value as a real
datum can contain.
Fix means truncate any fractional part of the result and
transform that value to the form of an integer datum.
Float means transform the value to the form of a real datum.
Double-precision float means transform the value to the form
of a double-precision datum, retaining in the process as much
of the precision of the value as a double-precision datum can
contain.
Assign with respect to character type implies a move
operation. When the receiving variable’s size is greater than
the size of the sending string, the move is performed filling
the receiving variable with blanks. When the receiving
variable’s size is less than that of the sending string,
truncation takes place.

STATEMENT FORMATS

A description of each FORTRAN keyword, with associated restrictions, is
contained on the following pages in alphabetical order.

9/76 4-6 DD0 2B

ABNORMAL ABNORMAL

ABNORMAL

The ABNORMAL statement has the following form:

ABNORMAL
or

ABNORMAL / a 2 t • • • t 3^

where: a£ is a FUNCTION subprogram name whose characteristics are being
qualified by this statement.

A function whose name appears in an ABNORMAL statement (or in an EXTERNAL
statement with an ABNORMAL modifier) is treated as one whose references, for
optimization purposes, cannot be treated the same as a variable or array element
reference in an expression. That is, the function has side effects which may
alter its arguments or locations in common, it performs I/O, or it is capable of
returning different results even if the same actual arguments are given.

All functions should be analyzed to determine whether appropriate ABNORMAL
statements should be included. If a subprogram has FUNCTION references, and
none of the referenced functions are abnormal, it may be useful to include an
ABNORMAL statement in the subprogram. The first form with no list may be used
for this purpose and has the effect of setting all functions 'normal'.

If no functions are typed as ABNORMAL in a given subprogram, then all
functions are treated as ABNORMAL, with the exception of the supplied functions
listed in Tables 6-1, 6-2, and 6-3. The appearance of an ABNORMAL statement
reverses the default interpretation, and all nonqualified functions are treated
as normal.

Subroutines, as referenced by CALL statements,
ABNORMAL.

are always considered

This discussion, and the ABNORMAL statement itself, applies only to
programs being compiled with the OPTZ option. When optimization is not
performed, the presence or absence of ABNORMAL statements is immaterial.

9/76 4-7 DD02B

ASSIGN ASSIGN

ASSIGN

The ASSIGN statement has the following form:

ASSIGN i TO j

where: i is an executable statement label.
j is an integer switch variable.

The ASSIGN statement assigns the value of a statement label to a switch
variable.

Example:

ASSIGN 17 TO J
GO TO J, (5,4,17,2)

The next statement to be executed would be statement number 17•

9/76 4-7.1 DD02B

BACKSPACE BACKSPACE

BACKSPACE

The BACKSPACE statement has the following form:

BACKSPACE f

where: f is the file reference.

The BACKSPACE statement is applicable only for sequential files.

When the BACKSPACE statement is executed, the file is positioned so that
the record that was the preceding record prior to execution becomes the next
record. If the last READ statement resulted in an end-of-file condition, two
BACKSPACE commands are required to cause the file to be positioned prior to the
last logical record. If the file is positioned at its initial point, the
BACKSPACE statement has no effect.

If the device is tape, one BACKSPACE command causes an input file to be set
as an output file, thereby making the execution sequence READ, BACKSPACE, READ
illegal.

9/76 4-8 DD02B

BLOCK DATA BLOCK DATA

BLOCK DATA

One way to enter data into a labeled common block during compilation is by
using a BLOCK DATA subprogram. (Data cannot be entered into blank common by the
use of BLOCK DATA.) This subprogram can contain only type,
EQUIVALENCE,PARAMETER, IMPLICIT, DATA, DIMENSION, and COMMON statements in
addition to the BLOCK DATA and END statements.

A BLOCK DATA statement is of the form:

BLOCK DATA

The following rules also apply:

1. The BLOCK DATA subprogram cannot contain any executable statements.
2. The first statement of this subprogram must be the BLOCK DATA

statement. The last must be the END statement.
3. All elements of a common block must be listed in the common statement

even though they do not all appear in the DATA statement.
4. Data can be entered into at most 63 common blocks in a single BLOCK

DATA subprogram.
5. BLOCK DATA subprograms must not be compiled with the DEBUG option.

6. BLOCK DATA subprograms cannot reside on the same random library as a
main program referencing its data.

If two or more BLOCK DATA subprograms occur for the same application, the
data specified by each of them is entered into the appropriate common blocks.
The data from the last such subprogram is retained for any area of a common
block that is referred to more than once.

Example of BLOCK DATA

BLOCK DATA
DOUBLE PRECISION Z
COMPLEX C
COMMON/ELN/C,A,B/RNC/Z,Y
DIMENSION B(4), Z(3)
DATA (B(I),1=1,4)/I.1,1.2,2*1.3/,C/

& (2.4,3.769)/,Z(1)/7.6498085D0/
END

This example contains two labeled common blocks, ELN and RNC. All variables
in each block must be listed even though not all variables receive values from
the DATA statement. (The variable A in the example does not appear in the DATA
statement.)

4-9 DD02

CALL CALL

CALL

The CALL statement is used to refer to a SUBROUTINE subprogram (see
"SUBROUTINE Subprograms" in Section VI).

A CALL statement is one of the forms:

CALL s(a^,. . . ,an)
or
CALL s

where s is the name of a SUBROUTINE and the a^ are actual arguments or alternate
returns.

The execution of a CALL statement references the designated subroutine.
Execution of the CALL statement is completed upon return from the designated
subroutine.

Example: CALL MATMISL(A,B,C,I,J,K)

Execution of the
of the SUBROUTINE (or

user program continues with the first executable statement
SUBROUTINE entry point) MATMISL.

Additional examples:

CALL MATMPY(X,5,10,Y,10,2)
CALL QDRTIC(9.732,Q/4.536,R-S**2,Xl,X2)
CALL OUTPUT
CALL ABC (X, B ,C , $5 , $20 0)

The CALL statement transfers control to a SUBROUTINE subprogram and
presents it with the actual arguments. For purposes of optimization, all
subroutine calls are treated as abnormal function references.

The arguments can be any of the following:

1. A constant.
2. A subscripted or nonsubscripted variable or an array name.
3. An arithmetic or logical expression.
4. The name of a FUNCTION or SUBROUTINE subprogram.

4-10 DD02

CALL CALL

5. An omitted argument can be indicated by successive commas in the
argument list. A reference to an omitted argument by the called
subprogram is undefined.

I

6. $n where n is a statement number or a switch variable for a
nonstandard return.

The arguments presented by the CALL statement must agree in number, order,
typet and array size (except as explained under the DIMENSION statement) with
the corresponding dummy arguments in the SUBROUTINE or ENTRY statement of the
called subprogram.

The calling arguments generated for nonstandard returns in object program
coding are listed in the reverse order from the way they appear in source
program coding; this reverse order must be considered if subroutines written in
GMAP are to be called by FORTRAN programs.

Example

CALL SUB (A,I,$ 10,$20)

TSX1
TRA
ZERO
ARG
ARG
TRA
TRA

A
I

SUB
* + 6
.E.L..,6

.S20

.S10

9/76 4-11 DD02B

CHARACTER CHARACTER

CHARACTER

The CHARACTER
the form

statement is a form of the explicit type statement. It has

CHARACTER *b ar *st (k1)/d1/,...,an *sn (kn)/dn/

where:

b is a positive integer constant which defines the maximum number of
characters (< 500 characters in the ASCII mode and < 511 characters
in the BCD mode) of all variables in the statement unless otherwise
specified by s^.

is a variable,
characteristics are

array, or FUNCTION subprogram
being qualified by this statement.

name whose

s- is the maximum number of characters that can be contained by the
1 CHARACTER element being defined. An adjustable size specification is

permitted within a subprogram when both the character variable and its
size parameter(s) are included as dummy arguments. For example:

SUBROUTINE MOVE (A,I,J,B,K)
CHARACTER A*I(J,4),B*I
B = A(K,2)
RETURN
END

In this example, the number of characters associated with A and B are
variable.
Adjustable size specifications are not allowed for the following:

1. As the size specification for a character function.
2. As the size specification in an IMPLICIT statement.

3. For types other than CHARACTER.

k-[supplies the dimension information necessary to allocate storage to
arrays.

d£ is the initial data value.

If a compare is made of character fields of unequal length, the shorter
field is left-justified and blank-filled to make the shorter field the same
length as the larger field, after which an equivalence comparison is made.

The CHARACTER statement
explanation in this section.

is more fully described under the type statement

9/76 4-12 DD02B

COMMONCOMMON

COMMON

A COMMON statement is of the form:

COMMON/xi/ai.../xn /an

where each ai is a nonempty list of variable names, array names, or array
declarators (no dummy arguments are permitted) and each x^ is a symbolic name or
is empty. If x[is empty, the first two slashes are optional. Each x^ is a block
name that bears no relationship to any variable or array having the same name.
COMMON assigns two elements in different subprograms or in a main program and a
subprogram to the same location(s).

All variables named in a COMMON statement are assigned to storage in the
sequence in which the names appear in the COMMON statement. For example if the
following statement appeared in the main program:

COMMON A,B,C,D

the four variables are assigned to storage locations in the order named in a
special section of storage called unnamed or blank common. Thus A is a specific
storage location followed by B, etc. If in a subprogram we have the statement:

COMMON W,X,Y,Z

it means W is assigned the first location in blank common,
Since the storage assigned to blank common is the same for
main program, A and W, B and X, C and Y, and D and Z share

and X the next, etc.
the subprogram as the
the same locations.

Additional blocks of storage can be established by labeling common.
Labeled common is established by writing the label between two slashes as
follows:

COMMON/X/A,B,C

Labeled and blank common can be included in the same statement. For
example, if the following two statements were to appear in a main program and in
a subprogram:

COMMON A,B,C/Y1/D,E/Y2/F(50),G(3,10)
COMMON H,I,J/Yl/K,L/Y2/M(50),N(3,10)

4-13 DD02

COMMON COMMON

Blank common would contain A,B,C (in that order) in the program containing
the first COMMON statement and H,I,J in the program containing the second. A and
H would be assigned the same location as would B and I, and C and J. The common
block labeled Y1 would establish D and E in the same locations as K and L. Y2 in
the first program contains the 50 locations of F and the 30 locations of G. The
same 80 locations are assigned to M and N in the second program. The following
rules apply:

A double precision or complex entity is counted as two logically
consecutive storage units. A logical, real, or integer entity is one storage
unit. A character entity is given as many consecutive storage units as are
required to contain the specified number of characters.

The following applies to labeled common blocks with the same number of
storage units or to blank common:

1. In all program units giving the same type to a given position (counted
by the number of preceding storage units), references to that position
refer to the same quantity.

2. ~A correct reference is made to a particular position assuming a given
type if the most recent value assignment to that position was of the
same type.

3. Complex and double precision entities are assigned consecutive storage
units (pairs) such that the first word of the pair has an even storage
address.

4. The size of a common block must not exceed 131,071 words.

4-14 DD02

COMPLEX COMPLEX

COMPLEX

The COMPLEX statement is an explicit type statement with the following
form:

COMPLEX ajsjkj /d2/,..., an*sn (kJ /dn/

where

a- is a variable, array, or FUNCTION subprogram name whose
characteristics are being qualified by this statement.

*s^ is an optional size-in-bytes qualification and is ignored.

k^ supplies the dimension information necessary to allocate storage to
arrays.

di represents the initial data value.

The COMPLEX statement is more fully described under the Type statement in
this section.

4-15 DD0 2

CONTINUE

CONTINUE

CONTINUE

The CONTINUE statement is a dummy statement most often used as the last
statement in the range of a DO, when the last statement would otherwise have
been a GO TO or IF. (See description of the DO statement in this section). It
has the following form:

CONTINUE

For example:

10 DO 12 I = 1,10
IF (ARG - VAL(I)) 12,13,12

12 CONTINUE

Execution of this statement causes a continuation of the normal execution
sequence.

4-16 DD02

DATA DATA

DATA

A data initialization statement is of the following form:

DATA k /d /,k /d /, X 1 Lu k /d / n n

where each is a list containing names of variables, arrays, array elements
and implied DOs. Each d^ is a list of optionally signed constants of the form:

C or J* C

where C is a constant and J is a repeat modifier which specifies that constant C
is to be used J times. J must be an integer constant or parameter symbol.

The DATA statement enables the programmer to enter data into the program at
the time of compilation. For example:

DATA A,B,C/14.7,62.1,1.5E-20/
or
DATA A/14.7/,B/62.l/,C/1.5E-20/

initially assigns the value 14.7 to A, 62.1 to B and 1.5E-20 to C.

The following is an additional example:

DATA ZERO, (A(I), 1=1,5),A(9)/
& 0.0, 5*1.0, 100.5/

This makes ZERO the value zero, puts 1.0 in the first five elements of A,
and 100.5 in A(9).

The following rules apply:

1. Dummy arguments and names in blank common cannot appear in the list
ki •

2. Any subscript expression must be an integer expression of the form
*V + Cwhere C] and Cz are unsigned integer constants or parameters
and V is an integer variable that appears as the induction variable of
some enclosing implied DO.

4-17 DD0 2

DATA DATA

3. When J* appears ahead of a constant, it indicates the constant is to
be applied J times, i.e., it initializes the next J items in the list
with .

4. Any type of constant can appear in the list d. However, type checking
is performed to verify that a variable is being initialized with a
constant of the same type, subject to the condition in rule 5.

5. Constants of type octal or character can be used to initialize
variables of any type.

6. Character variables are initialized with character constants, and
truncation or blank-filling can take place if the sizes of the two
differ.

7. There must be a one-to-one correspondence between the list items and
the data constants. If a non-character type variable is to be
initialized with a character constant and the constant is longer than
one word of storage can accommodate, then the variable must appear as
an array element reference. The constant is assigned to consecutive
locations in memory beginning with referenced location in the array.
Thus in the example:

INTEGER G(5)
DATA G(1)/15HDATA TO BE READ /

there is a one-to-one relationship between the two lists (one
variable, one constant) but locations G(1), G(2), G(3) and possibly
G(4) (if the mode is ASCII) are affected.

DATA defined variables that are redefined during execution assume
their new values regardless of the DATA statement.

9. Where data is to be compiled into an entire array, the name of the
array (with indexing information omitted) can be placed in the list.
The number of data literals must exactly equal the size of the array.
For example, the statements

DIMENSION B(25)
DATA A,B,0/24*4.0,3.0,2.0,1.0/

define the values of A, B(1),, B(23) to be 4.0 and the values of
B(24), B(25), and C to be 3.0, 2.0, and 1.0 respectively.

4-18 DD02

DATA DATA

10. DATA statements appearing in a BLOCK DATA subprogram can pre-set data
into labeled common storage only. A maximum of 63 such common areas
can be pre-set from any one BLOCK DATA subprogram.

11.

12.

DATA statements appearing in other than a BLOCK DATA subprogram can
pre-set data into program storage local to that subprogram, or labeled
common. A maximum of 62 such common areas is permitted.

The type statements, described in this section, can also be used to
initialize data values, and are subject to the same rules as given
here for the DATA statement.

4-19 DD02

DECODE DECODE

DECODE

A DECODE statement has the following form:

DECODE (a,t,optl) list
where: a is a character scalar, array element, or an array of any type that

indicates the starting location of the internal buffer.
t can be a FORMAT statement number, a character scalar,.or an array name
that provides the format information required for decoding.
optl is the error transfer option, designated as ERR=S1, where SI is the
statement label or switch variable that is to receive control when an
error condition is encountered.
list has the same requirements as the list specified for the READ
statement.

The DECODE statement causes the character string beginning at location a to
be converted to data items according to the format specified by t; and stored
in the elements of the list.

The format information and list should not require more characters than are
in a.

Example:
A(l) = " 1”
DECODE (A,4)I
4 FORMAT (14)
After execution, the array A is not altered but the variable I contains an

integer one.

Example:
10 CHARACTER A*4 (4),B*1 (16)
20 DATA A/4*"ABCD"/,B/16*"X"/
30 DECODE (A,4,ERR=100)B
40 4 FORMAT(4A1)
50 GOTO 11
60 100 PRINT,"ERROR"
70 STOP
80 11 PRINT 9,B
90 9 FORMAT(IX,16A1)
100 STOP
110 END
*RUN
ABCDABCDABCDABCD
Array A is placed into array B.
Additional information on the DECODE statement is contained in Section V

under "Internal Data Conversion".

9/76 4-20 DD02B

DIMENSION DIMENSION

DIMENSION

The DIMENSION statement provides the information necessary to allocate
storage for arrays in the object program, and it defines the maximum size of the
arrays. An array can be declared to have from one to seven dimensions by placing
it in a DIMENSION statement with the appropriate number of subscripts appended
to the variable. The DIMENSION statement has the form:

DIMENSION vidj) /d1/zv2(i2) /d2/r • • • vn (^) /dn/

Each v^ is an array declarator (see "Variables” in Section II) with each v
being an array name. Each i[is composed of from one to seven unsigned integer
constants, integer parameters, or integer variables separated by commas. Integer
variables can be a component of i^ only when the DIMENSION statement appears in
a subprogram, and the array can not be in COMMON. Each /d^/ represents optional
initial data values. The form for each /d£ / is as specified for the DATA
statement.

1. The DIMENSION statement must precede the first use of the array in any
executable statement.

2. A single DIMENSION statement can specify the dimensions of any number
of arrays.

bein a DIMENSION statementIf a variable is dimensioned
dimensioned elsewhere.

4. Dimensions can also be declared in a COMMON or a Type statement. If
this is done, these statements are subject to all the rules for the
DIMENSION statement.

5. The initial data values are optional, and if specified, apply to the
array immediately preceding their declaration.

In the following examples A, B, and C are declared to be array variables
with 4, 1, and 7 dimensions respectively. Note that each element of array B is
initialized to contain the value 1.

DIMENSION A(l,2,3,4),B(10)/10 *1./
DIMENSION C (2,2,3,3,4,4,5)

4-21 DD02

DODO

DO

This statement enables the user to execute a section of a program
repeatedly, with automatic changes in the value of a variable between
repetitions. The DO statement can be written in either of these forms:

DO n i = mpm2
or
DO n i = mj,m£ rm3

In these statements, n must be a statement number of an executable
statement, i must be a nonsubscripted integer variable, and m-pn^mo can be any
valid arithmetic expression. If m^ is not stated, it is understood to be 1
(first form). These parameters (mpir^iTp) are truncated to integers before use.

The statements following the DO up to and including the one with statement
number n are executed repeatedly. They are executed first with i = mp before
each succeeding repetition i is increased by m^ (when present, otherwise by 1);
when i exceeds m^ execution of the DO is ended, and execution continues with the
first executable statement following statement n.

cannot be RETURNThe terminal statement (n)
STOP, or DO statement.

any form)

The terminal statement (n) can be an arithmetic IF statement with at
least one null label field. The null path is a simulated CONTINUE
statement terminating the DO.

3. The range of a DO statement includes the executable statements from
the first executable statement following the DO to and including the
terminal statement (n) associated with the DO.

4. Another DO statement is permitted within the range of a DO statement.
In this case, the range of the inner DO must be a subset of the range
of the outer DO.

5. The values of mi, m2 and m3 must all be nonnegative and m3 cannot be
zero; m^ cannot be the constant zero but can be a variable whose value
is zero. If m? is less than or equal to m, the loop will be processed
once.

6. None of the control parameters, i, m^, or m^, can be redefined
the loop or in the extended range of the loop, if such exists.

within

A completely nested set of DO statements is a set of DO
their ranges such that the first occurring terminal statement of
statements physically follows the last occurring DO statement.

statements and
any of those DO

4-22 DD02

DO DO

If a statement is the terminal statement of more than one DO statement, the
statement number of that terminal statement cannot be used in any GO TO or
arithmetic IF statement that occurs anywhere but in the range of the innermost
DO with that as its terminal statement.

A DO statement is used to define a loop. The action succeeding execution of
a DO statement is described in the following steps:

1. The induction variable, i, is assigned the value represented by the
initial parameter (mj).

2. Instructions in the range of the DO are executed.

3. After execution of the terminal statement the induction variable of
the most recently executed DO statement associated with the terminal
statement is changed by the value represented by the associated step
parameter (m^).

4. If the value of the induction variable after change is less than or
equal to the terminal value, then the action described starting at the
2nd step is repeated, with the understanding that the range in
question is that of the DO, whose induction variable has been most
recently changed. If the value of the induction variable is greater
than the terminal value, then the DO is said to have been satisfied.

5. At this point, if there were one or more other DO statements referring
to the terminal statement in question, the induction variable of the
next most recently executed DO statement is changed by the value
represented by its associated step parameter and the action described
in the 4th step is repeated until all DO statements referring to the
particular termination statement are satisfied, at which time all such
nested DO’s are said to be satisfied and the first executable
statement following the terminal statement is executed.
(In the remainder of this section a logical IF statement containing a
GO TO or an arithmetic IF as its conditional statement is regarded as
a GO TO or an arithmetic IF statement, respectively.)

6. Upon exiting from the range of a DO by the execution of a GO TO
statement or an arithmetic IF statement, that is, other than by
satisfying the DO, the induction variable of the DO is defined and is
equal to the most recent value attained as defined in the preceding
paragraphs. The induction value is always undefined if the upper limit
of the DO is reached; i.e., the DO is satisfied.

4-23 DD02

DO DO

Transfer of Control

The following configurations show permitted and nonpermitted transfers.

Permitted Not Permitted

An example of the DO statement follows:

K = 0
DO 10 I = 1,3
DO 10 J = 1,2
K = K + I + J

10 CONTINUE
where the K values are computed as:

OLD NEW
K I J K

K = 0
K = 0 + l + l = 2
K=2 + l + 2 = 5
K=5 + 2 + l= 8
K=8 + 2 + 2 = 12
K =12 + 3 + 1 = 16
K =16 + 3 + 2 = 21

Extended Range

A DO statement is said to have an extended range if the following two
conditions exist:

1. There exists at least one transfer statement inside a DO that can
cause control to pass out of this DO, or out of the nest if the DO is
nested.

2. There exists at least one transfer statement, not inside any other DO,
that can cause control to return into the range of this DO.

4-24 DD02

DO DO

If both of these conditions apply, the extended range is defined to be the
set of all executable statements that can be executed between all pairs of
control statements, the first of which satisfies the condition of (1) and the
second of (2) . The first of the pair is not included in the extended range; the
second is.

A transfer statement cannot cause control to pass into the range of a DO
unless it is being executed as part of the extended range of that particular DO.
Further, the extended range of a DO may not contain a DO that has an extended
range or a DO with the same induction variable.

When a procedure reference occurs in the range of a DO the actions of that
procedure are considered to be temporarily within that range; i.e., during the
execution of that reference.

NOTE: Use of extended range DO’s should be minimized, especially when
global optimization is desired.

Example:

20 I =
N,M

6,80,6IF

20 CONTINUE

DO
DO

80

GO TO 6

extended range of nested DO

The following illustrate usage of the extended range of a DO. Examples 1
and 2 are permitted; example 3 is not permitted.

Example 1
Permitted

Example 2
Permitted

Example 3
Not permitted

4-25 DD02

DOUBLE PRECISION DOUBLE PRECISION

DOUBLE PRECISION

The DOUBLE PRECISION statement is an explicit type statement with the
following form:

DOUBLE PRECISION a^SjCkj) /dj an*sn(kn)/dn/

where

ai is a variable, array, or FUNCTION subprogram name whose
characteristics are being qualified by this statement.

*S£ is an optional size-in-bytes qualification and is ignored.

ki supplies dimension information necessary to allocate storage to
arrays.

di represents initial data value(s).

This statement is used to declare real data with extended precision. Such
data can also be declared via the REAL statement with a size qualifier of 8 or
more.

The DOUBLE PRECISION statement is more fully described under the Type
statement in this section.

4-26 DD0 2

ENCODE ENCODE

ENCODE

The ENCODE statement has the following form:

ENCODE (a,t,optl) list

where: a is a character scalarr array element, or an array of any type that
indicates the starting location of the internal buffer.
t can be a FORMAT statement number, a character scalar, or an array name
that provides the format information of the sending field for encoding.
optl is the error transfer option, designated as ERR=S1, where SI is the
statement label or switch variable that is to receive control when an
error condition is encountered.
list has the same requirements as the list specified for the WRITE
statement.

The ENCODE statement causes the data items specified by list to be
converted to the character mode under control of the format specified by t; and
placed in storage beginning at location a.

The number of characters generated by the format information and the list
should not be greater than the size of a.

Example:

CHARACTER A*4
1 = 1
ENCODE (A,3,ERR=100)I
3 FORMAT (14)
GO TO 11

100 PRINT, "ERROR”
STOP

11 PRINT 9,A
9 FORMAT (1X,A4)

STOP
END

After execution, array A contains (beginning with the first character
position of A(l)):

where / indicates a blank.

9/76 4-27 DD02B

ENCODE ENCODE

Additional information concerning the ENCODE statement is given in Section
V under "Internal Data Conversion."

NOTE: Any numerical variable in the list whose value is such that it
requires more spaces than are provided in the format specified by i
will be replaced by asterisks in the storage beginning at a, as
described for output in the "Numeric Field Descriptors" paragraph of
Section V. If such use is necessary, as when developing leading
zeros for the character form of a numeric, then judicious use of
CALL NASTRK and CALL YASTRK statements (refer to the "Supplied
SUBROUTINE Subprograms" paragraph of Section VI) will be required to
allow ENCODE to function as intended.

9/76 4-27.1 DD02B

END END

END

The END statement specifies the physical end of the source program. It must
be the last statement of every program and must be completely contained on that
line. END creates no object-program instructions. It has the form:

END

4-28 DD02

ENDFILE ENDFILE

ENDFILE

This statement is operable only for sequential files. Its execution causes
the indicated file to be closed with an end-of-file signal. For an output file,
the buffer(s) is flushed and a file mark is written. Nothing is done for an
input file. (The end-of-file signal is a unique record indicating demarcation of
a sequential file.) This statement has the form:

ENDFILE f

where f is the file reference.

NOTE: If it is necessary to span two lines/cards for this statement, and
if the break is between the letters D and F, then a comment line
cannot appear between the initial and continuation lines.
Specifically, the following is not permitted:

END
COMMENT

1 FILE 3

4-29 DD02

ENTRYENTRY

ENTRY

The general form of the ENTRY statement is:

ENTRY name (bj,b2,...,bn)
or

ENTRY name

Name is the symbolic name of an entry point, unique within the first six
characters.

Each bi is a dummy argument corresponding to an actual argument in a CALL
statement or in a function reference. An ENTRY into a FUNCTION subprogram must
have at least one argument.

An ENTRY into a SUBROUTINE subprogram can have arguments of the form *
indicating nonstandard returns (dummy statement references).

The following rules apply to the use of multiple entry points:

1. All of the rules regarding adjustable dimensions given with
’’Adjustable Dimensions’’, Section II.

2. In a FUNCTION subprogram, only the FUNCTION name can be used as the
variable to return the function value to the using program. The ENTRY
name cannot be used for this purpose.
An ENTRY name can appear in an EXTERNAL statement in the same manner
as a FUNCTION or SUBROUTINE name.
Entry into a subprogram initializes all references in the entire
subprogram from items in the argument list of the CALL or function
reference. (For instance, if, in the example that appears in the
section "Multiple Entry Points into a Subprogram" of Section VI, entry
is made at SUB2, the variables in statement 10 will refer to the
argument list of SUB2.)
The appearance of an ENTRY statement does not alter the rules
regarding the placement of arithmetic statement functions in
subroutines. Arithmetic statement functions can follow an ENTRY
statement only if they precede the first executable statement
following the SUBROUTINE or FUNCTION statement.

6. None of the dummy arguments of an ENTRY statement can appear in an
EQUIVALENCE or COMMON statement in the same subprogram.

4-30 DD0 2

EQUIVALENCE EQUIVALENCE

EQUIVALENCE

The EQUIVALENCE statement is of the form:

EQUIVALENCE (kJ , (k2) r . . . , (kJ

where each k{ is a list of the form:

Each a is either a variable name or an array element name (not a dummy
argument), the subscript of which contains only integer constants or parameter
symbols, and m is greater than or equal to 2. The EQUIVALENCE statement causes
two or more variables, or arrays, to be assigned to the same storage
location(s). EQUIVALENCE differs from COMMON in that EQUIVALENCE assigns
variables within the same program or subprogram to the same storage location;
COMMON assigns variables in different subprograms or a main program and a
subprogram to the same locations.

One EQUIVALENCE statement can establish equivalence between any number of
sets of variables. For example:

DIMENSION B(5),C(10,10),D(5,10,15)
EQUIVALENCE (A,B(1) ,C(5,4)) , (D(l,4,3) ,E)

In this example, part of the arrays C and D are to be shared by other
variables. Specifically, the variable A is to occupy the same location as the
array element C(5,4), and the array B is to begin in this same location; the
variable E shares location D(l,4,3) of the D array.

The following rules apply:

1. Each pair of parentheses in the statement list encloses the names of
two or more variables that are to be assigned the same location during
execution of the object program; any number of equivalences (sets of
parentheses) can be given.

2. When using the EQUIVALENCE statement with subscripted variables, two
methods can be used to specify a single element in the array. For
example, D(1,2,1) or D(p) may be used to specify the same element,
where D(p) references the p^ element of the array. in storage. (See
the discussion "Array Element Successor Function" in Section II.)

4-31 DD0 2

EQUIVALENCE EQUIVALENCE

3. Quantities or arrays that are not mentioned in an EQUIVALENCE
statement are assigned unique locations.

4. Locations can be shared only among variables, not among constants.
5. The sharing of locations requires a knowledge of which FORTRAN

statements cause a new value to be stored in a location. There are six
such statements:

a. Execution of an arithmetic assignment statement stores a new
value in the location assigned to the variable on the left side
of the equal sign.

b. Execution of a DO statement or an implied DO in an input/output
list sometimes stores a new indexing value.

c. Execution of a READ or DECODE statement scores new values in the
locations assigned to the variables mentioned in the input list.

d. Execution of an ENCODE statement stores new values in the
character variable or array locations named as the internal
buf fer.

e. Execution of a CALL statement or an abnormal function reference
may assign new values to variables in common or to arguments
passed to that subprogram.

f. An initial value can be stored in some location via a DATA
statement, or a Data clause in a type statement.

6. Variables brought into a common block through EQUIVALENCE statements
can increase the size of the block indicated bv the COMMON statements,
as in the following example:

COMMON /X/A,B,C
DIMENSION D(3)
EQUIVALENCE (B,D(1))
The layout of storage indicated by this example (extending from the
lowest location of the block to the highest location of the block) is:

4-32 DD02

EQUIVALENCE EQUIVALENCE

7. Since arrays must be stored in consecutive forward locations, a
variable cannot be made equivalent to an element of an array in such a
way as to cause the array to extend below the beginning of a common
block.

8. The rule for making double-word variables equivalent to single-word
variables is:
a. The effect of the EQUIVALENCE statements must be such that the

high-order word of any double-word variable is an even number of
locations away from the start of the data space to which it is
allocated (common or local).

b. The effect of the EQUIVALENCE statements must be such that the
high-order word of any double-word variable is an even number of
words away from the start of any other double-word variable
linked to it through EQUIVALENCE statements.

9. Two variables in one common block
must not be made equivalent.

or in two different common blocks

10. The EQUIVALENCE statement does
mathematically equivalent.

not make two or more elements

11. Equivalenced variables must not appear as dummy arguments in a
FUNCTION, SUBROUTINE, or ENTRY statement.

4-33 DD02

EXTERNAL EXTERNAL

EXTERNAL

The EXTERNAL statement has the following form:

EXTERNAL a^ r a^ t • • • r

where

a- is a subprogram name whose characteristics are being qualified by
this statement.

each a- may be of the form:
f or f(ABNORMAL)

where f is the subprogram name. Use of the second form serves to
define the subprogram f as both EXTERNAL and ABNORMAL (see the
ABNORMAL statement, in this section).

FORTRAN permits the use of a subprogram name as an argument in a subprogram
call. When this is done, the name must be included in an EXTERNAL statement in
the calling program to distinguish the FUNCTION or SUBROUTINE name from a
variable name. The following example illustrates this use in a main calling
program and a subroutine subprogram:

10 FORMAT ("0 SIN(2.0)

EXTERNAL SIN, COS

",F10.6)
Result)

SUBROUTINE SUBR (X,F,Y)
Y = F(X)
RETURN
END

CALL
WRITE

SUBR (2.0, COS
(6,20) RESULT

20 FORMAT ("0 COS(2.0)
STOP
END

", F10.6)

4-34 DD02

FORMAT FORMAT

FORMAT

The FORMAT statement is used in conjunction with formatted input/output
statements and the ENCODE and DECODE statements to provide conversion and
editing information between the internal representation and the external
character string.

A FORMAT statement has the form:
m FORMAT (qx t1z1t2z2. . .tnznq2)
or
m FORMAT (V)
or
m FORMAT ()

where

m is the statement number
q is a series of slashes or empty
t is a field descriptor or group of field descriptors
z is a field separator

The first form is used for formatted input/output under FORMAT control. The
second form is used for formatted input/output under list control, and is
generally called list directed input/output in this manual. The syntax of the
READ, PRINT, and PUNCH statements make it possible to perform list directed I/O
in either of two ways: by omitting a FORMAT reference (e.g., READ,) or by
including a reference to a FORMAT statement of the second form. Only the second
alternative is permitted when used in conjunction with a WRITE statement, since
the syntax of WRITE requires a FORMAT reference. The third form is ignored and
causes no action.

When the first form is used, the following field descriptors are permitted:

pr F w.d
pr E w.d
pr G w.d
pr D w.d
r 0 w
r I w
r L w
r A w
r R w
w H hlh2 ... hw
"hlh2 ... hn"
•hlh2 ... hn1

kNumeric and Logical Field Descriptors

Character Field Descriptors

Tt
wX

Field Positioning Descriptors

4-35 DD02

FORMAT FORMAT

where

p is an optional scale factor designator

r is an optional repeat count
w is the field width, expressed in number of characters

d is the number of fractional places (characters)

h. is a single character
t is a character position, where the positions of a line/card are

numbered 1 through the number present.

The F, E, and G descriptors are for REAL values, D is for DOUBLE PRECISION,
0 is for octal conversion, I is for INTEGER, L is used with LOGICAL values, A, R
and H are for CHARACTER values, X and T are for skipping over text. The
following briefly describes how these descriptors are formed. Note that the last
three, H, T and X, do not require a variable in the input/output list; all
others do.

Fw.d = Real mode without exponent
Ew.d = Real mode with exponent
Gw.d = F or E editing code is taken dependent on value

of output item
Dw.d = Double precision mode
Ow = Field occupies w print positions and is represented

as an octal number of up to 12 digits.
Iw = Integer mode and field occupies w print positions
Lw = Right most position of field w contains T or F

for logical variable
Aw = Field occupies w print positions - Left justified data
Rw = Field occupies w print positions - Right justified data
wH = Hollerith field to occupy w print positions
Tt = Next operation begins with position t of record
wX = Field of width w is blank filled on output, skipped on input

See "Input and Output", Section V for details on the fields of the FORMAT
statement.

4-36 DD02

FUNCTION FUNCTION

FUNCTION

The FUNCTION statement is the first statement of a FUNCTION subprogram. The
type of the function can be explicitly stated by preceding the word FUNCTION
with the type, by the subsequent appearance of the function name in a type
statement, or implicitly by the first letter of the function name. The FUNCTION
statement has the forms:

FUNCTION name (a^, a^, . .., a)
REAL FUNCTION name (a^, a2, • ••/ an)
INTEGER FUNCTION name (a!, a2 , ..., an)
DOUBLE PRECISION FUNCTION name (ap a2, ..., aR)
COMPLEX FUNCTION name (a , a , ..., a)LOGICAL FUNCTION name (aj, a2, a£)
CHARACTER FUNCTION name (a}, a2, ..., an)

where

name is the symbolic name of a single-valued function

the arguments aj, a2 , ..., an (there must be at least one) are
non-subscripted variable or array names or the dummy name of a SUBROUTINE
or FUNCTION subprogram.

Examples:

FUNCTION ARSIN (RADIAN)
REAL FUNCTION ROOT (A,B,C)
INTEGER FUNCTION
DOUBLE PRECISION
COMPLEX FUNCTION
LOGICAL FUNCTION

CONST (ING,SG)
FUNCTION DBLPRE
CCOT (ABI)
IFTRU (D,E,F)

(R,S,T)

1. The FUNCTION statement must be the first statement of a FUNCTION
subprogram. At least one dummy variable must be enclosed in
parentheses.

2. The name of the function must appear at least once in some
definitional context (see EQUIVALENCE statement in this section). This
name cannot be used in a NAMELIST or COMMON statement.

3. Length of character function can be specified as in the following
example:

FUNCTION X(A,B)
CHARACTER X*12

4-37 DD02

FUNCTION FUNCTION

Example:

FUNCTION CALC (A,B)

CALC=Z+B

RETURN
END

By this method the output value of the function is returned to the
calling program.

The calling program is the program in which the function
to or called.

is referred

The called program is the subprogram that is referred to or called by
the calling program.

3. The arguments can be considered dummy variable names that are replaced
at the time of execution by the actual arguments supplied in the
function reference in the calling program. The actual arguments must
correspond in number, order, size and type with the dummy arguments.

4. When a dummy argument is an array name, a statement with dimension
information must appear in the FUNCTION subprogram; also, the
corresponding actual argument must be a dimensioned array name.

5. None of the dummy arguments can appear in an EQUIVALENCE, NAMELIST, or
COMMON statement in the FUNCTION subprogram.

6. The FUNCTION subprogram must be logically terminated by a RETURN
statement (see "Returns from Function and Subroutine Subprograms",
Section VI) and physically terminated by an END statement.

7. The FUNCTION subprogram can contain any FORTRAN statements except
SUBROUTINE, BLOCK DATA, another FUNCTION statement, or a RETURN
statement with an alternate return specified (e.g., RETURN 1).

4-38 DD02

FUNCTION FUNCTION

8. The actual arguments of a FUNCTION subprogram can be any of the
following:

a. A constant.
b. A subscripted or nonsubscripted variable or an array name.

c. An arithmetic or a logical expression.
d. The name of a FUNCTION or SUBROUTINE subprogram.
e. An omitted or null argument, indicated by successive commas.

References to null arguments from within the called function are
undefined.

9. A FUNCTION subprogram is referred to by using its name as an operand
in an arithmetic expression and following it with the required actual
arguments enclosed in parentheses.

10. A FUNCTION subprogram cannot call itself, either directly or
indirectly through some other called subprogram.

11. A FUNCTION name must be unique and limited to 6 characters.

See Tables 6-2 and 6-3 for supplied FUNCTION subprograms.

The following example shows the use of a FUNCTION subprogram:

Calling Program Called Program

X=Y**2+D*CALC(F,G) CALC=

RETURN
END

4-39 DD02

GO TO GO TO

GO TO

GO TO, Unconditional

The unconditional GO TO indicates the next statement to be executed. It has
the form:

GO TO k

where k is the statement number of another statement in the program. When this
statement is encountered, the next statement to be executed is the statement
having statement number k. This statement can be any executable statement in the
program either before or after the GO TO statement subject to the rules for
transferring into and out of DO loops. For example:

GO TO 5

The program continues execution with statement number 5. Control is
transferred unconditionally to statement number 5.

GO TO, Assigned

The assigned GO TO statement indicates which statement is the next to be
executed. The assigned GO TO has the form:

GO TO i, (kx,k2,...,kn)
or
GO TO i

where
i is an integer switch variable
k- are statement numbers

The k’s are optional. If present, the variable i must have been assigned
the value of one of the statement numbers in the parentheses. The next statement
to be executed is the one whose statement number in the parentheses has the same
value as the variable i. If a statement number has been assigned to i that is
not in the list of k's, a compile time diagnostic is generated.

4-40 DD0 2

GO TO GO TO

For example:

ASSIGN 17 TO J
GO TO J, (5,4,17,2)

Statement number 17 is executed next.

GO TO, Computed

The computed GO TO indicates the statement that is
This is determined by using a computed integer value. It

to be executed next.
has the following form:

GO TO (kj ,k2 ,. .. ,kn) ,e

where the k^ are statement labels or switch variables. The expression e is
truncated to an integer at the time of execution. The next statement to be
executed will be k- where i is the integral value of the expression e. If i is
out of range, a message is outputed and execution is terminated. For example:

J = 3
GO TO (5,4,17,1),J
Statement 17 is executed next.

4-41 DD0 2

IF, ARITHMETIC IF, ARITHMETIC

IF, ARITHMETIC

The arithmetic IF statement causes a change in the execution sequence of
statements depending on the value of an arithmetic expression. It has the
following form:

IF (e) k ,k ,k

where e is an arithmetic expression and the k^ are statement numbers, switch
variables or are null (not supplied). When k^ is null, the statement referenced
is the next executable statement in the program.

The arithmetic IF is a three-way branch. Execution of this statement causes
a transfer to one of the statements kj, k2, or k^. The statement identified by
kj, k£, or k3 is executed next depending on whether the value of e is less than
zero, zero, or greater than zero, respectively. Any two of kj, k^, and k^ are
optional, and if null, cause the execution of the program to continue with the
next sequential executable statement after the IF statement.

IF (A(J,K)-B) 10,4,30

IF
IF
IF

(A(J,K)-B) <0 control goes to statement 10
(A(J,K)-B) =0 control goes to statement 4
(A(J,K)-B) >0 control goes to statement 30

4-42 DD0 2

IF, LOGICAL IF, LOGICAL

IF, LOGICAL

The logical IF statement causes conditional execution of a certain
statement depending on whether or not a logical expression is true or false. It
has the following form:

IF(e)s
where e is a logical or relational expression and s is any executable statement
except a DO statement or another logical IF statement. Upon execution of this
statement, the logical or relational expression e is evaluated. If the value of
e is true, statement s is executed. If the value of e is false, control is
transferred to the next sequential statement.
Example:

IF(A.GT.B) GO TO 3
If A is arithmetically greater than B, the execution of the user program

continues with the statement labeled with 3. Otherwise execution continues with
the next sequential executable statement.

If e is true and s is a CALL statement that does not take a nonstandard
return, control is transferred to the next sequential statement upon return from
the subprogram.

The following examples illustrate several uses of the logical IF.
1. IF (A.AND.B) F = SIN (R)

2. IF (16.GT.L) GO TO 24
3. IF (D.LE.Y.OR.X.LE.Y) GOTO (18,20),I
4. IF (Q) CALL SUB
In example 1, if (A.AND.B) is true, compute F and return to the statement

following IF.

In example 2, if (16.GT.L), control transfers to statement 24.

In example 3, if (D.LE.Y.OR.X.LE.Y) is true, control transfers to statement
18 or 20 depending upon whether I is 1 or 2.

In example 4, Q must have been previously typed as LOGICAL. If its current
value is true, control goes to the subprogram SUB. Return is to the statement
following the IF.

4-43 DD02

IF, LOGICAL IF, LOGICAL

If the operator .NE. or .EQ. is contained in a logical IF expression and
both operands are not type integer or character, a warning message appears at
the end of the source listing. The error message indicates that the equality or
non-equality relation between the operands may not be meaningful. This is due to
the fact that floating point arithmetic is not exact for certain fractions.

If the relational expression compares two character strings of unequal
length, the shorter string is left justified and filled with blanks to equal the
length of the longer string before the comparison is made.

4-44 DD0 2

IMPLICIT IMPLICIT

IMPLICIT

The IMPLICIT type statement has the following form:

IMPLICIT type*s(hlzh2,••.)rtype*s (h,h2 f .••)

where: each h£ is a letter or pair of letters (separated
alphabet.

by a dash) of the

Type can be any of the following operators: INTEGER, REAL, COMPLEX, DOUBLE
PRECISION, LOGICAL, or CHARACTER.

*s is optional and designates a length specification for its associated
data type. Length specifications are ignored if 'type is INTEGER, DOUBLE
PRECISION, COMPLEX, or LOGICAL. When type is REAL, a length
specification of eight or more implies DOUBLE PRECISION; when type is
CHARACTER, the length specification is as defined for the CHARACTER
statement.

The IMPLICIT statement is used to redefine the implicit typing. All
variable and function names beginning with a letter specified in the list or
included in the alphabetic interval defined by two letters separated by a dash
are typed as specified in the "Type" field. An IMPLICIT statement supersedes
previous IMPLICIT statements. The IMPLICIT statement must appear before any use
of the variable name being typed. It does not override explicit type
statements.

Examples:

IMPLICIT INTEGER(A-F,X,Y)

Any variable name not typed by an explicit type
appearing in the program following this statement, and
letters A through F, X, or Y, is implicitly typed INTEGER,
the lowercase letters a through f, x, and y.

statement, and first
beginning with the
This also applies to

DOUBLE PRECISION(A-H,O-Z)

Any variable name not typed by an explicit type statement, and first
appearing in the program following this statement, and beginning with the
letters A through H or 0 through Z, is implicitly typed DOUBLE PRECISION. This
also applies to the lowercase letters a through h and o through z.

NOTE: When the IMPLICIT statement immediately follows either a SUBROUTINE
or FUNCTION statement, the dummy arguments are affected by the
implicit typing. This statement syntax is not recommended.

9/76 4-45 DD02B

INTEGER INTEGER

INTEGER

The INTEGER statement is an explicit type statement with the following
form:

INTEGER a*s, (k.) /d,/, a*s? (k?)/d?/, .. . ,a *s (k)/d /
X X J. X Ca La La La 11 11 11 11

where

a. is a variable, array, or FUNCTION subprogram name whose
characteristics are being qualified by this statement.

*S| is an optional size-in-bytes qualification and is ignored.

k- supplies the dimension information necessary to allocate storage to
arrays.

d^ represents initial data value.

The INTEGER statement is more fully described under the Type statement
entry in this section.

4-46 DD02

LOGICAL LOGICAL

LOGICAL

The LOGICAL statement is an explicit type statement with the following
form:

LOGICAL a1 *5, (k ,) /&. /, . . . , a *s (k) /d / 1 1 1' ' 1 ' ' ' n n n ' nz

where

is a variable, array, or FUNCTION subprogram name whose
characteristics are being qualified by this statement.

*s. is an optional size-in-bytes qualification, and is ignored.

k^ supplies the dimension information necessary to allocate storage to
arrays.

d^ contains the initial data value.

The LOGICAL statement is more fully described under the Type statement in
this section.

4-47 DD02

NAMELIST NAMELIST

NAMELIST

The NAMELIST statement has the following form:

NAMELIST/nj /kj/nj /k1/. . ./nn/kn

where each n^ is a NAMELIST name and each k^ contains lists of variables and/or
array names to be associated, for input/output purposes, with the corresponding
NAMELIST names.

The following rules apply to the NAMELIST statement:

1. A NAMELIST name consists of one to eight alphanumeric characters; the
first character must be alphabetic. The name must be unique within the
first six characters.

2. A NAMELIST name is enclosed in slants. The field of entries belonging
to a NAMELIST name ends either with a new NAMELIST name enclosed in
slants or with the end of the NAMELIST statement.

3. A variable name or any array name can belong to one or more NAMELIST
names. Such variable names can also be of one to eight characters
providing they are unique within the first six.

4. A NAMELIST name must not be the same as any other name in the program.
5. A NAMELIST statement defining a NAMELIST name

reference to the name in the program.
6. A dummy argument of a subprogram cannot be used as

NAMELIST statement.
7. The NAMELIST table can accommodate array variables

three dimensions.

must precede any

a variable in a

of no more than

In the following examples, the arrays A, I, and L and the variables B and J
belong to the NAMELIST name, NAM1; the array A and the variables C, J, and K
belong to the NAMELIST name, NAM2.

DIMENSION A(10), 1(5,5), L(10)
NAMELIST /NAM1/A,B,1,J,L/NAM2/A,C,J,K

Additional information on NAMELIST input/output statements is contained in
Section V.

4-48 DD02

PARAMETER PARAMETER

PARAMETER

The PARAMETER statement has the following form:
PARAMETER v, =e,, v9=e9,...,v=en

JL JL Z> ZL * *
where: v^ is a parameter symbol. e^ represents arithmetic expressions

involving only constants and previously defined parameter symbols.

The PARAMETER statement is used to define program constants with the result
of an expression at compilation time. The value of a parameter symbol cannot be
redefined during the execution of a program. A parameter symbol cannot appear
where a constant cannot appear and cannot appear in a FORMAT statement.

The appearance of a parameter symbol in some context is interpreted as if
its equivalent value had appeared instead.

A parameter symbol v may be of type INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, or CHARACTER depending on the type of its defining expression
e. In the following examples, I and J are of type INTEGER, K is REAL, L is
LOGICAL, and M is CHARACTER.

PARAMETER 1=5/2, J=I*3, K = 3.14159, L=.T., M="060171”

The parameter symbol I is initialized to the value 2, the parameter symbol
J is initialized to 6, and the parameter symbol K is initialized to the real
value 3.14159. L has the value .TRUE., while the parameter symbol M is assigned
a CHARACTER equivalence.

The significant difference between a parameter symbol and, say, an ordinary
integer variable that can be initialized with a DATA statement is in the usage.
For example, a parameter variable can be used to supply dimensionality
information.

PARAMETER I = 20
PARAMETER J = 1*4
DIMENSION A(I,J)

DO 100 II = 1,1
DO 100 JJ = 1,J

100 A (II,JJ) = 0.

In this example, A is not an adjustably dimensioned array. It has constant
dimensions of 20 and 80 respectively. The two DO statements have constant
terminal parameter values of 20 and 80, respectively. (Refer to DO statement
description in this section.) I and J are compile time variables, while II and
JJ are execute time variables. The program properties change as the value of
the parameter symbol I changes. To operate on a 10 by 40 array, only the first
line needs to be changed.

9/76 4-49 DD02B

PAUSEPAUSE

PAUSE

The PAUSE statement causes a temporary halt in the execution of the program
until the operator resumes execution. A line is transmitted to the operator
console (or user terminal in time sharing mode) consisting of the word "PAUSE",
and information derived from the PAUSE statement. When the user transmits a
carriage return, execution is continued with the statement following the PAUSE.
If the user transmits "STOP", (or a word beginning with the letter S) execution
halts. It has the form:

PAUSE
or

PAUSE n

where n is an integer or character constant or variable,
limited to five digits.

Integer values are

Examples:

PAUSE
PAUSE 77777
PAUSE I
PAUSE "T00 BAD"
For PAUSE and PAUSE n, where n is an integer, the message displayed is

PAUSE SNUMB snumb - nn
The line number field () contains the line number of the PAUSE
statement or the integer n; snumb is the SNUMB of the job, nn is the
activity number. The SNUMB and activity number are omitted for TSS jobs
running under FORTRAN or YFORTRAN.

For PAUSE n where n is character information, the message displayed is
5

PAUSE
where the field is the character information.

4-50 DD0 2

PAUSE PAUSE

For example:

SUBROUTINE PAWS (IDENT,MESSAGE)
CHARACTER ME SSAGE*8
IF (IDENT),100,
PAUSE IDENT
RETURN

100 PAUSE MESSAGE
RETURN
END

A call to the above subroutine of the form:

CALL PAWS (77777,0)

might display:

PAUSE 77777 SNUMB 1234T-02

A call of the form:

CALL PAWS (0, ’’ERROR 2 7”)

would display:

PAUSE ERROR 27

4-51 DD0 2

PRINT PRINT

PRINT

PRINT, list

This form of the PRINT statement is used for list directed formatted output
to the standard system output device. For a complete discussion of list directed
input/outputr see Section V, "List Directed Input/Output statements.”

PRINT t, list
or

PRINT t

The formatted PRINT statement causes information (list) to be transmitted
to the standard output device and converted according to the format specified in
t. The first character of each record supplied is a control character.

To be classified as a formatted PRINT,
a character scalar, or an array name.

t must be a FORMAT statement number,

PRINT x

The NAMELIST PRINT statement causes the printout of information at the
standard output device in accordance with the NAMELIST group x. For a complete
description of NAMELIST input/output, see Section V.

To be classified as a NAMELIST PRINT, x must be a NAMELIST name.

4-52 DD0 2

PUNCH

PUNCH

PUNCH

PUNCH t, list
or

PUNCH t

The formatted PUNCH statement causes information in punchable form to be
transmitted to the standard output device, converted according to the format
specified in t. (See FORMAT Statement.) To be classified as a formatted PUNCH, t
must be a FORMAT statement number, a character scalar, or an array name.

PUNCH, list

This form of the PUNCH statement is used to transmit list directed
formatted output in punchable form to the standard output device. See Section V
for a complete description of list directed input/output.

PUNCH x

This NAMELIST PUNCH statement, where x is a NAMELIST name, causes formatted
punchable information to be directed to the standard output device. See Section
V for a complete description of NAMELIST input/output.

4-53 DD0 2

READ READ

READ

READ, list

This form of the READ statement is used for list-directed formatted input
from the standard system input device. For a complete discussion of
list-directed input/output, see Section V. A read after a write on the same
file is illegal, but the sequence of WRITE, REWIND, and then READ is legal.

READ t, list
or

READ t

This statement enables the user to read a list referencing format
information (t) that describes the type of conversion to be performed. A
request is sent to the standard input device. The input is converted according
to the format specified in t. The t field can be an integer constant
representing a FORMAT statement number, or a character scalar or array name
containing the FORMAT information (see Section V).

READ x
or

READ (f,x)

This is a NAMELIST input statement where x is a NAMELIST name and f is a
file reference. The first statement causes a read request to be sent to the
standard input device. Input in NAMELIST input format will be accepted. See
Section V for a complete description of NAMELIST input/output.

READ (f,t,optl,opt2) list

This statement, formatted file READ, includes a reference to format
information (t) and a file reference (f)• It can include either or both options
(optl and opt2) and a list specification. The file reference (f) can be an
integer constant, variable, or expression. A file designator of 5 or 41 implies
reference to the standard system input device.

The end-of-file transfer (optl) option is designated as END=S1, where SI is
the statement label that is to receive control when an end-of-file condition is
encountered.

The error transfer (opt2) option is designated as ERR=S2, where S2 is the
statement label or switch variable that is to receive control when any
input/output error is encountered.

The options can appear in any order and SI and S2 can be statement numbers
or switch variables.

9/76 4-54 DD02B

READ READ

READ (f,optl,opt2) list

The unformatted file READ statement is the same as the formatted file READ
except that the FORMAT reference is omitted. This statement applies to
word-oriented serial access files (binary sequential files)•

READ (f'n,optl,opt2)list

This unformatted file READ is for random binary files. The n is an integer
constant, variable, or expression that specifies the sequence number of the
logical record to be accessed.

READ (f,x,optl,opt2)

The NAMELIST file READ statement has a reference to some NAMELIST name (x)
and the list is omitted. This statement causes formatted input to be read in
accordance with NAMELIST group(x).

9/76 4-55 DD02B

REALREAL

REAL

The REAL statement is one of the explicit type statements with the
following form:

REAL a1 *s x (k2) /d2 /, .. . z an*sn (kJ /dR/

where

is a variable, array, or FUNCTION subprogram name whose
characteristics are being qualified by this statement

*si is the size specification. If it is greater than 1, the type is
treated as DOUBLE PRECISION

ki supplies dimension information necessary to allocate storage to arrays

d. is the initial data value

The REAL statement is more fully described under the Type statement in this
section.

4-56 DD02

RETURN RETURN

RETURN

The logical termination of any subprogram is the RETURN statement, which
returns control to the calling program. There can be any number of RETURN
statements in the program.

A RETURN statement is of the form:

RETURN
or

RETURN i

where i is an integer constant or variable that denotes the ith nonstandard
return in the argument list, reading from left to right of the CALL statement
that invoked this (returning) subroutine. The value of i must be a positive
integer no greater than the number of nonstandard returns in that argument list.
When i has the value zero, a normal return is taken (the first of the RETURN
statements shown above).

4-57 DD02

REWIND REWIND

REWIND

This statement refers only to sequential files,
file to be positioned at its initial point. The file
output file. The statement has the following form:

is
causes
closed

the
if

specified
is an

REWIND f

where f is the file reference, f can be an integer constant or variable.

If the file is an output file, an EOF is written before rewinding.

4-58 DD02

STOP STOP

STOP

The STOP statement causes the object-program to
returned to the operating system. It has the forms:

halt and control to be

STOP n
STOP

where n is an integer or character constant or variable.

The action taken when a STOP statement is executed varies with batch and
TSS execution, and the presence of n. STOP n prints on the standard system
output device:

STOP AT LINE n
or

STOP n

the former being displayed when n is an integer, the latter when n is character.
STOP with no identifies .ion (n) goes unrecorded and the program simply
terminates.

4-59 DD02

SUBROUTINESUBROUTINE

SUBROUTINE

The SUBROUTINE statement must be the first statement of a SUBROUTINE
subprogram. The SUBROUTINE statement has the following form:

SUBROUTINE name (a,, ao,a)
or

SUBROUTINE name

where

name is the symbolic name of a subprogram and must be unique within the
first six characters.

Each a^ (if present) is a nonsubscripted variable or array name, the dummy
name of a SUBROUTINE or FUNCTION subprogram, or an * or $ indicating a
nonstandard return.

Examples:

SUBROUTINE COMP (X,Y,*,$,P)
SUBROUTINE QUADEQ (B,A,C,ROOT1, ROOT2)
SUBROUTINE OUTPUT

The SUBROUTINE statement must be the first statement of a SUBROUTINE
subprogram.

2. The SUBROUTINE subprogram can use one or more of its arguments to
return output. The arguments so used must appear in some definitional
content within the subprogram other than a DATA statement (that is not
allowed). See the EQUIVALENCE statement rule 5 for a definition of the
contexts.

3. The arguments can be considered dummy variable names that are replaced
at the time of execution by the actual arguments supplied in the CALL
statement which refers to the SUBROUTINE subprogram. The actual
arguments must correspond in number, order, size and type with the
dummy arguments.

4. When a dummy argument is an array name, a statement containing
dimension information must appear in the SUBROUTINE subprogram; the
corresponding actual argument in the CALL statement must be a
dimensioned array name.

4-60 DD02

SUBROUTINE SUBROUTINE

5. No argument in a SUBROUTINE statement can be included in COMMON,
EQUIVALENCE, NAMELIST, or DATA statements in the subprogram.

6. The SUBROUTINE subprogram must be logically terminated by a RETURN
statement and physically by an END statement.

7. The SUBROUTINE subprogram can contain any FORTRAN statements except
FUNCTION, BLOCK DATA, or another SUBROUTINE statement.

8. The character * or $ appearing in an argument position denotes a
nonstandard or alternate exit from the subroutine.

4-61 DD02

TYPE TYPE

TYPE

The explicit type statements are of the form:

type *b a^*s^(kjJ/d|/,a2*S2(k2)/d2/'•••'an*sn(kn)/dn/

where:
type is one of the following: INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
LOGICAL, or CHARACTER.

b is an optional integer constant size specification and applies to all
variables in the statement unless otherwise specified by S£ . For example:

CHARACTER *10 Cl,C2,C3*12,C4
Cl, C2, and C4 have a length of ten characters. C3 has a length of 12
characters.

whose characteristics
are

is a variable, array, or FUNCTION subprogram name
being qualified by the type statement.

*S£ is an optional, positive integer constant, size
field is ignored for all types except:

specification. This

For REAL type, a size specification, *s, greater than seven is
treated as DOUBLE PRECISION.
For CHARACTER type, the size field, *s, is interpreted as the
maximum number of characters that may be contained by the
CHARACTER element being defined. When this field is omitted, the
size is assumed to be six for BCD programs and eight for ASCII.
S cannot be greater than 500 characters for ASCII or 511
characters for BCD. When s is less than or equal to six, then s
represents the number of characters that are stored in each word.
An adjustable size specification for s is permitted within a
subprogram when both the character variable and its size
parameter(s) are included as formal parameters. Additional
information on adjustable size specifications is contained under
the CHARACTER statement in this section.

(ki), if present, consists of from one to seven integer constants,
parameter symbols, or (for subprograms only) INTEGER variables separated by
commas. This field supplies dimension information (information necessary
to allocate storage to arrays). If this information does not appear in the
type statement, it must appear elsewhere in the program (in a DIMENSION or
COMMON statement).

NOTE: When a type statement immediately follows a SUBROUTINE or
FUNCTION statement, the dummy arguments are affected by the
implied typing.

9/76 4-62 DD02B

TYPE TYPE

/d^/ represents initial data value. The form for d^
DATA statement.

is as specified for the

Thus, meaningful permutations of the above permit:

INTEGER ai(kj)/di/,a 2(kz)/d^/,....,an(kn)/dn/

REAL *b a^ *s j (kj) /dj/, a 2*s £ (k^) / 9 * * • 9 ^n*^n
DOUBLE PRECISION aj(kx)/dx/,a2(k2)/d2/,...,an(kR)/dR/
COMPLEX ax (kx) /d^a^k^ /d2/, . . . /an<kn) /dn/
LOGICAL a,(k)/d /za (k)/d /,...za (k)/d /

XX X Lj Lt Lt xJL IX XX

CHARACTER *b a *s, (k)/d./,a *s (k)/d /,...,a *s (k)/d / 1 1 X X La La La La XX XX XX XX

4-6 3 DD02

WRITE WRITE

WRITE

WRITE (f,t,opt2) list

The formatted file WRITE statement must include a file reference (f) and a
FORMAT reference (t). It can include the option opt2 and a list reference.

A write after a read on the same file is illegal but the sequence of WRITE,
REWIND, and then READ is legal.

The file reference (f) can be an integer constant, variable, or expression.
A designation of 6 or 42 implies the system standard output printing device. A
designation of 43 implies the system standard output punching device.

The FORMAT reference (t) can be an integer constant representing the
statement label of a FORMAT statement, or a character scalar or array element
containing the FORMAT information (see Section V).

The error transfer (opt2) option is designated as ERR=S2, where S2 is the
statement label or switch variable that is to receive control when an error
condition is encountered.

WRITE (f,opt2) list

The unformatted file WRITE statement omits the format reference. It
applies to the output of word oriented serial access files (binary sequential
files). The f, opt2, and list fields are as specified for the formatted file
WRITE.

WRITE (f’n,opt2) list

The random binary file WRITE statement contains a field (n) that specifies
the sequence number of the logical record to be written. n may be a constant,
variable, or expression and must be integer. The f, opt2, and list fields are
as specified for the formatted file WRITE.

WRITE (f,x,opt2)

The namelist file WRITE statement includes a reference to the NAMELIST name
(x). This statement causes character oriented records to be written on the
indicated device. The f and opt2 fields are as specified for the formatted file
WRITE; no list field is included in the namelist file WRITE. See Section V for
a complete description of NAMELIST input/output.

9/76 4-64 DD02B

SECTION V

INPUT AND OUTPUT

GENERAL DESCRIPTION

FORTRAN input/outpUt statements specify the transmission of information
between internal storage and input/output devices.

The ENCODE and DECODE statements, while not actually input/output
statements, are of the same general form as formatted file WRITE and READ
statements, respectively. They differ in that the file reference field of the
READ/WRITE statements provides a storage reference ' for packed character
information with DECODE/ENCODE. The information in this section contains
general information for all of these statements.

The following notation is used in the description of input/output
statements.

list = indication of an input/output list
f = file reference (file code)
t = FORMAT reference
x = reference to a NAMELIST name
a = reference to an internal storage buffer

for packed character data
opt = optional transfer condition

Each inout/output statement can contain an implicit (NAMELIST) or explicit
list of variable names, arrays, and array elements. The named elements are
assigned values on input (or DECODE) and have their values transferred on
output. With ENCODE, the values are converted to character information and
stored in (a).

The list of a WRITE, PRINT, PUNCH, or ENCODE statement can also include
constants and expressions of all types.

The file reference (f) can consist of an integer constant, variable, or
expression that identifies the input/output unit. The value of the integer will
be a two-digit file code, the value of which must be in the range 01 < f < 43. A
file is associated with a device by using the $ file and $ FFILE control cards
or by using the 1fe1 file descriptors of the RUN command described* in Section
III.

The FORMAT reference (t) can be an integer constant representing the
statement number of a FORMAT statement, or the name of a character. scalar or
array element. If a statement number is represented, the identified FORMAT
statement must appear in the same program unit as the input/output statement.
If a character variable name is referenced, the variable must contain FORMAT
information (see "Variable Format Specifications" in this section).

9/76 5-1 DD02B

NAMELIST input/output is indicated by the presence of a NAMELIST name (x)
in the format reference position of the READ, WRITE, and PRINT statements. The
NAMELIST statement(s) defining x and its associated list must appear before any
input/output statements referencing x.

The internal storage buffer, a, applies only to the ENCODE and DECODE
statements. Array names of any type or character variables (scalar or array
element) can be used; however, the latter is preferred.

There are two optional transfer conditions: end-of-file and error. These
are designated as END= and ERR=, respectively. END= can appear in sequential or
random file input statements; ERR= can appear in any input/output statement. A
statement number or switch variable name can follow the equal sign (=). The
order of the transfer conditions is not important. Conditions that can give rise
to an error return include transmission errors or any of the error conditions
described in the File and Record Control manual under "Error Procedures - User
Supplied Routine".

The information transmitted is collected into records that can be formatted
or unformatted. A formatted record consists of a string of permissible
characters in the character set. The transfer of such a record requires that
FORMAT information be referenced, or implied, to supply the necessary
positioning and conversion specifications. The number of records transferred by
the execution of a formatted I/O statement is determined by the list and the
referenced FORMAT statement. A formatted record can be analogous to a print line
or a card image. An unformatted record consists of a string of words.

List directed formatted input/output can be specified by a FORMAT statement
of the form FORMAT(V) or can be implied by the form and content of the
input/output statement.

Input/output statements are grouped as follows:

1. System device input/output statements.

a. Formatted Input - Permits entering information from the standard
input device with reference to a FORMAT statement.

b. Formatted Output - Permits transfer of information to the
standard output device with reference to a FORMAT statement.

c. Formatted Punch - Permits transfer of information in punchable
form to the standard output device with reference to a FORMAT
statement.

d. List Directed Input - Permits entering information from the
standard input device without reference to a FORMAT statement.

e. List Directed Output - Permits transfer of information to the
standard output device without reference to a FORMAT statement.

f. List Directed Punch - Permits transfer of punchable information
to the standard output device without reference to a FORMAT
statement.

g. NAMELIST Input - Permits entering information from the standard
input device with reference to a NAMELIST name.

h. NAMELIST output - Permits transfer of information to the standard
output device with reference to a NAMELIST name.

5-2 DD0 2

2. File input/output statements,
a. Formatted Read/Write Statements - These statements include a

FORMAT reference, the file reference, possibly an. end-of-file
option, an error return option, and/or a list specification. List
directed 1/0 is accomplished via the FORMAT (V). Namelist I/O is
accomplished with a NAMELIST name as a format reference.

b. Unformatted. Read/Write Statements - These statements refer to
binary word oriented sequential and random files.

3. Manipulation input/output statements - These statements are for file
operations relating to positioning and file demarcation, and can be
used to operate on sequential access files only.

4. FORMAT and NAMELIST statements - These two nonexecutable statements,
are used with the formatted input/output statements.
The FORMAT statement specifies the arrangement of data in the
input/output record. If the FORMAT statement is referred to by.a READ
statement, the input data must meet the specifications described in
"Data Input Referring to a FORMAT Statement" in this section.
The NAMELIST statement specifies an input/output list of variables
and/or arrays. Input/output of the values associated with the list is
effected by reference to the NAMELIST name in a READ, PRINT or WRITE
statement. If the NAMELIST name is referred to by. a READ , statement,
the input data must meet the specifications described in Data Input
Referring to a NAMELIST Statement" in this section.

File Designation

In the source program, files can be designated by any integer expression,
the value of which must be in the range of 1 to 43. The equation of a numeric
file designation with some actual device is accomplished via standard GCOS file
allocation control cards, using a two digit file code of the same integer value
as the corresponding file designator. Thus WRITE (6,100) references file code 06
at run time.

Since
statements

the file designator can be any
also reference file code 06.

integer expression, the following

1 = 5
WRITE (1+1, 100)

Five specific file designators are predefined for all FORTRAN programs
(these definitions can be overridden by the programmer): 05 designates the
standard input file (file code I*); 06 refers to the standard output file (file
code P*); and 41, 42, and 43 are referenced by the READ, PRINT, and PUNCH
statements: 41 references the standard input file (I*); 42 the standard output
file (P*) with printer destination; and 43 the standard output file (P*) with
punch destination.

5-3 DD0 2

The default assignment of devices for the standard system file designators
05, 06, 41, 42, and 43 is as described above when the execution is done in a
batch environment. In time sharing the default device of all of these file codes
is the time sharing terminal. Allocation of actual files (versus the terminal)
for one or more file designators is accomplished via the fe file list of the RUN
command. In this list, the user supplies a descriptor for each file to be used
by the object program. The names of all such files must be a 2-digit file code
(nn) in the interval 01 < nn <43. Unless the file has been created with a name
which is the 2-digit file code, it will be necessary to specify the file code as
an alternate name. Suppose, for example, a program has an input statement of the
form: READ (5,100) I,J,K. Normal time sharing execution of this program will
access the terminal for input values for I, J, and K. However, if the program is
initiated with a RUN command such as

RUN PROGRAM # INPUT "05”

then the user’s catalog is searched for
accessed, and the AFT name for the file
statement thus reads the file INPUT for

the file named INPUT, that file is
will be 05. Execution of the above READ
its values of I, J, and K.

Conversely,
operations would
the catalog file

given a statement
be on a file, the
descriptor, e.g.,

of the form READ
user can specify

(10,100)... where
terminal input by

typical
omitting

RUN PROGRAM # "10"

If any given file descriptor consists only of an unquoted 2-digit logical
file code, a temporary file is created for the user unless a quick-access
permanent file with the same name already exists. The PERM command can
subsequently be used to make the temporary file permanent. Alternatively, such
temporary files can be made permanent at the time the user logs off.

For example:

RUN PROGRAM #10

If no file exists in the user’s catalog of the name 10, a temporary file is
created with that name, and I/O directed to file designator 10 is routed to the
temporary file.

More detail on the fe list and file
Section III in the discussion of the RUN

allocation for time sharing is given in
command.

List Specifications

When arrays or variables are to be transmitted, an ordered list of the
quantities to be transmitted must be included either in the input/output
statements or the referenced NAMELIST statements. The order of the input/output
list must be the same as the order in which the information exists or is to
exist on the input/output medium.

5-4 DD02

An input/output list is a string of list items separated by commas. A list
item can be:

1. An expression (output only)
2. An implied DO
3. An array name
4. A scalar
5. A constant (output only)

6. An array element

An input/output list is processed from left to right. Parenthesized
sublists are permitted only with implied DO’s; redundant parentheses result in a
fatal diagnostic.

Examples: A, B, C*D**E, 1.2, SQRT (14.6), F(K,K)

Consider the following input/output list utilizing nested implied DO’s:

A,B(3) ,(C(I) ,D(I,K) ,1=1,10) ,
((E(I,J), 1=1,10,2),F(J,3),J=1,K)

This list implies that the information in the external input/ouptut medium
is arranged as follows:

A,B(3),C(1),D(1,K),C(2),D(2,K),....,C(10),D(10,K),
E(l,l),E(3,1),....,E(9,1),F(1,3),
E(l,2) ,E(3,2) ,. .. . ,E(9,2) ,F(2,3) ,E(1,3) ,...,F(K,3)

The execution of an input/output implied DO list is exactly that of a DO
loop, as though each left parenthesis (except expression and subscripting
parenthesis) were a DO, with indexing given immediately before the matching
right parentheses, and the DO range extending up to that indexing information.
The order of the input/output list above can be considered equivalent to the
following:

A
B(3)
DO 5 1=1,10
C(I);5 D(I,K)
DO 9 J=1,K
DO 8 I=l,10,2;8 E(I,J);9 F(J,3)

Any number of quantities can appear in a single list. If more quantities
are in some input record that in the list, only the number of quantities
specified in the list are transmitted, and the remaining quantities are ignored.
Conversely, if a list contains more quantities than are given in one input
record, more records are read and/or blanks are supplied, depending on the
FORMAT statement. In this case, blanks are supplied until the FORMAT triggers
the record advance. Thus given a list of known length and a well defined FORMAT,
it can be accurately predicted how many records will be read, regardless of the
record lengths on file.

5-5 DD02

Consider the following example:

CHARACTER A*1 (50)
READ (5,100) (A(I),1=1,50)

100 FORMAT (50A1)

This will read only one record. If less than 50 characters are present in
that record, the remaining elements of A will be blank filled. By changing the
format to 100 FORMAT(Al) the effect will be to read 50 records using the first
character of each record to fill the array. It is the right parenthesis that
causes the record advance. Alternately, a slash can be used to trigger a record
advance. Refer to "Multiple Record Formats" in this section.

By specifying an array name in the list of an input/output statement or a
NAMELIST, an entire array can be designated for transmission between storage and
an input/output device. Only the name of the array need be given and the
indexing information can be omitted. For example:

DIMENSION A(5,5)

READ,A

In the above example, the READ statement shown reads the entire array A;
the array is stored in column order in increasing storage locations, with the
first subscript varying most rapidly, and the last varying least rapidly.

LIST DIRECTED FORMATTED INPUT/OUTPUT STATEMENTS

The following input/output statements enable a user to transmit a list of
quantities without reference to a NAMELIST name or a detailed FORMAT
specification. The type of each variable in the list determines the conversion
to be used.

READ t, list
PUNCH t, list
PRINT t, list
READ , list
PRINT , list
PUNCH , list
READ (f,t,optl, opt2) list
WRITE (f,t,opt2) list

5-6 DD0 2

In all cases where a format reference (t) is supplied, the format must be
of the form FORMAT (v). The t can be a FORMAT statement number, a character
scalar, or an array name. The table of implied format conversions used for list
directed formatted input/output is as follows:

m = maximum size

TYPE OF VARIABLE INPUT OUTPUT

Real E (or F) w.d OPE 16.8
Integer Iw 116
Logical Lw L2
Double-Precision D w. d 0PD 26.18
Complex 2Fw. d 0P2E16.8
Character Am Am

With list directed formatted input, record control is determined solely by
the list. If some record (terminal input line, for example) is terminated and
the list is not satisfied, another record (line) is read. This process continues
until the list is satisfied.

The input information must satisfy the following rules:

1. Numeric and character input values are separated by commas or blanks.
2. Blanks following exponent indicators E, D, or G are not considered as

separators.
3. Quotes (’’) or apostrophes (’) can be used to bracket a character input

value that contains embedded blanks or commas. In this case, the
quotes are delimiters and should not be followed by a comma unless the
intent is to define a null field after the bracketted data.

4. A given input value must be fully contained on one input line.
5. Consecutive commas, an empty line, or the appearance of a.comma as the

last character of a line imply null input fields. Conversion of a null
field is a function of the corresponding list item type and is shown
in the following table:
TYPE VALUE

Integer 0
Real 0.0
Double Precision 0.D0
Complex (0,0)
Logical F
Character all blanks

6. When the input device is a time sharing terminal, an end-of-file
condition may be signaled by transmitting a file separator character
(e.g., in models 33 and 35 teletypewriters, control, shift, L) as the
only character of a line (other than the terminal carriage return).

With list directed formatted output, record control is determined by the
list and the standard line lengths. With BCD files, the standard line length is
132 characters; with ASCII files, the standard length is 72 characters. A new
line/record is started when the next list item to be transmitted will not fit
entirely on the current line. For example; if information has been formatted to
character position 60 of some ASCII line and the next item in the list is an
integer (implied 116 format), a new line is started.

5-7 DD02

Namelist Input/Output Statements

The NAMELIST statement and various forms of the NAMELIST input and output
statements provide for the input and output of groups of variables and arrays by
referring to a single name. NAMELIST names must conform with the same naming
rules as normal variables and arrays except there is no type associated with the
name and the name must be unique within six characters. A NAMELIST name must not
be the same as any other variable, procedure, or array name in the subprogram
defining it.

Each list that is mentioned in the NAMELIST statement is given a NAMELIST
name. Therefore, only the NAMELIST name is needed in an input/output statement
to refer to that list.

The NAMELIST statement has the general form:

NAMELIST /n1/k1/n2A2/-••

where each n^ is a NAMELIST name and each is a list of variable and/or array
names to be associated, for input/output purposes, with the corresponding
NAMELIST names. The NAMELIST statement is fully described in Section IV.

NAMELIST Input

This statement has the following forms:

READ (f,x,optl,opt2)
READ x

where f is a file reference, and x is a NAMELIST name,
read request to be sent to file f; the second issues
standard input device.

The first form causes a
a read request to the

NAMELIST Output

This statement has the following forms:

WRITE(f,x,opt2)
PRINT x
PUNCH x

where f is a file referenced and x is a NAMELIST name. This statement causes
printout of information on file f in the first form, or in the second on the
standard output device, in accordance with the contents of the NAMELIST group x.
The third form also directs output to the standard output device but in
punchable format.

5-8 DD02

Data Input Referring to a NAMELIST Statement

When a READ statement refers to a NAMELIST name, the designated input
device is readied and input of data is begun. The first incut data record is
searched for a $ immediately followed by the NAMELIST name, immediately followed
by a comma or one or more blank characters. If the search fails, additional
records are examined consecutively until there is a successful match or
end-of-file. When a successful match is made of the NAMELIST name on a data
record and the NAMELIST name referred to in a READ statement, data items are
converted and placed in storage.

Any combination of four types of data items, described in the following
text, can be used in a data record. Empty fields (detected as one of the pairs
(=,), (JzS,), or (,,)) cause an invalid word to be stored. The data items must be
separated by commas. If more than one physical record is needed for input data,
the last item of each record must be followed by a comma. The end of a group of
data is signaled by a $ following the last item either in the same data record
as the NAMELIST name or anywhere in any succeeding records. The $ can replace
the comma following the last data item. Data is restricted to columns 1 through
72 if the record is card image (media code 2); otherwise, data can appear
anywhere in the record. The $ that indicates the end of a logical record of
input data cannot appear in column 1 since GCOS input processing will retain it
as a pseudo control card, thus deleting it from the input data file.

The form that data items can take is:

1. Variable name = constant
CON =17.5
X(6) = 26.4
where the variable name can be an array element name or a simple
variable name. Subscripts must be integer constants.

2. Array name = set of constants (separated by commas)

X = 1.,2.,3.,5*6.3
where k* constant can be included to represent k constants (k must be
an unsigned integer). The number of constants must be equal to the
number of elements in the array.

3. Subscripted variable = set of constants (separated by commas)
Y(4) = 9.,6.,10*1.8
where k* constant can be included to represent k constants (k must be
an unsigned integer). A data item of this form results in the set of
constants being placed in array elements, starting with the element
designated by the subscripted variable.
The number of constants given cannot exceed the number of elements in
the array that are included between the given element and the last
element in the array, inclusive.

4. Variable 1/Variable 2 = constant (s)
where Variable 1 is a counter that is set after the data has been
input, indicating the number of constants that have been stored for
Variable 2.

9/76 5-9 DD02B

Constants used in the data items can take any of the following forms:

1. Integers, e.g., 1,2,3
2. Real numbers, e.g., l.,2.,3.3

3. Double precision numbers, e.g., -263D15
4. Complex numbers, that must be written in the usual form,

where Cl and C2 are real numbers.
(C1,C2),

5. Logical constants, that must be written as
.FALSE.

T or .TRUE. , and F or

6. Character data written nH... or 1 ...’ where the character string does
not exceed the space available on the card. This cannot be used with a
repeat count.

Logical or complex constants should be associated only with logical or
complex variables, respectively. Character data can be associated with any type
of variable. The other types of constants can be associated with integer, real,
or double precision variables and are converted in accordance with the type of
variable. With the exception of the character data, blanks must not be embedded
in a constant or repeat count field, but they can be used freely elsewhere
within a data record.

Any selected set of variable or array names belonging to the NAMELIST name,
referred to by the READ statement, can be used as specified in the preceding
description of data items. Names that are made equivalent to these names cannot
be used unless they also belong to the NAMELIST name.

First Data Card
1 456
$NAM1 I(2,3)=5,J=4.2,B=4,

Second Data Card A(3)=7,6.4,L=2,3,8*4.3$

If the data cards are to be processed by System Input, the $
appear in column one. This results in an ambiguity with respect
cards.

should not
to control

If this data is input to be used with the NAMELIST statement previously
illustrated (in Section IV, NAMELIST statement) and with a READ statement, the
following actions take place. The input file designated in the READ statement is
prepared and the next record is read. The record is searched for a $ immediately
followed by the NAMELIST name, NAM1. Since the search is successful, data items
are converted and placed in storage.

The integer constant 5 is placed in 1(2,3), the real constant 4.2 is
converted to an integer and placed in J and the integer constant 4 is converted
to real and placed in B. Since no data items remain in the record, the next
input record is read. The integer constant 7 is converted to real and placed in
A(3), and the real constant 6.4 is placed in the next consecutive location of
the array, A(4). Since L is an array name not followed by a subscript, the
entire array is filled with the suceeding constants. Therefore, the integer
constants 2 and 3 are placed in L(l) and L(2), respectively, and the real
constant 4.3 is converted to an integer and placed in L(3), L(4),..., L(10). The
$ signals termination of the input for the READ operation.

5-10 DD02

Data Output Referring to a NAMELIST Statement

When data is output via NAMELIST, e.g., WRITE (6 ,NAM1) , all variables
associated with LIST, as specified in the NAMELIST statement, will be output.
The output values are labeled with an appropriate variable name.

The format of the output can appear with or without comma separators.
Output directed to file 43 includes commas and therefore is in agreement with
the NAMELIST input format. Output can be directed to file 43 by either the PUNCH
statement or a WRITE statement referencing file 43. Output directed to a file
other than 43 do not include comma separators and therefore cannot be processed
by NAMELIST input. Figures 5-1 and 5-2 contain an example program and sample
output from that program in the latter format.

5-11 DD02

1
2
3
4
5
6
7
8
9

10
11
12
13
14

16IT
18
19
20
21
22
23
24
25
26
27
28
29
30
31

33
A4
35
36
37
38

”08015 1 09-Q9-74 TEST PROGRAM FOR NAMELIST OJT-’UT

C TEST PROGRAM FQR NAME' 1ST OUTPUT
I M T F G E R I N T (1 0) , K L M
R p A L X (1 0) , Y , Z
Complex Cc(5), Cpx
DOUBLE PRECISION DBX(IO), Pj, DDELTA
LOGICAL LL <150)
NAMFL I ST/SET1/I NT,X
NAMFLIST/SET2/INT,DBX,pI,DS02,DSQ3
'VAMFl I ST/SET3/LL » CC , CPX » Y» Z » RSQ2 » RSO3 , KLM , P I
Data CC/5*(1.2,-3.5)/
DATA LL/25».TRUE.,25*.FALSE. ,25*.TRUE. , 2^* . F ALSETT^TtrUF. ,

x 25*.false./
PI = 3.14159265358979323846
CPX = (. 333333, •666666)
Y = REAL(CPX)
Z = A I MAG(CPX)
KLM = 32768
DO 9 1=1,10
DELTA = I
DDELTA = DELTA
INT(I) = I
X(1) = SORT(DELTA)

9 DBX(I) = DSORT(DDELTAj
RSQ2 = x<2) **2
RSQ3 = x(3) «*2
DSQ2 = DBX(2) **2
DSQ3 = HRX(3) ##2
H R I T_E (6,10)

10 F ORM A T 1 Hl , 1 0 X , 4 4 HN A ME L I ST OUT PU f dr“?fxED~'oT and'real ARRAYS)
WRITE(6,SET1)
HR ITE(6,11)

11 FORMAT(1H0,10x,28HEXAMPLE 2 OF NAMELIST OUTPUT)
HR I tE(6,SET2)
HR ITE(6,12)

12 FORMAT (1 HO, 10 X, 9 HEX AMPLE 3~)~
HRITE(6,SET3)
STOP
END

Figure 5-1. Test Program for NAMELIST Output

5-12 DD02

Va
^l

TS
T ou

tp
u

t of
 fix

ed
 pt

A
N

D
 rea

l ar
r

ay
s

oj
I

LT)

o
^4

tp
-H

5-13 DD02

NA
ME

LI
ST

 O
ut

pu
t

of
 F

ix
ed

 P
oi

nt
 A

nd
 R

ea
l

Ar
ra

ys

Formatted Input/Output Statements

These statements include a FORMAT reference, can include a file reference,
either or both options 1 and 2, and a list specification. These statements
pertain to character oriented sequential files. The formatted file statements
have the following forms:

READ t, list
PRINT t, list
PUNCH t, list
READ (f,t,optl,opt2)list
WRITE (f,t,opt2)list

where: t is the format reference.
f is the file designator and can be any integer expression.

A file designator of 5 or 41 for input, or 6, 42, or 43 for output implies
a reference to the standard input/output devices.

Unformatted Sequential File Input/Output Statements

The unformatted sequential file input/output statements have the following
forms:

READ (f,optl,opt2) list
WRITE (f,opt2) list

The format reference is omitted and optl, opt2, and list are optional.
These statements apply to word oriented serial access files (binary sequential
files) .

Unformatted Random File Input/Output Statements

The forms for random binary file references are as follows:

READ (f’n,opt2)list
WRITE (f1n,opt2)list

where: n is an integer constant, variable, or expression that
sequence number of the logical record to be accessed.

specifies the

The major difference between the unformatted sequential and unformatted
random file operations is in the mode of access to the file. To write a file
with the random WRITE statement, the file must be accessed as random. Any
attempt to apply a random READ/WRITE statement to a file accessed as sequential
causes a program to terminate abnormally.

9/76 5-14 DD02B

Linked files in time sharing can be accessed in a random mode using the
ACCESS subsystem. For example, at the build mode level:

*ACCESS AF,/X"02”,MODE/RANDOM/,R
*RUN#02
This is particularly useful when reading a FORTRAN created, standard system

format, unformatted sequential file using random READ statements. Each record in
the sequential file must be the same length.

Linked files in batch mode can be accessed in a random mode using a CALL
ATTACH and specifying random mode.

Unformatted random files created by FORTRAN are normally recorded in
standard system format (see File and Record Control reference manual)•

Random files can also be written in a "pure data" format, without block
serial numbers or record control words. This can be accomplished by one of the
following:

$ FFILE U,NOSRLS,FIXLNG/N
or

CALL RANSIZ(U,N,1)
U and N are the file unit number and logical record size parameters.

It is a requirement that FORTRAN random files have a constant record size.
Further, before any random I/O can be performed on any given file, its record
size must be defined. This is accomplished with either a $ FFILE control card or
with a CALL to the (library) subroutine RANSIZ. Three arguments may be supplied:
the first is a file reference, the second provides the record. size. Each .of
these arguments can be any integer expression and are required. The third
argument is zero or not supplied when the file is in standard system format. A
nonzero value specifies a pure data file. For example:

CALL RANSIZ (08,50)
This statement specifies that file code 08 has a constant record size of 50

and is in standard system format.

File Properties

Sequential Files - A sequential file can contain zero, one or more records
accessed in a sequential manner.

Random Files

File Updating

Record Sizes

- A random file consists of records, each of which is
addressable; i.e., each record can be accessed without
repositioning the file. Each record in the random file must
be of the same length.

- Input-output routines with random files permit replacement of
individual records in a file. The execution of all random
file WRITE statements is considered a record replacment.

- Random files have records, all of the same length.

5-15 DD0 2

FILE HANDLING STATEMENTS

File handling statements provide for the manipulation of input/output
devices for positioning of sequential files and demarcation of sequential files.
The following file handling statements are described in Section IV:

REWIND
BACKSPACE
ENDFILE

INTERNAL DATA CONVERSION

The ENCODE and DECODE statements are similar to the formatted WRITE and
READ statements respectively except the ENCODE/DECODE statements do not cause
input/output to take place. They cause data conversion and transmission to take
place between an internal buffer area and the elements specified by a LIST. The
forms of the ENCODE and DECODE statements are:

ENCODE
DECODE

(a,t)list
(a,t)list

where a is the internal buffer and t is a format designator.

The buffer area is designated by the first operand within the parentheses.
It can be given as:

1. A character scalar

2. A character array element
3. An array

When the buffer area is designated as
analogous to a print line for ENCODE where
buffer area in characters. For DECODE, the
analogous to a card or record image, where
of the buffer in characters.

a scalar, it can
the print line is
buffer area can
the record size is

be considered as
as long as the

be considered as
equal to the size

MULTIPLE RECORD PROCESSING

An analogy can be drawn between character array elements and records.
Consider the following example that converts character data to integer type:

CHARACTER TEXT*48(10)
INTEGER DATA (50)
DO 100 1=1,50,5

100 DECODE (TEXT(1/5+1),101)(DATA(J),J=I,1+4)
101 FORMAT (517)

Examination of the format and list reveals that 50 items are to be
converted, 5 items per record, hence 10 records are required. The character
array TEXT has 10 elements that are treated as records, each element being 48
characters long. The format requires 35 characters of each element (5x7), thus
the first 35 are processed.

5-16 DD02

The same can be accomplished by letting the list and format specification
cover the full 10 records as follows:

CHARACTER TEXT *48(10)
INTEGER DATA (5 0)
DECODE (TEXT,10) DATA

10 FORMAT (517)

In a BCD mode program (six characters per word) t the same could also be
accomplished with an internal buffer of type INTEGER as follows:

INTEGER TEXT (8,10), DATA(50)
DECODE (TEXT,10) DATA

10 FORMAT (517)

If the same program is compiled in the ASCII mode, the format specification
describes 35 character records, while the array has provisions for only 32 (8*4)
characters per "record". This word size/byte size problem is eliminated by the
character data type since

CHARACTER TEXT *48(10)

is valid for both modes. In BCD, the equivalent of an 8 x 10 array is allocated;
in ASCII, the equivalent of a 12 x 10 array is allocated. The source program is
character set independent. For this reason the preferred type of the internal
buffer argument of the ENCODE and DECODE statements is CHARACTER. Warning
diagnostics are posted when this is not the case, as in the third example.

EDITING STRINGS WITH ENCODE

With ENCODE, characters not processed are left
example demonstrates this feature.

unchanged. The following

10
20

CHARACTER TEXT*20
TEXT = "WOW IS THE TIME FOR "
ENCODE (TEXT,10) "NOW"
FORMAT (A3)
PRINT, TEXT, "ALL GOOD MEN’’
STOP;END

Execution of statement 20 causes the following to be printed:

NOW IS THE TIME FOR ALL GOOD MEN

5-17 DD0 2

If the editing is intended to be used to skip characters, the T format
should be used rather than the X format (the X format would cause blanks to be
inserted into the string). For example:

10 CHARACTER TEXT*40
20 TEXT = "NOW IS THE TIME FOR ALL GOOD MEN"
30 ENCODE(TEXT,10) "PERSONS"
40 10 FORMAT (T30,A7)
50 PRINT, TEXT
6 0 STOP;END

The execution of this program causes the following to be printed:

NOW IS THE TIME FOR ALL GOOD PERSONS

9/76 5-17.1 DD02B

CONDITIONAL FORMAT SELECTION

A problem common in FORTRAN programs arises when the format of the next
record cannot be determined without first reading it. This problem can be
overcome through the capability of the DECODE statement. As an example, consider
that input to a program is in card form, and the cards come in one of three
formats. When card column 1 contains a 0, the first format is to be applied;
when it contains a 1 the second; and 2 the third. The following subroutine could
be used:

SUBROUTINE READ (A,I,Z)
CHARACTER CARD*79
READ 101,KOL1,CARD

101 FORMAT(II,A79)
GOTO (200,300,400),KOL1+1

200 DECODE (CARD,201) A,I,Z
201 FORMAT (Til,F12.6,3X,15,E12.6)

RETURN
300 DECODE (CARD,301) A,Z,I
301 FORMAT (T11,2F12.6,3X,15)

RETURN
400 DECODE (CARD,401)I,A,Z
401 FORMAT (T51,I5,2E12.6)

RETURN ; END

CONSTRUCTION OF FORMATS WITH ENCODE

Another similar problem has to do with the building of format
specifications at run time for subsequent use in input processing. As an
example, consider that some data file is interspersed with control cards that
specify the amount and format of ensuing data. The first field of the control
card gives the number of data items that is read; the second gives the number of
fields per card (up to 20) or is zero indicating "use the previously developed
format"; the remaining fields on the control card come in pairs and provide "w"
and "d" sizes for "F" Format specifications needed for correct conversion of
each data item; the control card is in free-field format with comma separators.
The following subroutine reads and verifies control cards, builds format-
specifications, and reads a set of data:

SUBROUTINE READ (A,I)
DIMENSION A(I)
INTEGER WD(40)
CHARACTER FORM*80/" "/
READ,N,J,(WD(L),L=1, MINO(2*J,40))
IF (N.GT.I .OR. N.LT. 1) STOP "ITEM COUNT ERROR"
IF (J.GT.20 .OR. J.LT.0) STOP "FIELD COUNT ERROR"
IF (J.EQ.O .AND.FORM.EQ." ")STOP "UNFORMED FORMAT ERROR"
IF (J),200,
NCOL = 0
DO 50 L=1,2*J,2
IF (WD(L+1).LT. 0 .OR. WD(L+l).GT.8)GO TO 300
IF (WD(L).LT. WD(L+l)+2) GO TO 300

5-18 DD02

50 NCOL =NCOL + WD (L)
IF (NCOL .GT. 80)STOP "COLUMN COUNT ERROR"
FORM=" "
ENCODE(FORM,101)("F",WD(L),WD(L+l),",",

&L=1,2*J-2,2),"F",WD(2*J-l),WD(2*J),")"
101 FORMAT("(",20(Al,12,".",12,Al))
200 READ(05,FORM)(A(L),L=1,N)

RETURN
300 PRINT 301, (L+l)/2, WD(L),WD(L+l)
301 FORMAT ("1 FORMAT SPEC #",I3," IN ERROR. W=",15," D=",I5)

STOP" FIELD DESCRIPTOR ERROR"
END

The above examples also illustrate the use of a number of other FORTRAN
language features, most notably:

1. Expressions used:
a. as DO parameters

b. in an output list

c. as the index of a computed GO TO

2. The CHARACTER data type and A format specifiers for long strings.

3. Adjustable dimensions.
4. The T (tabulation) format specifier.

5. Null label fields on an arithmetic IF.
6. STOP with display.

Note also that the use of CHARACTER scalars of arbitrary size eliminates
program dependency on character set. The above subroutine will run in ASCII or
BCD mode, without change.

OUTPUT DEVICE CONTROL

In the absence of a NOSLEW option on a $ FFILE control card (batch mode
only), the spacing of the printing on the output device is controlled by the
first character of the line of output. The first character is not printed but
is examined to determine if it is a control character to regulate the spacing of
the output device. If the first character is recognized as a control
character, the line is printed after the proper spacing has been effected. In
any event, it is deleted when the line is printed. This control affects
printers, terminals, and displays. When FORMAT (V) is used, either explicitly
or implicitly, a first character is inserted to advance the printer to the next
line.

9/76 5-19 DD02B

The control characters produce the following effects:

First
Character

0

1

&

Any other

Effect
Causes one blank line to be inserted to provide double
spacing.
Causes an overprint. In batch, no advance to the next
line occurs. In time sharing, a carriage return is
obtained but no line feed occurs.
Causes a slew to the top of the next page before
printing (batch mode only).
Suppresses carriage return and line feed. No fill
characters are inserted (time sharing mode only).
Causes single line spacing.

NOTE: If a question mark character or an exclamation point character is
encountered in any position on the print line, these characters will
be interpreted as special printer control characters. Refer to the
File and Record Control manual for additional information.

9/76 5-19.1 DD02B

FORMAT SPECIFICATIONS

Field Separators

The format field separators are the slash and the comma. A series of
slashes is also a field separator. The field descriptors or group of field
descriptors are separated by a field separator.

The slash
demarcation of
external medium

is used to separate field descriptors and to specify a
formatted records. The length of the strings for a given

are limited by the processor and the external medium.

The processing of the number
record by an external medium does
of processing of the next record.

of characters that can be contained in a
not itself cause the introduction or inception

Repeat Specification

It is possible to repeat a field
tabulation control, nH and nX) by writing a
Thus the field specification 3E12.4 is the

descriptor (except quoted strings,
repetition number in front of it.
same as writing E12.4, E12.4, E12.4.

It is also possible to repeat a group of field descriptors by enclosing the
group in parentheses and preceding the left parenthesis with the repeat count.
If no count is specified, a repeat count of one is assumed. For example, if
four fields on a card are alternately described as F10.6 and E10.2, this can be
written as 2(F10.6, E10.2). One additional level of grouping is permitted,
using the same rules for representation. If, for example, the fields on a card
could be described by (13, F8.4, E8.2, F8.4, E8.2, 13, F8.4 E8.2, F8.4, E8.2,
A10) then a more compact description would be (2(13,2(F8.4,E8.2)),A10).

Scale Factors

To permit more general use of D-, E-, F-, and G-descriptors, a scale factor
followed by the letter P can precede the specification. The magnitude of the
scale factor must be between -8 and +8, inclusive. The scale factor is defined
for input as follows:

- (scale factor)
10 x external quantity = internal quantity

For an F-type output, the scale factor is defined as follows:
+ (scale factor)

external quantity = internal quantity x 10

For D- and E-type output conversion, the mantissa part of the output is
multiplied by 10**(scale factor) and the exponent is reduced by the scale
factor. A scale factor of IP causes a nonzero numeric to print to the left of
the decimal point, thus providing an extra digit of useful numeric output data
with no net increase in field width as compared to a scale factor of zero.

9/76 5-20 DD02B

For G output conversion, if the range of the value is such that the
effective use is an F-conversion, the effect of the scale factor is suspended.
If the effective use of E-conversion is required, the effect is the same as for
E-output.

If input data is in the form xx.xxxx and it is desired to use it internally
in the form .xxxxxx, then the FORMAT specification to effect this change is
2PF7.4. For output data, scale factors can be used with D-, E-, F-, and
G-conversion.

For example, the statement FORMAT (I2,3F11.3) might output the following
printed line:

27J^W-9 3.209#JzWtf-0.00 8JzWtW0.5 54

But the statement FORMAT (12,1P3F11.3) used with the same data would output the
following line:

2 7 9 32.09 4JztyWtf- 0.07 6 WWW^.536

whereas, the statement FORMAT (12,-lP3Fll.3) would output the following line:

27#W#-9.32 WW“0 . OOlJzWJzWO .0 55

A scale factor is assumed to be zero if no other value has been given.
However, once a value has been given, it holds for all D-, E-, F-, and
G-conversions following the scale factor within the same FORMAT statement. This
applies to both single-record formats, multiple-record formats, and to repeated
portions of formats. Once the scale factor has been given, a subsequent scale
factor of zero in the same FORMAT statement must be specified by OP. For F-type
conversion, output of numbers, whose absolute value is greater than or equal to
2^5 after scaling, is output in E-conversion. Scale factors have no effect on
I- and O-conversion.

Multiple Record Formats

When a list of an input or output statement is used to transmit more than
one record (card or line) and with different formats, a slash (/) is used to
separate the format specifications for different lines. For example: if two
cards are to be read with a single READ statement and the first has a five-digit
integer and the second has five real numbers, the FORMAT statement could be:

FORMAT (I5/5E10.3)

It is also possible to specify a special format for the first (one or more)
records and a different format for subsequent records. This is done by
enclosing the last record specifications in parentheses. For example: if the
first card of a deck has an integer and a real number and all following cards
contain two integers and a real number, the FORMAT statement might be:

9/76 5-21 DD02B

If a multiple-line format is desired in which the first two lines are to be
printed according to a special format, and all remaining lines according to
another format, the last line-specification should be enclosed in a second pair
of parentheses; for example:

FORMAT (12,3E12.4/2F10.3,3F9.4/(10F12.4))

If data items remain to be output after the format specification has been
completely "used", the format repeats from the last previous left parenthesis
that is at level 0 or 1. The following example illustrates the various levels of
parentheses.

FORMAT (3E10.3,(12,2(F12.4,F10.3)),D28.17)
0 12 21 0

The parentheses labeled 0 are zero level parentheses; those labeled 1 are
first level parentheses; and those labeled 2 are second level parentheses. If
more items in the list are to be transmitted after the format statement has been
completely used, the FORMAT repeats from the last first-level left parenthesis;
that is, the parenthesis preceding 12.

As these examples show, both the slash and the final
the FORMAT statement indicate a termination of a record.

right parenthesis of

Blank lines can be introduced into a multiline FORMAT statement by
inserting consecutive slashes. When n consecutive slashes appear at the end of
the FORMAT, they are treated as follows: for input, n records are skipped; for
output, n-1 blank lines are written. When n consecutive slashes appear in the
middle of the FORMAT, n-1 records are skipped for both input and output.

Carriage Control

The WRITE (f,t), PRINT, and PRINT t, statements prepare formatted fields in
edited format for the printer. The first character of each record is examined to
see if it is a control character to regulate the spacing of the printer. If the
first character is recognized as a control character, it is replaced by a blank
in the printed line and the line printed after the proper spacing has been
effected. The interpretation of control characters is discussed under "Output
Device Control" in this section. This control is usually obtained by beginning a
FORMAT specification with 1H followed by the desired control character.

If carriage control information is not desired, see $ FFILE/NOSLEW in the
Control Cards or General Loader manuals.

5-22 DD02

Data Input Referring to a FORMAT Statement

These specifications must be followed when data input to the object program
is under format control:

1. The data must correspond in order, type, and field with the field
specifications in the FORMAT statement; or the field can be shortened
by using commas as delimiters. For example: for a format specification
of 316, an input data card containing l,^W^2Jz^3, is accepted. The
values 1, 2, and 3 are input. Note that the second field is a full six
characters wide and no comma appears; however, commas terminate the
first and third fields. When using terminal input, the field can be
shortened by using a carriage return as a delimiter.

2. Plus signs can be omitted or indicated by a + • Minus signs must be
indicated.

3. Blanks in numeric fields are regarded as zeros.
4. Numbers for E- and F-conversion can contain any number of digits, but

only the high-order eight digits of precision are retained. For
D-conversion, the high-order 18 digits of precision are retained. In
both cases, the number is rounded to eight or 18 digits of accuracy,
as applicable.

5. Numeric data must be right-justified in the field.

To permit greater ease in input preparation, certain relaxations in input
data format are permitted.

1. Numbers for D- and E-conversion need not have four columns allotted to
the exponent field. The start of the exponent field must be marked by
a D or an E or, if that is omitted, by a plus or minus sign (not a
blank). For example, E2, E+2, +2, +02, and D+02 are all permissible
exponent fields.

2. Numbers for D-, E-, and F-conversion need not contain a decimal point;
the format specification suffices. For example, the number -09321+1
with the specification E12.4 is treated as though the decimal point
had been placed between the 0 and the 9. If the decimal point is
included in the field, its position overrides the position indicated
in the format specification.

Numeric Field Descriptors

Six field descriptors are available for numeric data:

Internal
Floating-point
(double-precision)
Floating-point
Floating-point
Floating-point
Integer
Integer or Floating­
point

Conversion Code

D
E
F
G
I

0

External

Real with D exponent
Real with E exponent
Real without exponent
Appropriate type
Decimal Integer
Octal Integer

5-23 DD02

These numeric field descriptors are specified in the forms PrDw.d, PrEw.d,
PrFw.d, PrGw.d, rlw, rOw, where:

1. D, E, F, G, I, and 0 represent the type of conversion.
2. The w is an unsigned integer constant representing the field width for

converted data; this field width can be greater than required to
provide spacing between numbers.

3. The d is an unsigned integer or zero representing the number of digits
of the field that appear to the right of the decimal point. For
F-conversion, if d is specified >9, it is truncated at 8. For
E-conversion and D-conversion, if d is specified >19, it is truncated
at 18 and right-justified in the field.

4. Each P is optional and represents a scale factor designator.
5. Each r is an optional nonzero integer constant indicating the number

of occurrences of the numeric field descriptor that follows.
For example, the statement FORMAT (12,E12.4,08,F10.4,D25.16) might
cause the following line to be printed.

27#-0.9 321E#O257734276^-0.0076^-0.7878977909500672D#03i----1 i------- 1 I---- _--- i______ i_____________________i

w=8

12
w=12

E12.4
w=25

D25.16

where)6 indicates a blank .space.

The following notes apply to D-, E-, F-, G-, I-, and O-conversions:

1. No format specification should be given that provides for more
characters than are permitted for a particular input/output record.
Thus a format for a record to be printed should not provide for more
characters (including blanks) than the capabilities of the relevant
device.

2. Information transmitted with O-conversion can have real or integer
names; information transmitted with G-conversion can have real or
complex names; information transmitted with E-, and F-conversions must
have real or complex names; information transmitted with I-conversion
must have integer names; information transmitted with D-conversion
must have double-precision names.

3. The numeric field descriptor Gw.d indicates that the external field
occupies w positions with d significant digits. The value of the list
item appears, or is to appear, internally as a real datum.

Input processing is the same as for the F-conversion except for scale
processing.

9/76 5-24 DD02B

The method of representation in the external output string is a
function of the magnitude of the real datum being converted. Let N be
the magnitude of the internal datum. The following tabulation
exhibits a correspondence between N and the equivalent method of
conversion that will be effected:

Magnitude
of Datum
0.1 < N < 1
1 < N < 10

Equivalent Output
Effected

F(w-4).d,4X
F(w-4).(d-1),4X

Conversion

• •
10d-2<N < 10d-1
10d-1<N < 10d
Otherwise

F(w-4).1,4X
F(w-4).0,4X
nPEw.d

Note that the effect of the scale factor is suspended unless the
magnitude of the datum to be converted is outside of the range that
permits effective use of F-conversion.
The field width w, for D-, E-, F-, and G-conversions, must include a
space for a decimal point and a space for the sign. The D-, E-, and
G-conversions also require space for the exponent. For example, for
D- and E- and G-conversions on output, w>d+6, and for F-conversion,
w>d+2.
The exponent, which can be used with D- and E-conversions, is the
power of 10 to which the number must be raised to obtain its true
value. The exponent is written with an E (for E-conversion) or D (for
D-conversion) followed by a minus sign if the exponent is negative, or
a plus sign or a blank if the exponent is positive, and then followed
by two numbers that are the exponent. For example, the number .002 is
equivalent to the number .2E-02.
For D-conversion input, up to 19 decimal digits are converted and the
result is stored in a double word. For D-conversion output, the two
storage words representing the double precision quantity are
considered one piece of data and converted as such.
If an output number that is converted by D-, E-, F-, G-, or
I-conversions requires more spaces than are allowed by the field width
w, the field is filled with asterisks, unless subroutine NASTRK is
invoked. (See Table 6-4.) If the number requires fewer than w
spaces, the leftmost spaces are filled with blanks.
If the field width is exceeded solely because of the presence of a
nonfunctional leading zero to the left of the decimal point, that zero
will be suppressed and the number will be printed. (For. a negative
number, the minus sign will occupy the former position of the
suppressed zero.)
The output field is filled with blanks if the output number is octal
constant +377777777777 (noise word).
Specifications for successive fields are separated by commas and/or
slashes. (See "Multiple Record Formats" in this section.)

9/76 5-25 DD02B

Complex Number Fields

Since a complex quantity consists of two separate and independent real
numbers, a complex number is transmitted either by two successive real number
specifications or by one real number specification that is repeated; e.g.,
2E10.2=E10.2,E10.2. The first supplies the real part. The second supplies the
imaginary part.

The following is an example of a FORMAT statement that transmits an array
of six complex numbers.

FORMAT (2E10.2, E8.3, E9.4, E10.2, F8.4, 3(E10.2, F8.2))

Alphanumeric Fields

Alphanumeric information can be transmitted in two ways. Both ways result
in the storing of BCD or ASCII characters (as determined by an option in the $
FORTY or $ FORTRAN card or the YFORTRAN or FORTRAN Time Sharing System RUN
commands).

1. The specifications rAw and rRw cause character data to be read into or
written from a variable.

2. The specification nH, enclosing the string in quotation marks, or
enclosing the string in apostrophes introduces alphanumeric
information into a FORMAT statement.

The basic difference is that A and R conversions are given a variable name
that can be referenced for processing or modification. The character constant
notations do not "use" a list item.

The A and R
variable data to

format specifiers are used for
and from input/output buffers.

the transfer of character

If the field width (w) specified for A or R input is equal to or greater
than the maximum length (as described in the CHARACTER type statement), the
rightmost s characters are taken from the external field. The I/O pointer is
advanced in accordance with the field width of the format specifier. If the
field width is less than the maximum length described in the CHARACTER type
statement, the w characters are taken from the external field. With A
conversion, the data appears left adjusted with s-w trailing blanks in the
internal representation. For R conversion, the internal representation is right
justified with s-w leading zeros.

If the field width (w) specified for A or R output is greater than the
maximum length described in the CHARACTER type statement, s characters are
transmitted to the external field preceded by w-s blanks. If the field width is
less than or equal to the maximum length as described in the CHARACTER type
statement, the external output field consists of w characters from the internal
representation. With A conversion the w leftmost characters are transmitted*
with R conversion, the w rightmost is used.

5-26 DD02

The R code is equivalent to A except
right-justified with leading zeros in the internal

that the characters
representation.

are

When the variable associated with an A or R format specifier is not of type
CHARACTER then the variable is treated as a character variable with a size of
one word of storage (6 characters for BCD, 4 for ASCII).

Logical Field Descriptor

Logical variables can be read or written using the
L represents the logical type of conversion and w is
represents the data field width.

specification Lw, where
an integer constant that

1. On input, a value representing either true or false is stored if the
first nonblank character in the field of w characters is a T or an F
respectively. If all the w characters are blank, a value representing
false is stored.

2. On output, a value of .TRUE, or .FALSE. in storage causes w minus 1
blanks, followed by a T or an F, respectively, to be written out.

Character Positioning Field Descriptors

The X and T field descriptors enable a specified number of characters in
the record to be skipped. On output, the X descriptor causes a specified number
of spaces to be inserted in the external output record.

X Format Code

The field descriptor for space character is nX. On input, n characters of
the external input record are skipped. On output, n space characters are
inserted in the external output record. If n = 0, a value of one is assumed.

T Format Code

The field descriptor for tabulation purposes is Tt. The position in a
FORTRAN record where the transfer of data is to begin is t. The t is an
unsigned integer constant. Using this format code permits input or output to
begin at any specified position. Tabbing can proceed backward as well as
forward.

Variable Format Specifications

Any of the formatted input/output statements (including ENCODE and DECODE)
can contain a character scalar or an array name in place of the reference to a
format statement label. At the time a variable is referenced in such a manner,
the first part of the information must be character data that constitutes a
valid format specification; for example "(14)’’. There is no requirement on the
information following the right parenthesis that ends the format specification.

9/76 5-27 DD02B

The format specification (the value of the variable referenced) must have
the same form as that defined for a FORMAT statement, without the word FORMAT.
Thus the character text of the specification begins with a left parenthesis and
ends with a matching right parenthesis.

The format specification can be defined by a data initialization statement,
by a READ statement together with an A format, by use of a character replacement
statement, or by ENCODE.

format.

In the following example, A, B, and part of
stored according to the FORMAT specifications
execution time.

the
read

array C
into

are
the

converted and
array FMT at

DIMENSION FMT (12), C(10)
1 FORMAT (12A6)

READ (5,1) FMT
READ (5,FMT) A,B, (C(I), 1=1,5)

A similar example follows, using a character scalar for the variable

DIMENSION C(10)
CHARACTER FMT*72

1 FORMAT (A72)
READ (5,1)FMT

READ (5,FMT) A,B, (C (I),1=1,5)

5-28 DD02

SECTION VI

SUBROUTINES, FUNCTIONS, AND SUBPROGRAM STATEMENTS

The three basic elements of scientific programming languages — arithmetic,
control, and input/output — are given added flexibility through subroutines.
Subroutines are program segments executed under the control of another program
and are usually tailored to perform some often-repeated set of operations. A
subroutine is written only once, but can be used again and again; it avoids a
duplication of effort by eliminating the need for rewriting program segments for
use in common operations. There are four classes of subroutines in FORTRAN:
arithmetic statement functions, built-in functions, FUNCTION subprograms, and
SUBROUTINE subprograms. The major differences among the four classes of
subroutines are as follows:

1. The first three classes can be grouped as functions. Arithmetic
statement functions and built-in functions differ from the SUBROUTINE
and FUNCTION subprograms in the following respects:
a. A function has a single value in an expression.
b. A function is referred to by an arithmetic expression containing

its name; a SUBROUTINE subprogram is referred to by a CALL
statement.

2. The arithmetic statement functions and built-in
subroutines. An open subroutine is a subroutine
into the object program each time it is referred
program. SUBROUTINE and FUNCTION subprograms
they appear only once in the object program.

functions are open
that is incorporated
to in the source

are closed; that is,

NAMING SUBROUTINES

All four classes of subroutines are named in the same manner as a FORTRAN
variable. External subroutine names (i.e., FUNCTION and SUBROUTINE subprograms)
have the additional requirement that they be unique within the first six
characters. The following rules are applicable:

1. A subroutine name consists of one to eight alphanumeric characters,
the first of which must be alphabetic.

2. The type of the function, which determines the type of the result, is
defined as follows:
a. The type of an external function can be indicated by the name of

the function or by placing the name in a Type statement.

9/76 6-1 DD02B

b. The type of a FUNCTION subprogram can be indicated by the name of
the function or by writing the type (REAL, INTEGER, COMPLEX,
DOUBLE PRECISION, LOGICAL, CHARACTER) preceding the word
FUNCTION. In the latter case, the type implied by its name is
overridden. The type of the FUNCTION subprograms in the
Subroutine Library (the mathematical subroutines) is defined.
Therefore, they need not be typed elsewhere.

c. The type of a built-in function is indicated within the FORTRAN
compiler and need not appear in a Type statement.

d. Arithmetic statement functions have no type.
3. The name of a SUBROUTINE subprogram has no type and should not be

defined, since the type of results returned is dependent only on the
type of the variables returned by that subroutine.

ARITHMETIC STATEMENT FUNCTIONS

An arithmetic function is defined internal to the program unit in which it
is referenced. It is defined by a single statement similar in form to the
arithmetic assignment statement.

In a given program unit, all statement function definitions must precede
the first executable statement of the program unit. The name of a statement
function must not appear in EXTERNAL, COMMON, EQUIVALENCE, NAMELIST, or ABNORMAL
statements as a scalar name, or as an array name in the same program unit.

Defining Arithmetic Statement Functions

An arithmetic statement function definition has the form:

f (a j, a j • • / an)

where f is the function name, the a^ are distinct symbolic names (called dummy
arguments of the function) , and e is an expression. Since the aj, are dummy
arguments, their names, that serve only to indicate number, and order of
arguments, can be the same as actual variable names appearing elsewhere in the
program unit. The following is a list of exceptions, names of other program
symbols that cannot appear as dummy names in the list if they have previously
been defined as:

EXTERNAL names
ABNORMAL names
PARAMETER names
NAMELIST names
SUBROUTINE, FUNCTION or ENTRY names
Arithmetic statement function names

6-2 DD02

The expression, e t can contain:

Constants
Scalar references
Intrinsic function references
References to other arithmetic statement functions

' External function references
Array element references
Indeterminate references

The last item in the above list,
where a dummy argument symbol appears

indeterminate references, covers the
in e as a reference of the form:

case

a (list)

This syntax can imply a function reference or an array element reference.
The decision is made each time the arithmetic statement function is referenced,
and is determined by the actual argument.

By way of illustration, consider the following:

1 DIMENSION P(10)
2 F(A,B)=A(K)+B(K)
3 X=F(P,SIN)

Expansion of line 3 produces an equivalent assignment statement:

3 X = P (K) +SIN (K)

In this example, the first expression term is an
while the second is a function reference.

array element reference

Arithmetic Statement Function Left of Equals

An arithmetic statement function can be referenced on the left hand side of
the equal sign in an assignment statement; however, it must expand into a scalar
or an array element. For example:

AA (I,J) = J(I)
DIMENSION K(10)

AA (3,K) = 4*X (This expands to K(3) = 4*X)

6-3 DD02

Referencing Arithmetic Statement Functions

A statement function is referenced by using its name with a list of actual
arguments in standard function notation as a primary in an expression. The
actual arguments, which constitute the argument list, must agree in number with
the dummy arguments in the function definition. An actual argument in a
statement function reference can be any expression providing the corresponding
dummy appeared as a scalar reference. If the corresponding dummy argument
appears as an indeterminate reference, then the actual argument must be an array
or function name.

Execution of a statement function reference results in the association of
actual argument values with the corresponding dummy arguments in the function
definition and an evaluation of the expression. The resultant value is then made
available to the expression that contained the function reference.

At time of reference, the actual arguments are substituted for the dummy
argument symbols. Type is introduced at this time and any ambiguities (such as
the indeterminate reference described above) are resolved. References to other
functions are classified as intrinsic, external, or other arithmetic statement
function, at this time also. Thus to reference another arithmetic statement
function, the definition of that function may follow the definition of but must
precede any references to, this referencing function.

Arithmetic Statement Function Example

A function can be defined to compute one root of the quadratic equation,
axz+bx+c=0, given values a, b, and c as follows:

ROOT (A,B,C)=(-B+SQRT(B**2-4*A*C))/(2*A)

This is the definition of the function. This definition can be used by
supplying values for a, b, and c. An example of the use of the function using
16.9 for a, 20.5 for b, and T+30 for c follows:

ANS = ROOT(16.9,20.5,T+30)

SUPPLIED INTRINSIC FUNCTIONS

The functions listed in Table 6-1 are the intrinsic or built-in functions
supplied with FORTRAN. The intrinsic functions require only a few machine
instructions and are inserted each time the function is used. To use these
functions, it is necessary to only write their names where needed and enter the
desired expression(s) for argument(s). The names of the functions are
established in advance and must be written exactly as specified.

All functions in Table 6-1, except FLD, AND, OR, XOR, BOOL, and COMPL, are
the standard FORTRAN intrinsic functions and their use is not described in this
document. The use of FLD, AND, OR, XOR, BOOL, and COMPL are described in this
section.

6-4 DD0 2

Table 6-1. Supplied Intrinsic Functions

Intrinsic Function Definition

No.
of
Arg.

Call
Name

Type of:
Arg. Function

Absolute Value 1 a| 1 ABS Real Real
IABS Integer Integer
DABS Double DoubleCABS2 Complex Real

Truncation Sign of a times 1 AINT Real Real
largest integer INT Real Integer
-la| IDINT Double Integer

Remaindering^ aj (mod a^) 2 AMOD Real Real
MOD 7 Integer Integer
DMO D^ Double Double

Choosing Largest Value Max (aj , a £,. . .) >2 AMAXO Integer Real
AMAX1 Real Real
MAXO Integer Integer
MAXI Real Integer
DMAX1 Double Double
MAX I,R,D I,R,D

Choosing Smallest Value Min (aj,a2 ,.. .) >2 AMINO Integer Real
AM INI Real Real
MINO Integer Integer
MINI Real Integer
DM INI Double Double
MIN I,R,D I,R,D

Float Conversion from
integer to real 1 FLOAT Integer Real

Fix Conversion from
real to integer 1 IFIX Real Integer

Transfer of Sign Sign of a7 times 2 SIGN Real Real
ian ISIGN Integer Integer

DSIGN Double Double

Positive Difference ai-Min (aj,a2) 2 DIM Real Real
ID IM Integer Integer
DDIM Double Double

Obtain Most Significant
Part of Double
Precision Argument 1 SNGL Double Real

Obtain Real Part of
Complex Argument 1 REAL Complex Real
Obtain Imaginary Part
of Complex Argument 1 AIMAG Complex Real

Express Single Precision
Argument in Double
Precision Form 1 DBLE Real Double

6-5 DD02

Table 6-1. (Cont). Supplied Intrinsic Functions

Intrinsic Function Definition
No.
of
Arg.

Call _
Name

Type of:
Arg. Function

Express Two Real
Arguments in Complex
Form al+a2 A/"1 2 CMPLX Real Complex
Obtain Conjugate of
a Complex Argument 1 CONJG Complex Complex
Logical "and" a1*a2*... >2 AND REAL,

INTEGER,
or

TYPELESS

Typeless

Logical "or" aj+a2 + . . . IV N
J OR REAL,

INTEGER,
or

TYPELESS

Typeless

Logical "exclusive or" a j@a 2©. . . CMA| XOR REAL,
INTEGER,

or
TYPELESS

Typeless

Ignore Type 1 BOOL Any
except
LOGICAL

Typeless

Extract Bit Field Beginning with
bit aj of word a^
extract a2 bits 3 FLD

(1,2)
Integer
(3) Any
except
LOGICAL

Typeless

Logical One’s Complement -a 1 COMPL REAL,
INTEGER,
or

TYPELESS

Typeless

1 Remaindering (mod (aj,a^)) is defined as ai“[ai/a2]*a 2' where the bracketed
expression denotes the integer result of the expression aj divided by a^.

o These functions are processed by external library subroutines.

6-6 DD02

Argument Checking and Conversion for Intrinsic Functions

A number of checks on arguments used in intrinsic functions are made by the
compiler. Due to the inline code expansion, the number of arguments specified
must agree with the number shown in Table 6-1. Except as noted in Table 6-1, the
argument type must agree with the type of the function. With the exception of
the typeless functions (described in this section), argument checking and/or
conversion is carried out by the compiler using the following general rules:

1. The hierarchy of argument types considered for conversion is: integer,
real, double precision, complex.

2. A generic intrinsic function call is transformed to the function type
that supports the highest level argument type supplied to it.

3. Arguments to a non-generic form of intrinsic function are converted to
conform with the function type specified. This is within the
constraints of argument types integer through complex.

Automatic Typing of Intrinsic Functions

Use of the generic forms of the mathematical intrinsic functions (see Table
6-1) allows for the type of the function’s value to be determined automatically
by the type of the actual arguments supplied. This subset of intrinsic functions
contains:

1. Absolute value - ABS
2. Remaindering - MOD

3. Maximum value - MAX
4. Minimum value - MIN
5. Positive difference - DIM
6. Transfer of sign - SIGN

This means that the inline code generated for DABS(D) and ABS(D) would be
the same assuming that the type of the variable D is double precision.

When arguments of different types are specified (functions allowing more
than one argument), the type of the function itself is determined by the same
rules that govern mixed mode expressions. See Table 4-1, Rules for Assignment of
E to V.

FLD

FLD is used for bit string manipulation and has the following form:

FLD (i,k,e)
whe re:

i and k are integer expressions where 0<i£35 and lck<36; e is any
integer, real, or typeless expression, a Hollerith word or one of the
typeless functions listed in Table 6-1.

6-7 DD02

This function extracts a field of k bits from a 36-bit string represented
by e starting with bit i (counted from left to right where the Oth bit is the
leftmost bit of e). The resulting field is right-justified and the remaining
bits are set to zero.

For example:
I = 64
J = FLD (29,1,1)
PRINT, "I = ",I
PRINT, "J = ",J

This would result in the printing of
I = 64
J = 1

This intrinsic function can also appear on the left-hand side of the equal
sign in an assignment statement. When the FLD function is used in this manner,
it must not be the first executable statement of the program or it will be
interpreted as an ASF function. The FLD function is defined as follows:

FLD (i,j,a) = b
where:

i and j are integer expressions (0<i<35,l<j<36); a is a scalar or
subscripted variable; and b is an expression. The j rightmost bits of
expression ’b' will be inserted into ’a1 beginning at bit position i.

For example, assuming ASCII characters:
CHARACTER*4 A,B
A = "ABCD"
B = "1234"
FLD (9,9,A) = B
PRINT, A
PRINT, B

This would result in the printing of
A4CD

1234

9/76 6-8 DD02B

Typeless Intrinsic Functions

The five typeless functions are:

AND (el,e2)
OR (el,e2)
XOR (el,e2)
BOOL (e)

Bit by bit logical product of el and e2.
Bit by bit logical sum of el and e2.
Bit by bit "exclusive or" of el and e2.
The type of e is disregarded.

COMPL (e) The one’s complement of all bits in e are taken,
of e is disregarded.

The type

The expressions of e can be of type integer, real, or typeless; e can also
be a Hollerith word, the FLD word, or any of the typeless functions.

Examples:
Ml = AND(1,K)
M2 = OR(1,K)
M3 = XOR(1,K)
M4 = BOOL(K)
M5 = COMPL(K)

If the receiving variables and K were integer, and the values of K were
positive and odd, the following statements would have the same effect as
the preceding examples:

Ml = 1? M2 = K; M3 = K -1; M4 = K; M5 = -K -1
If the receiving variables were of type LOGICAL, the values of the
variables would be as follows:

K_ Ml M2 M3 M4 M5___

1 T T F T T

2 F T T T T

3 T T T T T

4 F T T T T (T = true)

5 T T T T T (F = false

6 F T T T T

7 T T T T T

8 F T T T T

9 T T T T T
If the receiving variables were of type REAL, the values are stored in the
locations of the receiving variables without conversion.

9/76 6-9 DD02B

Character data type and integer data type operations can be mixed in the
time sharing mode by using the BOOL function. A two-element array is employed
to bypass the requirement of separating integer and alpha variables.

Example:

010 902 FORMAT (IX,16,IX,A4)
020 INTEGER IX(2)
030 IX(1)=63
040 IX(2)=BOOL("ABCD")
050 IF (IX(2) .EQ.BOOL("ABCD")) PRINT, "OK"
060 WRITE(6,902) IX
070 STOP;END
*RUN
OK

63 ABCD

9/76 6-9.1 DD02B

FUNCTION SUBPROGRAMS

Defining FUNCTION Subprograms

A FUNCTION subprogram is defined external to the program unit that
references it. The computation desired in a FUNCTION subprogram is defined by
writing the necessary statements in a segment, writing the word FUNCTION and the
name of the function before the segment, and writing the word END after the
segment. The FUNCTION statement is of the form:

t FUNCTION f (apaz, . . . ,an)

where t is either INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, CHARACTER,
or null. The f is the symbolic name of the function to be defined. The a
(called dummy arguments) are either variable names, array names, or external
procedure names.

The symbolic name of the function must appear at least once in the
subprogram as a variable name in some defining context (e.g., left of equals).
The value of the variable at the time of execution of any RETURN statement in
this subprogram is returned as the value of the function.

The symbolic name of the function must not appear in any nonexecutable
statement in this program unit, except as the symbolic name of the function in
the FUNCTION statement or in a Type statement.

An abnormal FUNCTION subprogram can define or redefine one or more of its
arguments to effectively return results in addition to the value of the
function.

The FUNCTION subprogram can contain any statements except BLOCK DATA,
SUBROUTINE, another FUNCTION statement, or any statement that directly or
indirectly references the function being defined. The FUNCTION subprogram must
contain at least one RETURN statement.

If the function name appears in any
of the function result is effected.

of the following contexts, redefinition

1. Left of equals in assignment statement
2. In the list of a READ statement
3. In the list of a DECODE statement
4. As the buffer name in an ENCODE statement
5. As the induction variable of a DO loop

6-10 DD0 2

Redefinition can also occur if the function name appears in the argument
list of a CALL statement or a reference to some abnormal external function,
though not necessarily.

NOTE: A function cannot be referenced in an input/output list if such a
reference causes any input/output operation to be executed.

Supplied FUNCTION Subprograms

The functions listed in Table 6-2 are the basic external FUNCTION
mathematical subprograms supplied with the compiler. To use the functions, it is
only necessary to write their name where needed and enter the desired
expression(s) for argument(s). Except as indicated in Table 6-2, argument types
must conform with the type of the function. The compiler does some checking as
to type of arguments supplied and makes conversions in accordance with the
following rules:

1. The hierarchy of argument types considered for conversion is: integer,
real, double precision, complex.

2. A generic function call whose arguments do not conform as to type is
transformed to the function type that supports the highest level
argument supplied to it.

3. Integer arguments are converted to the type of the function being
called.

4. Arguments to a non-generic form of external function are converted to
conform to the function type specified. This is within the constraints
of argument types integer through complex.

A generic name is assigned to the set of functions in Table 6-2.

When the mathematical library functions are referenced by their generic
names, the type of the function is determined by the type of the argument(s)
within the constraints of the types described in Table 6-2. The one exception is
when an integer argument is specified to a generic function. In this case, the
argument is converted and the real form of the function is called. Note that the
type of ATAN2 is double precision if at least one of its arguments is double
precision.

The functions listed in Table 6-3 are utilized in precisely the same manner
as those listed in Table 6-2; they differ only in that they are nonmathematical.

6-11 DD02

Table 6-2. Supplied FUNCTION Subprograms, Mathematical

Function Definition
No. of
Arg.

Generic
Name

Type of:
Arg. Function

Arccosine1 cos"1 (a) 1 ARCOS Real Real
1 DARCOS Double Double

Arccosine, Hyperbolic1 cosh-1 (a) 1 ACOSH Real Real
1 DACOSH Double Double

Arcsine 1 sin-1 (a) 1 ARSIN Real Real
1 DARSIN Double Double

Arcsine, Hyperbolic1 sinh-1 (a) 1 ASINH Real Real
1 DASINH Double Double

Arctangent1 tan-1 (a) 1 ATAN Real Real
1 DATAN Double Double

tan-1 (a/b) 2 ATAN 2 Real Real
2 DATAN2 Double Double

Arctangent, Hyperbolic1 tanh’l (a) 1 ATANH Real Real
1 DATANH Double Double

Cosine 1 cos(a) 1 COS Real Real
1 DCOS Double Double
1 CCOS Complex Complex

Cosine, Hyperbolic1 cosh (a) 1 COSH Real Real
1 DCOSH Double Double

Cube Root (a)X/3 1 CBRT Real Real
1 DCBRT Double Double

Exponential ea 1 EXP Real Real
1 DEXP Double Double
1 CEXP Complex Complex

Exponential 10a 1 EXP10 Real Real
1 DEXP10 Double Double

Exponential 2a 1 EXP2 Real Real
1 DEXP2 Double Double

1Arguments expressed in radians.

9/76 6-12 DD02B

Table 6-2 (cont). Supplied FUNCTION Subprograms, Mathematical

No. of Generic Type of:
Function Definition Arg. Name Arg. Function

Exponential Complement ea-1.0 1 EXPC Real Real
1 DEXPC Double Double

Exponential Complement 2a-1.0 1 EXPC2 Real Real
1 DXPC2 Double Double

Exponential Complement 10a-1.0 1 EXPC10 Real Real
1 DXPC10 Double Double

Logarithm, Base 2 log9 (a) z. 1 ALOG2 Real Real
1 DLOG2 Double Double

Logarithm, Common log (a) 1 ALOGIO Real Real
LU 1 DLOGIO Double Double

Logarithm, Natural loge(a) 1 ALOG Real Real
1 DLOG Double Double
1 CLOG Complex Complex

Power a^ 2 POW Real Real
2 DPOW Double Double

Sine1 sin(a) 1 SIN Real Real
1 DSIN Double Double
1 CSIN Complex Complex

Sine, Hyperbolic1 sinh(a) 1 SINH Real Real
1 DSINH Double Double

Square Root (a)X/2 1 SQRT Real Real
1 DSQRT Double Double
1 CSQRT Complex Complex

Tangent1 tan(a) 1 TAN Real Real
1 DTAN Double Double

Tangent, Hyperbolic1 tanh(a) 1 TANH Real Real
1 DTANH Double Double

1Arguments expressed in radians.

9/76 6-13 DD02B

Table 6-3. Supplied FUNCTION Subprograms, Nonmathematical

Function Usage
No. of
Args.

Type of:
Arg. Function

Left Shift ILS (i,j) 2 Integer Integer
Right Shift IRS (i,j) 2 Integer Integer
Left Rotate ILR (i,j) 2 Integer Integer
Right Logical IRL (i,j) 2 Integer Integer
Set Switch Word ISETSW (i) 1 Typeless Integer
Reset Switch Word IRETSW (i) 1 Typeless Integer
Mode MODE (i) 1 Integer Integer
Compare KOMPCH

(a,n,b,m,f)
5 Character,

Integer
Integer

Random Number
Generator

RAND (range) 1 Real Real

Random Number
Generator

RANDT (range) 1 Real Real

Random Number
Generator

FLAT (seed) 1 Real Real

Random Number
Generator

UNIFM2 (seed),
mean,width)

3 Real Real

The nonmathematical functions are as follows:

Shift Functions

ILS(i,j) Left shift i by j bit positions.
IRS(i,j) Right shift i by j bit positions.
ILR(i,j) Left rotate i by j bit positions.
IRL(i,j) Right logical i by j bit positions.
All are integer functions with integer arguments. (Refer to the Macro

Assembler Program (GMAP) manual for a description of shifting functions.)

Set/Reset Program Switch Word

ISETSW(i) Set program switch word.
IRETSW(i) Reset program switch word.

The ones in the binary equivalent of the value of i determine the bit
positions to be set/reset in the program switch word.

The function returns the new program switch word configuration.

Refer to the General Comprehensive Operating Supervisor (GCOS) manual for a
description of the program switch word.

NOTE: Bits 0-17 of the program switch word cannot be changed when
operating in the time sharing mode.

9/76 6-14 DD02B

Mode Determination

MODE(i)
For i =1: Function value = 0 for batch execution; function value = 1 for

time sharing execution.
For i = 2: Function value = 0 for BCD character mode; function value = 1

for ASCII character mode.
For i / 1 or 2: Function value = -1.

Character String Compare

KOMPCH (a,n,b,m,f)
This is a FUNCTION call where string b is compared, starting at position, m,

to string a, starting at position n; f characters are compared. The resulting
value of the integer function is:

Function value = 0 when b = a
Function value = +1 when b is greater than a
Function value = -1 when b is less than a

a and b are character
f, m, and n are integer
See Appendix A for BCD and ASCII character collation (sort) values.

Random Number Generators

There are four separate calls provided for producing a sequence of random
numbers. Each call provides a sequence of random numbers from a uniform
(rectangular) distribution/ which means that the probability of any number in
the range occurring in the sequence is the same as for any other number. The
calling sequences are as follows:

RAND (range) 0 < A < range
The range must be a real constant or variable; the seed = 1. The same set
of random numbers is generated each time the program unit is executed.

RANDT (range) 0< A <range
The range must be a real constant or variable; the time register value is
used as the seed. A different set of random numbers is generated each time
the program unit is executed.

FLAT (seed) 0 < A< 1
This version has a constant range but allows the seed to be varied,
seed must be a real constant or variable.

The

UNIFM2 (seed,mean,width) mean-width/2]<A< [mean+width/2]

9/76 6-15 DD02B

This version allows the seed and the range to be varied. For example:
A = UNIFM2 (9.9,1.5,2.0)

generates a set of random numbers between 0.5 and 2.5 using the value
9.9 for the seed.

NOTE: The value of the initial argument (seed) passed to the function
at the time of the first call initializes the algorithm for
generation of the sequence of random numbers. For all
subsequent calls to the function, during the execution of same
program unit, the value of the argument is ignored.

Arguments must be real constants or variables.

Referencing FUNCTION Subprograms

A FUNCTION subprogram is referenced by using its symbolic name with a list
of actual arguments in standard function notation as a primary in an expression.
The actual arguments, which constitute the argument list, must agree in order,
number, and type with the corresponding dummy arguments in the FUNCTION
subprogram definition. Actual arguments in the function reference can be one of
the following:

1. A variable name
2. An array element name
3. An array name

4. An expression
5. Name of an external procedure
6. Constant

If an actual argument is an external function name or a subroutine name,
then the corresponding dummy arguments must be used as an external function name
or a subroutine name, respectively.

If an actual argument corresponds to a dummy argument that is
redefined in the referenced subprogram, the actual argument must be
name, an array name, or an array element name.

defined or
a variable

Execution of a FUNCTION reference results in an association of actual
arguments with all appearances of dummy arguments in the defining subprogram. If
the actual argument is an expression, or constant, then this association is by
value rather than by name. Following these associations, execution of the first
executable statement of the defining subprogram begins. An actual argument which
is an array element name containing variables in the subscript could in every
case be replaced by the same argument with a constant subscript containing the
same values as would be derived by computing the variable subscript just before
the association of arguments takes place.

If a dummy argument of a FUNCTION subprogram is an array name, the
corresponding actual argument must be an array name or array element name.

6-16 DD02

If a function reference causes a dummy argument in the referenced function
to become associated with another dummy argument in the same function or with an
entity in common, a definition of either within the function is prohibited.

Unless it is a dummy argument, a FUNCTION subprogram is also referenced (in
that it must be defined) by the appearance of its symbolic name in an EXTERNAL
statement.

If a user FUNCTION subprogram is written in a language other than
it is the user’s responsibility to insure that the correct indicators,
as the correct numerical results, are returned to the calling program.

FORTRAN,
as well

Example of FUNCTION Subprogram

Definition

FUNCTION DIAG (A,N)
DIMENSION A (N,N)
DIAG = A(1,1)
IF (N .LE. 1) RETURN
DO 6 I = 2, N

6 DIAG = DIAG * A(1,1)
RETURN
END

Reference
DIMENSION X (8,8)
DET = DIAG (X,8)

SUBROUTINE SUBPROGRAMS

A SUBROUTINE subprogram differs from a FUNCTION subprogram in three ways:

1. A SUBROUTINE has no value associated with its name. All results are
defined in terms of arguments or common; there may be any number of
results.

2. A SUBROUTINE is not called into action simply by writing its name,
since no value is associated with the name. A CALL statement brings it
into operation. The CALL statement specifies the arguments, and
results in storing all output values.

3. There is no type or convention associated with the SUBROUTINE name.
The naming is otherwise the same as for the FUNCTION.

It is the user’s responsibility to insure that the number and type of
arguments in the calling program statement corresponds with the number and type
of arguments expected by the called routine. This applies for all subroutines
and functions (library or other).

6-17 DD02

Defining SUBROUTINE Subprograms

A SUBROUTINE statement is of the form:

SUBROUTINE s (ai , az ,. .. , an)
or

SUBROUTINE s

where s is the symbolic name of the SUBROUTINE to be defined.

a^, called dummy arguments, are each a variable name, an array name, an
external procedure name, or an alternate return.

The symbolic names of the dummy arguments cannot appear in an EQUIVALENCE,
COMMON, NAMELIST or DATA statement.

The SUBROUTINE subprogram can define or redefine one or more of its
arguments so as to effectively return results.

The SUBROUTINE subprogram can contain any statements except BLOCK DATA,
FUNCTION, another SUBROUTINE statement, or any statement that directly or
indirectly references the subroutine being defined.

The SUBROUTINE subprogram must contain at least one RETURN statement.

Referencing SUBROUTINE Subprograms

A SUBROUTINE is referenced by a CALL statement. The actual arguments which
constitute the argument list, must agree in order, number, and type with the
corresponding dummy arguments in the defining subprogram. An actual argument in
the SUBROUTINE reference may be one of the following:

1. a constant
2. a variable name
3. an array element name
4. an array name
5. an expression
6. the name of an external procedure
7. an alternate return

If an actual argument corresponds to a dummy argument that is defined or
redefined in the referenced subprogram, the actual argument must be a variable
name, an array element name, or an array name.

Execution of a subroutine reference results in
arguments with all appearances of dummy arguments in
This association is by name rather than by value.

an association
the defining

of actual
subprogram.

6-18 DD0 2

Following these associations, execution of the first executable statement
of the defining subprogram is undertaken.

An actual argument that is an array element name containing variables in
the subscript could in every case be replaced by the same argument with a
constant subscript containing the same values as would be derived by computing
the variable subscript just before the association of arguments takes place.

If a dummy argument is an array name, the corresponding
must be an array name or array element name.

actual argument

If a SUBROUTINE reference causes a dummy argument in the referenced
subroutine to become associated with another dummy argument in the same
subroutine, or with an entity in COMMON, a definition of either entity within
the subprogram is prohibited.

Unless it is a dummy argument, a SUBROUTINE is also referenced (in that it
must be defined) by the appearance of its symbolic name in an EXTERNAL
statement.

SUBROUTINE Subprogram Examples

Defining

SUBROUTINE LARGE (ARRAY,I,BIG,J)
DIMENSION ARRAY (50,50)
BIG=ABS (ARRAY(1,1))
J=1
DO 6 K=2,50
IF (ABS (ARRAY(I,K)) .LE. BIG) GO TO 6
BIG=ABS (ARRAY(I,K))
J=K

6 CONTINUE
RETURN
END

Referencing

CALL LARGE (ZETA,N,VAL,NCOL)

Returns From Function And Subroutine Subprograms

The RETURN statement is used to terminate all subprograms. This statement
causes control to be returned to the calling program. There may be any number of
RETURN statements in a subprogram. The RETURN statement has the form:

RETURN
or RETURN i

where i is an integer constant or variable whose value denotes the nth * or $ in
the argument list of the SUBROUTINE statement, reading from left to right.

6-19

1

The normal sequence of execution following the RETURN statement of a
subprogram is to the next executable statement following the CALL or function
name statement in the calling program. It is possible to return to any numbered
executable statement in the calling program by using a special return from the
called subprogram (for SUBROUTINE subprograms only). This return must not
violate the transfer rules for DO loops. FUNCTION subprograms must not have
nonstandard returns.

The following text describes the form of the FORTRAN statements that is
required to return from the SUBROUTINE to a statement other than the next
executable statement following the CALL.

The general form of the CALL statement in the calling program is:

CALL subr (dj,a2,...,an)
where subr is the name of the SUBROUTINE subprogram being called. Each a{ is an
argument of the form described with the CALL statement or is of the form:

where n is a statement number, or switch variable used for a nonstandard return.

The general form of the SUBROUTINE statement in the called subprogram is:

SUBROUTINE subr (a j , a 3,. . . , an)
where subr is the name of the subprogram. Each a^ is a dummy argument of the
form described under SUBROUTINE subprograms, or is of the form:

* or $
where the * or $ denotes a nonstandard return.

The general form of the RETURN statement in the called subprogram is:

RETURN i

where i is an integer constant or variable which denotes the ith nonstandard
return in the argument list, reading from left to right. For example:

Calling Program Called Subprogram
SUBROUTINE SUB(X,Y,Z,*,*)

10 CALL SUB(A,B,C,$30,$40)
20---------

100 RETURN N
30---------

END
40---------

END

6-20 DD0 2

In the preceding example, execution of statement 10 in the calling program
causes entry into subprogram SUB. If statement 100, in subprogram SUB, is
executed, the return to the calling program will be to statement 20, 30, or 40
if N is zero, one or two.

Nonstandard returns may best be understood by considering that a CALL
statement that uses the nonstandard return is equivalent to a CALL and a
computed GO TO statement in sequence. For example:

CALL NAME (P , $20 ,Q, $ 35 , R, $2 2) is equivalent to

CALL NAME (P,Q,R,I). IF (I.NE.O) GOTO (20,35,22), 1+1

where I is set to the value of the integer in the RETURN statement executed in
the called subprogram. If the RETURN index is not specified or is zero, a normal
(rather than nonstandard) return is made to the statement immediately following
the GO TO.

The intermingling of arguments and alternate returns can be done freely in
both the CALL and SUBROUTINE statements. The compiler separates the combined
list into two separate lists, such that argument n is the nth actual or dummy
argument, and alternate return n is the nth statement number or * or $, reading
left to right. Thus, the following are equivalent:

CALL NAME (P,$20,Q,$35,R,$22)
CALL NAME (P,Q,R,$20,$35,$22)
CALL NAME ($20,$35,$22,P,Q,R)

as are the following:

SUBROUTINE NAME
SUBROUTINE NAME
SUBROUTINE NAME

(S , * ,T , * , U , *)
(S,T,U,*,*,*)
(*,*,*, S,T,U)

Multiple Entry Points Into a Subprogram

The normal entry into a SUBROUTINE subprogram from the calling program is
made by a CALL statement that refers to the subprogram name. The normal entry to
a FUNCTION subprogram is made by a function reference in an expression. Entry is
made at the first executable statement following the FUNCTION or SUBROUTINE
statement.

It is also possible to enter a subprogram at an alternate entry point by a
CALL statement or a function reference that refers to an ENTRY statement in the
subprogram. Entry is made at the first executable statement following the ENTRY
statement.

6-21 DD0 2

ENTRY statements are nonexecutable and, therefore, do not affect control
sequencing during normal execution of a subprogram. The order, type, and number
of arguments need not agree between the SUBROUTINE or FUNCTION statement and any
ENTRY statement, nor do ENTRY statements have to agree among themselves in these
respects. Each CALL or FUNCTION reference, however, must agree in order, type,
and number of actual arguments with the dummy arguments of the SUBROUTINE,
FUNCTION, or ENTRY statement that it refers to. No subprogram can refer to
itself directly or through any of its entry points, nor can it refer to any
other subprogram whose RETURN statement has not been satisfied.

Example:

Calling Program
•
•

Called Program
SUBROUTINE SUBl(U,V,W,X,Y,Z)

1
•

CALL
•
•

SUBl (A, B ,C ,D ,E , F)
10 U = V

2
•

CALL
•
•

SUB2(G,H,P)
GO TO 60

3

•

CALL SUB 3 60
ENTRY SUB2(T,U,V)
GO TO 10

•
•
•

END
90

•
GO TO 90
ENTRY SUB3

•
RETURN
END

In the preceding example, the execution of statement 1 causes entry into
SUB1, starting with the first executable statement of the subroutine. Execution
of statements 2 and 3 also cause entry into the called program, starting with
the first executable statement following the ENTRY SUB2(T,U,V) and ENTRY SUB3
statements, respectively.

Dummy Argument

A dummy argument is used to make entities in a referencing program
available to the referenced subprogram.

A dummy argument of a subprogram can be associated with an actual argument
that can be a variable, array, array element, subroutine, external function,
constant, expression, or in the case of subroutines, statement number to which a
special return can be made from a subroutine program.

The dummy argument can be used in the subprogram as a scalar variable, an
array, a subroutine, or function name.

6-22 DD02

When the use of a statement number 'is specified (to which a special return
can be made from a subroutine subprogram) , the use of the * or $ in a dummy
argument position is required if a statement number is associated with that
dummy argument.

When the use of an external function name is specified, the use of a dummy
argument is permissible if an external function name is associated with that
dummy argument.

When the use of a variable or array element reference is specified, the use
of a dummy argument is permissible if a value of the same type is made available
through the argument association.

Unless otherwise specified, when the use of a variable, array, or array
element name is specified, the use of a dummy argument is permissible provided
that a proper association with an actual argument is made.

Supplied SUBROUTINE Subprograms

Table 6-4 contains a list of
Immediately following the table
alphabetical order.

FORTRAN supplied SUBROUTINE subprograms,
are explanations of the subprograms, in

6-23 DD0 2

Table 6-4. Supplied SUBROUTINE Subprograms

Subprogram Use Call

ATTACH Access existing permanent file. ATTACH (Igu,catfil,iprmis,
mode, istat, buffer)

CALLSS Call a time sharing subsystem CALLSS (string,name)
CNSLIO Console communications. CNSLIO (console,message,

nwords,nreply,nrepws)
CONCAT Move character substring. CONCAT (a,n,b,m,f)
COREL Move data from/to 10-word file CORFU (loc,i,j,k)
CORSEC Memory allocation x processor

time.
CORSEC (a)

CREATE Create temporary mass
storage or terminal file.

CREATE (Igu,isize,mode,
istat)

DAT IM Get current date and time. DATIM (d,t)
DEFIL Create temporary file. DEFIL (name,links,mode,

istat)
DETACH Deaccess current file. DETACH (Igu,istat,buffer)
DUMP (BCD)
DUMPA (ASCII)

Dump designated area of
memory in specified format,
terminate execution.

DUMP [DUMPA] (aj,b},ii...)

DVCHK Divide check test. DVCHK(j)
EXIT Purge buffers and terminate

current activity.
EXIT

FCLOSE Close file and release
buffers.

FCLOSE (i)

FILBSP Backspace files on multi­
file tape.

FILBSP (lgu,n)

FILFSP Forward space files on
multifile tape.

FILFSP (lgu,n)

FLGEOF End of file processing. FLGEOF (i,j)
FLGERR Data error processing. FLGERR (i,j)
FLGFRC File and Record Control

I/O error recovery.
FLGFRC (Igu,return)

FMEDIA Output transileration FMEDIA (fc, media code)
F PARAM Set or reset I/O parameter. FPARAM (i,j)
FXDVCK Divide and check fault test. FXDVCK (r,m)

6-24 DD02

Table 6-4 (cont). Supplied SUBROUTINE Subprograms

Subprogram Use Call
FXEM

LINK

LLINK

MEMSIZ
NASTRK

OVERFL

PDUMP (BCD)
PDUMPA(ASCII)
PTIME

RANSIZ

SETBUF

SETFCB
SETLGT
SLITE

SLITET
SORT

SORTD

SSWTCH
TERMNO
TERMTM

TRACE
USRCOD
YASTRK

Placement of error code.
Display of error trace.
Alter FXEM switch word.
Set alternate error
procedure location.

Alternate error return.
Restore link and transfer
to its entry point.

Restore link and return to next
statement in calling subroutine.

Memory allocated.
Disables asterisk fill for field
overflow on formatted output.

Exponent register overflow or
underflow test.

Dump designated area of memory
in specified format, return.

Processor time.
Specify record size of
random file.

Define buffer for file I/O.
Define file control block.
Define logical file table.
Clear all sense lights.
Turn on sense light.
Test and turn off sense lights.
Sort in ascending order.

Sort in descending order.

Test sense switch.
Station code.
Hours of log-on.

Trace and debug.
User identification.
Re-establishes asterisk fill for
field overflow on formatted
output.

ANYERR (v)
FXEM (code, message,n)

FXOPT (code, i,,i2,ij)

FXALT (SR)
FXALT ($n)
LINK (name)

LLINK (name)

MEMSIZ (j)
NASTRK

OVERFL (j)

PDUMP [PDUMPA] (a1,b1,i1,..)

PTIME (a)

RANSIZ (u,m,n)

SETBUF (i,a,b)
SETFCB (a,i,j)
SETLGT (a,i)

SLITE (0)
SLITE (i)

SLITET (i,j)
SORT (array,nrec,Irs,
key1,...)
SORTD (array,nrec,Irs,
keyL,...)
SSWTCH (i,j)
TERMNO (a)
TERMTM (a)
TRACE

USRCOD (s)
YASTRK

9/76 6-25 DD02B

Table 6-4 (cont). Supplied SUBROUTINE Subprograms

Subprogram Use Call
ATCALL ATCALL (subr)
FDEBUG FDEBUG (di,do)
FDUMP Callable portions of the FDUMP
FTERM SFORTRAN Debugging System FTERM
FTIMER (See Appendix F) FTIMER
NOCALL NOCALL (subr)
NTCALL NTCALL (subr)

9/76 6-25.1 DD02B

ATTACH

This subroutine is used to access an existing permanent file in batch or
TSS mode.

Calling Sequence:

CALL ATTACH (Igu,catfil,iprmis,mode fistat,buffer)

where Igu is an integer variable or constant and is the usual FORTRAN file
code.

catfil is the catalog/file descriptor; catfil is a character constant, or
variable, containing the catalog/file string. It must be terminated
by a semicolon. Imbedded blanks are ignored. The master catalog
password is not needed; subsequent passwords are required if part of
the file description. Alternate names are permitted.

iprmis is an integer variable or constant and is the permission desired.
Those are ORed with any permission in the catfil.

= 1 READ ONLY
= 2 WRITE ONLY
= 3 READ and WRITE
= Any other (This is undefined and subject to change.)

mode is an integer variable or constant
= 0 Get file as defined
= 1 Get file as random
= 2 Get terminal

istat an integer variable , contains the first status word returned by the
File Management Supervisor (see the TSS System Programmer's
Reference Manual) , or contains:
0 = successful (batch mode only)
1 = file is currently open
2 = terminal requested in batch mode (illegal)
3 = additional memory needed, request denied

(time sharing user is terminated)
4 = catfil all blanks

buffer = Null: Get a file system buffer.
= Not null: Use this variable array as a buffer (at least 380 words).

The following is an example of a null argument:
Call ATTACH (Igu, catfil, iprmis, mode, istat,)

Upon successful return from ATTACH, an FCB will have been created, and the
file name (or alternate name) is in the FCB -10, -9 (in ASCII)• If the file was
in the AFT with a subset of the desired permissions, it is deaccessed and
reaccessed with the new permissions.

6-26 DD02

CALLSS

This subroutine calls a time sharing subsystem and returns to the calling
program.

Calling Sequence:
CALL CALLSS (string)

or (for some time sharing subsystems)
CALL CALLSS (string,name)

where name is the four-character ASCII constant or variable that is the name of
the subsystem to be called. If name is not supplied, the first four characters
in string are used for name. The name used as the argument may be different
than the name used at the system level.

string is the command to invoke the subsystem and is an ASCII character or
variable containing a carriage return or a reverse slant as the terminating
character.
For example:

CALL CALLSS ("RUN P3\","RUNY")
When this statement is executed, the YFORTRAN subsystem is invoked and
program P3 is executed.

CALLSS ("RUNP1\","BASY")
When this statement is executed, the BASIC subsystem is invoked and program
Pl is executed.

CALLSS ("CATALOG FILENAME\")
When this statement is executed, the specific attributes of the file
FILENAME are printed.

CALLSS ("ABC\")
When this statement is executed, the ABACUS subsystem is invoked.

CALLSS ("FDUMP\")
When this statement is executed, the FDUMP subsystem is invoked.

Nesting to more than two levels using CALLSS is not permitted. If the
called time sharing system is SYSTEM, control is not returned to the calling
program.

CNSLIO

This subroutine permits operator-program communication via the console
typewriter. Return is made to the next executable statement in the calling
program. This subroutine is restricted to batch execution; it may not be called
by a FORTRAN program executing in the time sharing mode. It is suggested that
limited use be made of this subroutine since it tends to distract the attention
of the console operator.

9/76 6-27 DD02B

Calling Sequence:
CALL CNSLIO(console, message,nwords,nreply,nrepws)

where console is defined as CHARACTER * 6, or as integer, and is initialized
with

"0000T/" for master console
"0000T*" for tape console
"0000*1" for unit record console
"0000/T" for special purposes
If none is given, "0000T/" is assumed.

Message is an array containing the CHARACTER message to be output.

9/76 6-27.1 DD02B

Nwords is
to be printed.

an integer variable or constant, representing the number of words
Any value greater than 11 is set to 11.

Nreply is an integer variable or constant (optional)
reply is desired. When present, the reply (in BCD) will
location nreply.

and is used when
be stored beginning at

Nrepws is an integer variable or constant (optional) and is used when a
reply of more than six characters is desired. When omitted, a one-word reply
will be stored in nreply. When provided, nrepws words (nrepws *6 characters)
will be stored beginning at location nreply.

CONCAT

This subroutine is used to provide the user with the ability to move a
character substring of arbitrary length and position within a string.

Calling Sequence:
CALL CONCAT (a,n,b,m,l)

where:

a = character string to be replaced
n = leftmost character of a (0-3 for ASCII or 0-5 for BCD)
b = replacement character string
m = leftmost replacement character of b (0-3 for ASCII or 0-5 for BCD)
1 = number of characters to be replaced; if 1 is not given, one replacement

character is assumed
String a is replaced, starting at position n, by string b, starting at

position m; 1 characters are replaced. The letters m, n, and 1 are integer
variables or constants.

CORFL

This subroutine enables the user to move data from or to the ten-word
memory file (see "DRL CORFIL", TSS System Programmer1s Reference Manual) .

Calling Sequence:
CALL CORFL (loc,i,j,k)

9/76 6-28 DD02B

where:

loc is the integer array into which or from which the data is to be moved

i is the number of words to be moved such that 1< I< 10

j is the relative location in the 10-word file at which the transfer
is to begin.

k = 0, data is transferred into the 10-word file
k = 1, data is transferred from the 10-word file
i/j/k are integer variables or constants.

This call is ignored in batch.

CORSEC

This subroutine provides the user with the means of obtaining the product
of a memory allocation and processor time.

Calling Sequence:

CALL CORSEC (a)

where the real value returned in a, a real variable, is the product of 1024-word
blocks currently allocated and processor time in seconds. This feature can also
be used as a function. For example,

IF (CORSEC(a).GT.b)....

CREATE

This subroutine is used to create and access a temporary mass storage or
terminal file.

Calling Sequence:

CALL CREATE (Igu,isize,mode,istat)
where Igu (integer variable or constant) is the usual FORTRAN file code.

isize^ (integer variable or constant) is the size, in words, of the file
wanted.

mode is an integer variable or constant
= 0 for a linked mass storage file
= 1 for a random mass storage file
= 2 for a terminal file

6-29 DD02

istat is an integer variable status return word. The following codes
apply.

= 0, successful
= 1/ mode is invalid
= 2, file is currently open
= 3, no room in AFT
= 4, temporary file not available
= 5, duplicate file name
= 6, no room in PAT
= 7r illegal device specified

If the CREATE is successful/
is placed in FCB-10, -9.

a FCB is created and the file code/ in ASCII/

DAT IM

This subroutine allows the user to obtain the current date and time.

Calling Sequence:
CALL DATIM (d/t)

D is an eight-character variable and will contain the date in the form mm/dd/yy
(with trailing blanks if in BCD mode). T is a real variable and will contain
the time of day in hours as a floating-point number,

DEFIL

This subroutine creates a named temporary file and accesses it in the
user’s available file table. The call is applicable only for time sharing
activities.

Calling Sequence:
CALL DEFIL (name,links/mode,istat)

where name is an eight-character or less variable containing the ASCII name of
the temporary file to be created.

links size of file to be created (in links)
mode = 0, sequential file is created

/ 0/ random file is created
istat is status indication as follows:

0/ successful
3/ no room in AFT
4/ temporary file not available
5/ duplicate file name
6/ no room in PAT

9/76 6-30 DD02B

DETACH

This subroutine is used to deaccess a file,
buffer. If in TSS mode, the file is removed from

close the file and release
the AFT.

Calling Sequence:

CALL DETACH (Igu,istat,buffer)
where Igu is an integer variable or constant and is the FORTRAN file code.

buffer = null argument: get space for FILSYS
= not null: use this variable array as buffer space (at least

380 words)
If more memory is required (to deaccess the file) and the request is

denied, the time sharing user is terminated.
istat is an integer variable that is used as a status return word.

= 0: successful
= 1: could not get FILSYS buffer (batch only);

time sharing user is terminated.

DUMP [DUMPA], PDUMP [PDUMPA]

This subroutine subprogram dumps all of memory or designated areas of
memory that have been allocated to selected variables in a specified format. If
DUMP is called, execution is terminated by a call to EXIT. If PDUMP is called,
control is returned to the calling program.

Calling Sequence:
CALL DUMP or DUMPA (a,,b,,j, ,...,a ,b ,j) r 1 ' n n
CALL PDUMP or PDUMPA (a, ,b, ,j, , ...,a ,b ,j)1 1 n n n

where aj_ and b^ are variables at the beginning and end of area to be dumped. A£
or bj, may represent the first and last variable in the program unit, in which
case all memory allocated to variables is dumped. J is an integer specifying the
dump format. If no arguments are given, all of memory is dumped in octal. The
values for j are as follows:

Octal
Integer
Real
Double Precision
Complex
Logical
Character

DUMPA and PDUMPA are the ASCII versions.

6-31 DD02

DVCHK,OVERFL ,FXDVCK

These subroutine subprograms check logical fault vector locations in the
slave program prefix (refer to the General Comprehensive Operating Supervisor
(GCOS) manual).

Calling Sequences:

CALL DVCHK(j) to determine if a divide check has occurred.
CALL OVERFL(j) to determine if an exponent register overflow or underflow

has occurred.
where: j is an integer variable that is set to one (1) if a divide check,

exponent register overflow, or exponent register underflow has occurred;
otherwise, j is set to two (2).

To allow another value to be returned after a divide check fault, the
following calling sequence is used prior to the statement that might cause the
fault:

CALL FXDVCK(r,m)

The value r, which must be double precision, is returned after a
floating-point divide check. The value m is returned after an integer divide
check. The second argument may be omitted.

The FORTRAN fault processor processes integer and floating-point divide
check faults, and exponent register overflow/underflow faults. A message is
printed on file 06 stating the type of fault and the location at which the fault
occurred. Execution continues with the value returned as follows:

Fault
Divide check (integer)
Divide check

(floating-point)
Overflow (integer)
Exponent overflow
Exponent underflow

Value Returned
No change

A large floating-point
No change
A large floating-point
Floating-point zero

Unless CALL FXDVCK
(is used.

value1-)

value1-

^Allows further computation without another immediate fault,
to approximately 10**36.

This value is set

9/76 6-32 DD02B

EXIT

This subroutine
activity. Control is

subprogram purges all buffers and terminates the current
returned to the General Comprehensive Operating Supervisor.

Calling Sequence:
CALL EXIT

FCLOSE

This subroutine subprogram closes file i without rewind and releases the
buffer(s) assigned. The buffer is released only if it is the standard size (320
words). Return is to the next executable statement in the calling program.

Calling Sequence:
CALL FCLOSE(i)

where i is an integer variable or constant logical file designator.

FILBSP,FILFSP

These subroutines allow users generating multifile
file to another (only valid with tape files) .

tapes to space from one

Calling Sequence:

CALL FILBSP (lgu,n) backspace n files
CALL FILFSP (lgu,n) forwardspace n files

where
Igu = integer variable or constant (file code)

n = number of files to skip (integer variable or constant)

To ensure proper positioning, the current file, if output, should be closed
with ENDFILE statement and counted as one of the files to be backspaced over.
Declare the files to be multifile and unlabeled by use of $ FFILE card. For
example,

$ FFILE xx,MULTFIL,NSTDLB

6-33 DD02

FLGEOF

This subroutine subprogram provides a signal requesting a return to the
calling subprogram if an end-of-file condition occurs. Return is to the next
executable statement in the calling program.

Calling Sequence:
CALL FLGEOF(i,j)

where i is the logical file designator, an integer variable, or constant.

J is an integer variable used to indicate an end-of-file
must test j (for a nonzero) when an end-of-file condition could
J should not generally be used for any other purpose.

condition (user
have occurred).

FLGERR

This subroutine subprogram provides
occurrence of erroneous data. Return is to
calling program.

a variable used in detecting the
the next executable statement in the

Calling Sequence:
CALL FLGERR(i,j)

where i is the logical file designator, an integer variable, or constant.

J is an integer variable used to indicate an input data error (user must
test j (for a nonzero value) when an error condition could have occurred). J
should not generally be used for any other purpose.

FLGFRC

This subroutine provides the user with some control
Control errors. The user can set his error routine address
block. This subroutine should be called prior to the first

of File and Record
into the file control
I/O for this file.

Calling Sequence:
CALL FLGFRC (lgu,ptr)

where
Igu = an integer variable or constant representing

the numberic file code
ptr = the name of the recovery subroutine or an

alternate return to a label in the same program

6-34 DD02

Any File and Record Control error that would take the ’’user-supplied
routine’’ exit will cause transfer of control to the ptr recovery subroutine or
label after the printing of a message and status code. Refer to the File and
Record Control manual for details of the user-supplied routine.

NOTE: Essentially, a GMAP CALL to the routine ptr is generated so that a
GMAP subroutine could obtain the status code by executing a LDXn
3,1.

FMEDIA

This subroutine allows the user to cause transliteration to occur on files
directed to mass storage or tape.

Calling Sequence:
CALL FMEDIA (fc,media)

where media (integer variable or constant)
= 0 for BCD no slew
= 2 for BCD card images
= 3 for BCD slew
= 5 for TSS ASCII format (Obsolete)
= 6 for standard system ASCII format (no slew)

Others are ignored.
fc = logical file code (integer variable or constant)

The legal combinations are as follows:
0 to 2
0 to 3
0 to 5
0 to 6
2 to 0
2 to 3
2 to 5
2 to 6

3 to 0
3 to 2
3 to 5
3 to 6
6 to 0
6 to 2
6 to 3
6 to 5

FPARAM

This subroutine permits the user to set or reset some of the I/O parameters
of the run-time library. Specifically, it can be used to:

1. Set the line length (multiple of four) for formatted output directed
to a terminal. The default setting for this parameter is 72. The
maximum line length is 160 characters.

2. Set the media code for unformatted file output. The default setting
of this parameter is one (1).

3. Set the reflexive read characters that are sent to a terminal to
request input. The default setting of this parameter is the ASCII
CHARACTER constant ’carriage return’, ’line feed’, ’equal sign’, X-ON.

9/76 6-35 DD02B

Calling Sequence:
CALL FPARAM (i,j)

where: i is an integer variable or constant, with a value of 1, 2, or 3
corresponding to one of the three functions above.

J is an integer variable or constant, providing the line length or media
code for i values of 1 and 2, or providing the octal value of four
ASCII characters for an i value of 3.

Example of reflexive read signature changed to in which 015 is a carriage
return, 012 is line feed, and the two 077s are question marks:

DATA J/0015012077077/
CALL FPARAM (3,J)

Example of terminal line length setting to 160 characters:

CALL FPARAM (1,160)

FXDVCK (see DVCHK)

FXEM (FORTRAN EXECUTION ERROR MONITOR)

This subroutine performs the following functions:

1. Prints a trace of subroutine calls.
2. Prints execution error messages.
3. Terminates execution with a Q6 abort or does one of the following:

a. Continues with execution of the program.
b. Transfers to an alternate error routine.

4. Allows the user to determine if an error has been processed by the
Execution Error Monitor.

These functions are accomplished by the setting/resettinq of bits in switch
word groups that control termination, message printing and trace, and alternate
error return for the errors described in Table 6-5. See Appendix E for FXEM
examples.

Calling Sequences:

CALL ANYERR(v)

where v is a variable into which the FORTRAN Execution Error Monitor places the
error code (see Table 6-5) if an error occurs. V should not be used for any
other purpose.

9/76 6-36 DD02B

CALL FXEM(ncode,msg,n)

This call causes the display on file 06 of an error trace and the message
contained in msg which must be a character constant or variable. The number of
words, n, to be printed must be within the limits 0<n<20. If only the first
argument is given, only the trace is printed. Ncode is the error code (see
Table 6-5) expressed as an integer in the range l<n<143.

CALL FXOPT(ncode,il,i2,i3)
This call to the Execution Error Monitor is used to alter the standard

switch word settings listed in Table 6-5. Ncode is the error code. Il, i2, i3
refer to the switch words settings for termination, message printing and trace,
and alternate error procedure respectively. If il=l, continue execution; if=0,
abort with a Q6 abort. If i2=l, suppress printing; if=0, print. If i3=l, use
alternate error procedure; if=0, use normal return. This option overrides the
termination option.

Examples:
1. CALL FXOPT(32,0,1,0)
2. CALL FXOPT(32,1,0,0)
3. CALL FXOPT(32,0,0,1)

Example 1 causes a Q6 abort, for error number 32, when the error occurs.
No message or trace is printed. Example 2 causes execution to continue after
message and trace are printed. Example 3 indicates that return is to an
alternate error routine after trace and message are printed. The alternate
return takes precedence over termination.

CALL FXALT(SR)

The FXALT call is used to set the alternate error procedure location. SR
is the alternate error procedure subroutine; it is used as the address to which
the error monitor transfers. An EXTERNAL SR must be included in the calling
routine. FUNCTION subprograms and parameters are not allowed. If the alternate
procedure option for an error code is indicated but no call to FXALT has been
made, a Q5 abort occurs when the error condition occurs. A RETURN statement in
the alternate routine causes execution to be continued at the next executable
statement following the statement that caused the error.

The alternate error procedure must not invoke the routine in which the
error was found; i.e., the alternate error procedure for a formatted
input/output statement must not perform formatted input/output operations.

The statement CALL FXALT($n) designates statement n in the calling program
as the alternate error return. Statement n must be in the same program unit in
which the CALL FXALT appears but does not have to be in the same program unit in
which the error occurs.

NOTE: If the same error occurs in the alternate error routine, a loop
results.

The standard setting of bits in the FXSW1 switch word groups controls
termination. The execution results are indicated in the second column of Table
6-5. The settings in the second and third switch word groups (trace and
alternate return) are initially zero.

9/76 6-37 DD02B

Ta
bl

e
6-
5.
 Er

ro
r

Co
de

s
an

d
Me

an
in

gs

o

a
U CM

a aa za hiS a

a u< a a a z
a

zo

CM
| 00 CO 00

m co hi co
co * * *
4C 4C * *
4c O O O

O CXI O r—I O O r-1 r—I
|| II II II II II II IIE-iHE-tE-'E-'E-iE-'E-i aaaaaaaa
d a a a a a a a aaaaaaaa aaaaaaaa aaaaaaaa
E-iHE-'E-'E-'E-'E-'E-' aaaaaaaa aaaaaaaa

o

co oo
co co
4c *
4c 4c
o o + o

^ 0 0 0 a o o oI II II II O II II II II E-t E^ Eh Eh aH Eh Eh Ehaaaa aaaaa a a a aa a a aaaaa Ena a a aaaaa < a a a a aaaa aa a a aa
Eh Eh Eh Eh < Eh Eh H Eh aaaa > a a a a aaaa aa a a a

co
CM
o

•
00
00

a o
I

a o
4

CM
I

in
co
4c
4c
CM

O'
a
♦

O'<a
t
00
co
4C
4c
O

O<a
I

o<

a <
♦

00
co
4c
4c
O

a o
I

o<a
f

O’< a

00
CM
o•
00
00 A a

o
V
H)
o
II< u

o
V
<Q

a Q

II a a
o ii < Q

9/76 6-38 DD02B

9/76 6-39 DD02B

CD
tn
a

•H

0
S

nJ
a
aJ

CD
(D

TJ
O
U

O
M
Fl

a o o

in
l

VO

0

XI
nJ

i
i
i
i
i

x o x cz X

E-tXX Z O

X < U X X X Hl

I
I
I
I
I

X

X
X U < (X x x u < m

i
i
i
i
i

QX Z
X x Q

OZ
X J
HIX

I
I
I
I
I

X X H X
IX o
IQ

O XXH Q H wE-t Z X Xu HI U CQZ Z Q O XZ X Z X XX XXX IX

U z
z (X X o
x X
X

u z HI
z x X o
x X
X

o
HI

X < z H X

E-t X
X X
§
z

E-t X HI
J X
5
z

X X
H H u E-t u
X X < X <H 1—1 X Q Hl X
X H X H X X X E-t X
X Z X z X O X Z X X?: X s X u o s X o X
< z z < X z < H
z HI z HI PQ X z F—1 CQ X

XX XHZ XX Q \ Z X X E-t M < U X H X O O Z x x; m o Q X < <J

X Q O u

o

9/76 6-40 DD02B

X X
X

X
X

X

z zo

u

£w
£ a

u
u

z Xa M

o

o
zo

a

a
tsj

u
z0a

Oaz 00 0

co aaaa 0aua *

azaaaaa a a

a
z

uuuou uza

a
0000<D

a
a

(U
(D

a
Q

CN
a

X
X

X
X
X
X
X
X

o o

a
a

£O

a x

z o a x
cn
0)

a
a

a
a a

S

u < u < u o

a
z

a a

a
a

0a
Eh a< 0 0a Eh Eh z < aa a X 0 a 1—1 a aH a a a X s a 0o z a x a X a aa z s < a a a + 1a 0 o ! a a Eh 0 < X ii

o 1-1 0 Eh z; 0 < a Eh CM
Z a z z a X a a 1

a a 0 a1 Q o o a a 0 0
a a 0 Eh Z a i a a a Eh a in
u CXI a Z Eh a ai a Eh Eh o a a ro
< < H a a < 0 a 0 Eh a X *
a a a Eh a a ai a O 0 < X X *
a z 0 a a a a a a a o EH CM
a a a a X < a O X X X < a z

S a Q Eh a a 0 o z a Eh 0 x a **-z’

xZ 0a a Z oa a o o aa £ Eh Eh a aH 0 a Eh a aX a O a ax a a 0 0 a a < a
u i 0 a O 0 Eh 0 a £
a z Eh z a 0 O' f—H X < a o

o a a x a a a o 0 a x a
z z a a Eh X a a o Eh aa a a 0 a Z a n X

o a Eh Eh a 0 >H X HH o X a
H o Eh a 3 Z a S < a < a >
Z x 0 o C> a X o a x z a a o
0 a a 0 x 1 Eh £ rH O X X 0 o a a
o N 0 a ai a z O a o Eh

a 0 z a a x1 a a a a a a a Z x z
u r-H a a < X 0 < a < f—1 < X z a
< X a a a 0 c> a a 0 0 0 0 a >H za a 0 < a a a i i Eh a a a a o a > a Eh o
a z o 0 a z a a1 z a a a a a a z a a a
a a a o a a a ai o a a z a a >H a o M S X
s a x a a a a a< z Eh a o a HH a a u a a a

0\l

Osl CM
1 1 aam a * 1 i 1 i

1 i 1 1 i m a * 1 i I i
1 i 1 1 i * * a 1 i I i
1 i 1 1 i * * Z 1 i 1 i
11 i i 1 11 1 i i CM

z
a
X^Z 1 1

£
i 1 i

oz O X
a o a o 0

Eh EH X a a a
0 a a a a a X 0
a X X X X 0 X a a
z < a a a a a z a > >a o a > a on a a 0 o a

Eh o z a * A z A o 0
Eh o o * a 0 Eh Eh
a Eh a o a-« CM 0 > 0 0 Z X Z Xa a < A a O a a a a
a s 0 a i >H 0 r-H r-H z 0 z 0
a a a i Eh a 0 A a 1 0 o a o a

Eh a x i a a * a a a Eh a Eh
Eh * a o i s a * a V 0 X Z X z

z < a a a i a a I—1 — 0 FH 0 X a a a a

X

o O 0> Eh o
H") o o Z 0 0 a Z <£>

1 X X X a XVI <
0

X a XV1
kO o o (SJ a c a 0 a c:X o 0 \/i 0 0 C1 VI
(D X 0 a z Vl 0 o z VlMz a X o a o a X a a

9/76 6-41 DD02B

9/76 6-42 DD02B

Ta
bl

e 6-
5 (con

t).
 Erro

r C
od

es
 and

 M
ea

ni
ng

s

w cn o

9/76 6-42.1 DD02B

LINK AND LLINK

The LINK subroutine enables the programmer to call program overlays in the
batch mode. See Section III for TSS overlay linking via the RUNL command where
a special form of LINK is used. The following call is used to invoke a link and
transfer control to it without returning to the calling program/overlay.

CALL LINK(name)
where name designates the variable name of the link as it appears on the $ LINK
control card. (See the General Loader manual for "Link/Overlay Processing".)
Name may be a variable, which currently has a character type value, or it may be
a character constant, e.g., "LINK1". The link name must be 1-6 characters if
using the BCD option, or must be 5-8 characters if using the ASCII option.
Explicit trailing blanks are included in the character count.

To load a link and return to the next sequential statement of the calling
routine, the required statement is:

CALL LLINK(name)
NOTE: Due to FORTRAN RUN subsystem limitations, it is necessary to force

the loading of input-output library routines with the main link in a
time sharing loadable H* file. This activity requires the presence
of a PRINT statement or another form of character input-output
statement in the main program.

MEMSIZ

This subroutine provides the user with the means
memory allocated to the compilation.

of obtaining the amount of

Calling Sequence:
CALL MEMSIZ(j)

where the value returned in j, an integer variable, is the number of 1024-word
blocks currently allocated this job. This feature can also be used as a
function.

NASTRK

This subroutine may be called to avoid filling an output field with
asterisks when a formatted output value exceeds the field width specified. The
most significant part of the number is truncated to fit the field. See
subroutine YASTRK.

Calling Sequence:

CALL NASTRK

OVERFL (see DVCHK)

9/76 6-43 DD02B

PDUMP,PDUMPA (see DUMP)

PTIME

This subroutine provides the user with the means of obtaining processor
time used.

Calling Sequence:
CALL PTIME(a)

where the value returned in a, a real variable, is the processor time used in
hours. This feature can also be used as a function. The value returned will be
a cumulative time for this job or, if under time sharing, it will be cumulative
for the current user.

RANSIZ

This subroutine permits the user to specify the record size for a random
binary file. Normal return is to the next executable statement of the calling
program. If the record size for a given random file is not provided at load
time via the $ FFILE card, a call to this routine before opening (first I/O to)
the file is mandatory.

Calling Sequence:
CALL RANSIZ (u,n,m)

where: u is the logical file designator,
n is the record size,
m is a file format indicator.

U, n, and m must be of type integer. They can be any legal arithmetic
expression.

Note that a call to RANSIZ can also be used to override a $ FFILE size
specification and that this is the preferred method of specification since its
function works for both batch and time sharing use of FORTRAN.

The third argument (m) is optional. When not supplied, file u is processed
in standard system format (blocked, variable length records, etc.). When
supplied, zero indicates standard system format; nonzero indicates that block
and record control words are not to be processed. This latter format provides
compatibility with random files generated by time sharing FORTRAN. The total
file space is available for data; records are not blocked, can begin anywhere in
a sector and may span device boundaries.

SETBUF

This subroutine allows the user to assign space in storage for use as an
input/output buffer (s). The size of the buffer(s) must be one greater than the
actual record size. The standard buffer size is therefore 321 words. Normal
return is to the next executable statement in the calling program.

9/76 6-44 DD02B

Calling Sequence:
CALL SETBUF(i,a)

• CALL SETBUF(i,a,b,)

where i is the logical file designator, an integer variable, or constant.

A is the array name of the first buffer.

B is the array name of the second buffer, if required.

SETFCB

This subroutine allows the user to define a file control block (FCB) for
use by the I/O subprograms. Normal return is to the next executable statement
of the calling program except for the following possible error conditions:

1. Abort with a Q2 if there is no logical file table.
2. Abort with a QI if there is no space available in the logical file

Calling Sequence:
CALL SETFCB(a,i,j,...)

where a is the location of LOCSYM in the user created file control block.

I,j... are the logical file designators (integer variables or constants) that
refer to the file control block.

SETLGT

This subroutine allows the user to define a logical unit table for use by
the I/O library subprograms. Normal return is to the next executable statement
of the calling program. This subroutine must be called before any input/output
is requested. It is called when the user wants to suppress the logical file
table generated by the General Loader and to place the table in his own portion
of memory. The NOFCB option must be specified in the $ OPTION control card.

Calling Sequence:
CALL SETLGT(a,i)

where a is the array name of the logical unit table to be used.

I is an integer variable or constant representing the number of words in table
a.

9/76 6-45 DD02B

SLITE,SLITET

This subroutine subprogram simulates the setting
lights. Normal return is to the next executable
program.

and testing of sense
statement in the calling

Calling Sequences:
CALL SLITE(O) to clear sense lights 1-35
CALL SLITE(i) to turn on sense light i (l<i<35)
CALL SLITET(i,j) to test and turn off sense light i, if on

where i is an integer variable or constant.

J is an integer variable which is set to 1 if sense light i was ON; set to
2 if sense light i was OFF. J can not be the induction variable of a currently
active DO loop.

SORT

This
character

subroutine provides the user
arrays in an ascending order.

with the means of sorting integer or

Calling Sequence:
CALL SORT (array,nrec,Irs,keyx, ...,keyn)

»

where:
array is the name of the array to be sorted;
nrec is an integer variable or constant and is the number of items, or

logical records, in the array;
Irs is an integer variable or constant and is theological record size,

or the size of each item in the array in words. For integer
arrays, this is always one. For character arrays, the record size
can be determined by realizing that there are four characters per
word in ASCII and six characters per word in BCD.. For example, a
CHARACTER *12 item would have Irs of 2 in BCD, 3 in ASCII.

key is the relative word number of the ith sort key in each logical
--- record and must be such that 0< key. <lrs. Record comparisons are

made starting with keyx, and either progress through keyn, or until
a non-equal comparison is made. Any number of sort keys may be
specified; however, at least one must always be specified. If key
has a value of zero, the sort will occur on the first word of each
array element.

9/76 6-46 DD02B

The following example illustrates a 2-dimensional array sort.

0010 DIMENSION ARR(3,5)
0020 PRINT, "INPUT DATA"
0030 READ(5,10)ARR
0040 10 FORMAT(3A5)
0050 CALL SORT(ARR,5,3,0,1,2)
0060 PRINT,"SORTED DATA"
0070 WRITE(6,10)ARR
0080 STOP;END
ready
*RUN=(BCD)
INPUT DATA
=ELK FAST 1
=COW SLOW 2
—DOG FAST 3
=CAT FAST 4
=ELK FAST 5
SORTED DATA
CAT FAST 4
COW SLOW 2
DOG FAST 3
ELK FAST 1
ELK FAST 5

SORTD

This subroutine provides the user with the means
character arrays in a descending order.

of sorting integer or

Calling Sequence:
CALL SORTD (array,nrec,Irs,keyi ,...,keyn)

where:
array is the name of the array to be sorted;
nrec is an integer variable or constant and is the number of items, or

logical records, in the array;
Irs is an integer variable or constant and is the logical record size,
“ or the size of each item in the array in words. For integer arrays,

this is always one. For character arrays, the record size can be
determined by realizing that there are four characters per word in
ASCII and six characters per word in BCD. For example, a CHARACTER
*12 item would have a Irs of 2 in BCD, 3 in ASCII.

key is an integer variable or constant and is the word number of the
ith sort key in each logical record and must be such that
0<key^<lrs. Record comparisons are made starting with keyi and
either progress through to keyn, or until a non-equal comparison is
made. Any number of sort keys may be specified; however, at least
one must always be specified.

The example following builds
based on the timer register. This
printed, followed by a descending

an array of 10 random numbers from 0 to 20
array is then sorted in ascending order and
sort and print.

6-47 DD02

0005 DIMENSION ARRAY (10)
0010 DO 10 1=1,10
0020 10 ARRAY(I)=RANDT(20.0)
0030 CALL SORT(ARRAY,10,1,0)
0040 WRITE(6,200)ARRAY
0042 CALL SORTD(ARRAY,10,1,0)
0043 WRITE(6,200)ARRAY
0050 200 FORMAT(10 (2X,F5.2))
0060 STOP;END
ready

*RUN
0.85 1.08 5.73 6.29 8.08

15.17 13.74 12.15 11.84 11.61
11.61 11.84 12.15 13.74 15.17

8.08 6.29 5.73 1.08 0.85

SSWTCH

This subroutine subprogram tests the GCOS switch word for the status of a
sense switch. Normal return is to the next executable statement in the calling
program.

Calling Sequence:

CALL SSWTCH(i,j) to test sense switch i

where i is an integer variable or constant that must be from 1 to 6.

J is an integer variable that is set to 1 if the switch i is ON and is set
to 2 if the switch is OFF. J can not be the induction variable of a currently
active DO loop.

Bits 6-11 of the Program Switch Word, described in the General
Comprehensive Operating Supervisor reference manual, correspond to sense
switches 1-6.

TERMNO

This subroutine provides the user with the means of obtaining station code.

Calling Sequence:
CALL TERMNO (a)

where the value returned in a, a character variable, is a 2-character station
code. In batch, the call returns blanks.

6-48 DD02

TERMTM

This subroutine provides the user with the means of obtaining log-on time.
The call is applicable only for time sharing activities; it is ignored in the
batch mode.

Calling Sequence:
CALL TERMTM (a)

where the value returned in a, a real variable is the hours since log-on.

TRACE

This subroutine is callable from a FORTRAN object program in the time
sharing mode. It is useful in tracing and debugging an object module. See the
Debug and Trace Routines manual.

USRCOD

This subroutine provides the user with the means of obtaining user
identification. The call is applicable only for time sharing activities; it is
ignored in the batch mode.

Calling Sequence:
CALL USRCOD (s)

where the value returned in s, a character variable, is a 12-character user
identification.

YASTRK

This subroutine may be called to override a NASTRK subroutine and to
re-establish the default action of filling an output field with asterisks when a
formatted output value exceeds the field width specified. See subroutine
NASTRK.

Calling Sequence:

CALL YASTRK

9/76 6-49 DD02B

APPENDIX A

ASCII/BCD CHARACTER SET

MODEL
ASCII BCD 33/35 HOLLERITH
CHAR Octal CHAR Octal KEY CARD Punch MEANING

NULL 000 ■M <— — — — — ' CS ' P — — — Null or time fill char
SOH 001 — — — — — — 'C'A MB MB MB Start of heading
STX 002 BM BM — —• — ' C' B — — — Start of text
ETX 003 — — — — — — 'C'C (EOM) - — — End of text
EOT 004 — — —* — — — 'C'D (EOT) MB MM MM End of transmission
ENQ 005 — — — — — — ’ C'E (WRU) — — - Enquiry (who are you)
ACK 006 ant «bxbb mm — — — 'C'F (RU) — — — Acknowledge
BEL 007 -M — MM — — — 'C'G (BELL) — — — Bell
BS 010 mm mm mbu — — — ' C'H BM BM MB Backspace
HT 011 — — — — — — 'C'l (TAB) — — — Horizontal tabulation
LF 012 «M» MM MM — — — LINE FEED BM M. «M Line Feed (New Line)

013 — — — — — — 'C'K (VT) MB BM BM Vertical Tabulation
FF 014 — — — — — — 'C'L (FORM) Form Feed
CR 015 — — — MB MM BM RETURN — — Carriage Return
SO 016 — —• — BM MB -M 'C'N — — - Shift Out
SI 017 — — — BM — MB 'C'0 — — — Shift In
DLE 020 —• — — — — — ' C'P MM MB MM Data Link Escape
DCl 021 KM MB UM. MB M. 'C'Q (X-ON) — — — Device Control 1
DC2 022 — — — BM MB MM 'C'R (TAPE) — — — Device Control 2
DC 3 023 MM M■ MM — — — ' C'S (X-OFF) MB «M BM Device Control 3
DC 4 024 — — — — — — 'C'T (TAPE) BM >M BM Device Control 4
NAK 025 MB M BM — - — 'C'U BM BMi MB Negative Acknowledge
SYN 026 — — — — — — 'C'V — — — Synchronous Idle
ETB 027 MB — — «M> MB BM ' C'W — — — End of Transmission Blocks
CAN 030 — — — — — — ’ C’ X - — — Cancel
EM 031 MB — — — — — 'C'Y MB MB «M End of Medium
SS 032 — — —« — — — ' C' z — —“ — Special Sequence
ESC 033 MM» MB BM MB MM MM 'CS'K — — — Escape
FS 034 — ~ — M. MB MB ' CS ' L — — — File Separator
GS 035 — — — BM BM MM ' CS ' M — — — Group Separator
RS 036 mb bm bm — — — ' CS'N MMMM M. Record Separator
US 037 — — — ' CS ' 0 BM MM MB Unit Separator
SP 040 blank 20 SPACE BAR blank Space
i 041 1

• 77 ’S' 1 0-7-8 Exclamation Point
n 042 II 76 'S'2 0-6-8 Quotation Mark
043 # 13 'S' 3 3-8 Number Sign
$ 044 $ 53 'S' 4 11-3-8 Currency Symbol
g.'O 045 Q, 'O 74 'S' 5 0-4-8 Percent
& 046 & 32 ' S' 6 12 Ampersand
f 047 1 57 'S' 7 11-7-8 Apostrophe

050 (35 ' S ' 8 12-5-8 Opening Parenthesis
J 051 1 55 'S' 9 11-5-8 Closing Parenthesis
* 052 * 54 'S' : 11-4-8 Asterisk
+ 053 4- 60 'S' ; 12-0 Plus

054 r 73 t 0-3-8 Comma
055 MBBB 52 11 Hyphen or Minus
056 • 33 • 12-3-8 Period

/ 057 / 61 0-1 Slant

DD02

ASCII
CHAR Octal

BCD
CHAR Octal

MODEL
33/35
KEY

HOLLERITH
CARD Punch MEANING

0 060 0 00 0 0 Zero
1 061 1 01 1 1 One
2 062 2 02 2 2 Two
3 063 3 03 3 3 Three
4 064 4 04 4 4 Four
5 065 5 05 5 5 Five
6 066 6 06 6 6 Six
7 067 7 07 7 7 Seven
8 070 8 10 8 8 Eight
9 071 9 11 9 9 Nine• • 072 . *• 15 • • 5-8 Colon• / 073 • 56 •

F 11-6-8 Semicolon
074 36 'S', 12-6-8 Less Than— 075 — 75 ’S’- 0-5-8 Equal
076 16 ’S’ . 6-8 Greater Than

9 077 9 • 17 ’S’/ 7-8 Question Mark
@ 100 (Q 14 'S'P 4-8 Commercial At
21 101 A 21 21 12-1 Uppercase Letter
B 102 B 22 B 12-2 Uppercase Letter
C 103 C 23 C 12-3 Uppercase Letter
D 10 4 D 24 D 12-4 Uppercase Letter
E 105 E 25 E 12-5 Uppercase Letter
F 10 6 F 26 F 12-6 Uppercase Letter
G 10 7 G 27 G 12-7 Uppercase Letter
H 110 H 30 H 12-8 Uppercase Letter
I 111 I 31 I 12-9 Uppercase Letter

112 J 41 J 11-1 Uppercase Letter
K 113 K 42 K 11-2 Uppercase Letter
L 114 "l~ 1 43 L 11-3 Uppercase Letter
M 115 M 44 M 11-4 Uppercase Letter
N 116 N 45 N 11-5 Uppercase Letter
0 117 0 46 0 11-6 Uppercase Letter
P 120 p 47 p 11-7 Uppercase Letter
Q 121 Q 50 Q 11-8 Uppercase Letter
R 122 R 51 R 11-9 Uppercase Letter
S 123 S 62 S 0-2 Uppercase Letter
T 124 T 63 T 0-3 Uppercase Letter
U 125 U 64 U 0-4 Uppercase Letter
V 126 V 65 V 0-5 Uppercase Letter
w 127 W 66 W 0-6 Uppercase Letter
X 130 X 67 X 0-7 Uppercase Letter
Y 131 Y 70 Y 0-8 Uppercase Letter
z 132 Z 71 Z 0-9 Uppercase Letter

133 12 'S'K 2-8 Opening Bracket
134 37 ’S’L 12-7-8 Reverse Slant
135 34 ' S'M 12-4-8 Closing Bracket

A 136
137

A 40
72

'S'N
'S'0

11-0
0-2-8

Circumflex
Underline

\ 140 — — — M — — — — — — — — Grave Accent
a 141 — — — — — — — — — — — — Lowercase Letter
b 142 — — — — — — — —■ — MB Lowercase Letter
c 143 — — —. — — — "■ — — — - Lowercase Letter
d 144 — — — — —- — — — — BMB MB MB Lowercase Letter
e 145 MB —«— — — — — "" — — Lowercase Letter
f 146 — — — — — — — — — — — —“ Lowercase Letter
g 147 — — — — — — — — — — — —1 Lowercase Letter
h 150 — — — — — — — — — — — Lowercase Letter
i 151 — —- — — — — — — — — — — Lowercase Letter
j 152 — — — — — — — — Lowercase Letter
k 153 — — — — — — — — — — Lowercase Letter
1 15 4 — — — — — — — — — — — — Lowercase Letter

A-2 DD02

MODEL
ASCII BCD 33/35 HOLLERITH
CHAR Octal CHAR Octal KEY CARD Punch MEANING
m 155 MM MM MM MM MM — — — — — — — Lowercase Letter
n 156 —’ MM MM MM MM MM — — — — — — Lowercase Letter
o 15 7 — — — — — — — — — MM MM MM. Lowercase Letter
P 160 — — — — — — MM MM MM — — — Lowercase Letter
q 161 — — — — — — MM MM MM MM MM M. Lowercase Letter
r 16 2 —• — —• — — — MMMM MM — MM — Lowercase Letter
s 16 3 — — — MMMM MM MM M. MM MM MM MM Lowercase Letter
t 164 — — — — — — — — — MM MM MM> Lowercase Letter
u 16 5 — — — — — — — — — MM — MM Lowercase Letter
V 166 —• — — MM MM MM MMMM MM — — — Lowercase Letter
w 167 MM MM MM — — — MM MM MM Lowercase Letter
X 170 — — — MM M. M. MM MM MM M. MMMM Lowercase Letter
y 171 MM -M MM MM aMB MM MM M. MM MM MM MM. Lowercase Letter
z 172 MM MM •M MM MM MM MM MM MM MM «M> Lowercase Letter< 173 — — «— MM MM MM MM MM MM — — — Opening Brace
1 174 ------ ------- — — — — — — ------ — — — Vertical Line

> 175 — — — MM MM MM MM BMP MM — — — Closing Brace
176 — "■» —“ — — — — — — — — —' Tilde

DEL 177 — — ■— MM MM MM RUBOUT 12-7- 9 Delete

Legend;

'C' = CTRL key
'CS' = CTRL and SHIFT keys
'S' = SHIFT key

A-3 DD02

APPENDIX B

DIAGNOSTIC ERROR COMMENTS

The error detection capabilities of FORTRAN are extensive, including over
500 unique compiler diagnostics. Each diagnostic has zero, one, or two
'’plug-in" fields, as appropriate to the message. In batch mode, diagnostics are
generated inline as part of the source listing report (LSTIN) wherever possible,
following the line in error. If this report is being suppressed.via the • NLSTIN
option, lines having no errors are not printed, but lines for which a diagnostic
is being generated are displayed. In the time sharing mode, the error message
is printed along with the source line location of the error. If the line
numbers of the source file are not sequentially increased by one, the actual
line number is the one having a value that is less than or equal to the line
number printed.

The general form of a diagnostic line is as follows:
nnnn text

where S is a severity code, nnnn is an error identification code, and text is
the diagnostic message. There are three severity codes as follows:

Code
W
F

T

Meaning
This is a warning message only.
This is a fatal diagnostic; any subsequent
execution activity is deleted.
This is a termination diagnostic; this compilation
and any subsequent execution activity are deleted.

If only warning diagnostics
diagnostics can be suppressed by

are printed for a given compilation, these
using the NWARN option.

The error identification code may be used to reference the
error codes given in this appendix; it has a number of from one to

tabulation of
four digits.

A correspondence
error is as follows:

of error codes with the compiler module detecting the

Error Number

1- 199
200- 299
300- 399
400- 499

1000-1499

Compiler Module

Executive
Phase 2
Phase 3
Phase 4
Phase 1

9/76 B-l DD02B

In the subsequent tabulation of diagnostics, phase 1 errors are numbered 1
through 485. These correspond to error identification codes 1001 through 1462
respectively. Diagnostics pertinent to the other phases are shown by actual
error identification code.

The text of the diagnostic messages may include "plug-in" information, to
more fully detail the nature of the error. There are eleven types of plug-ins.
In the subsequent tabulation, a text insertion is indicated by a number, one
through eleven, enclosed in slants. The interpretation of that number is as
follows:

/No./ in Manual
listing

1
2
3
4
5
6
7
8
9

10
11

Actual value plugged in for error

Variable name, constant, or statement number
One of the operator codes from Table B-2
One of the statement classification types from

Table B-3
Character
One of the type codes from Table B-4
Number
One of the statement types from Table B-l
One of the Lexical classifications from

Table B-6
One of the program types from Table B-5
Four characters
Four or six characters

The following abbreviation is used in the listing:

ASF Arithmetic Statement Function

Table B-l. List of Statement Types for Code /7/

ABNORMAL
EXTERNAL
CHARACTER
DOUBLE PRECISION
COMPLEX
INTEGER
LOGICAL
REAL
READ
WRITE
PRINT
PUNCH
ENCODE
DECODE
PAUSE
STOP
REWIND
ENDFILE
ASSIGN
PARAMETER

RETURN
BACKSPACE
BLOCK DATA
CALL
COMMON
CONTINUE
DATA
DIMENSION
DO
END
ENTRY
EQUIVALENCE
FUNCTION
GO TO
FORMAT
IF
IMPLICIT
NAMELIST
SUBROUTINE

B-2 DD02

Table B-2 List of Operator Codes for Code /2/

.OR.

.AND.

.NOT.
+

* *

*
.EQ.
.NE.
.LT.
. GE.
.LE.
.GT.

Table B-3. List of Statement Classification Types Code /3/

block name
intrinsic function
array
scalar
arithmetic statement function
function
abnormal function
subroutine
external
parameter
entry name
namelist name
do loop index
adjustable dimension
bad insert

Table B-4. List of Types Code /5/

INTEGER
REAL
DOUBLE PRECISION
COMPLEX
CHARACTER
LOGICAL
TYPELESS

Table B-5. List of Program Types Code /9/

MAIN
SUBROUTINE
BLOCK DATA

B-3 DD02

Table B-6. List of Lexical Classifications Code /8/

VARIABLE
CONSTANT
OPERATOR
(

END OF STATEMENT
I

PHASE1 ERROR MESSAGES

SECTION I - Abnormal Statement

1. F VARIABLE NAME IS MISSING BEFORE FIRST , IN ABNORMAL STATEMENT

2. F VARIABLE NAME IN /7/ IS MISSING, STARTS WITH DIGIT OR IS 8
CHARACTERS

3. F /8/ FOLLOWING , IN ABNORMAL STATEMENT IS ILLEGAL
4. F /8/ FOLLOWING /I/ IN ABNORMAL STATEMENT IS ILLEGAL
5. F /4/ FOLLOWING 'ABNORMAL' IS ILLEGAL

SECTION II - Assignment Statement

6. F UNEXPECTED /8/ ENCOUNTERED IN /7/ STATEMENT
7. F /5/ CANNOT BE ASSIGNED TO A LOGICAL VARIABLE
9. F LEFT HAND SIDE OF ASSIGNMENT STATEMENT HAS AN ERROR IN TYPING

10. F TYPE OF RIGHT HAND SIDE OF ASSIGNMENT IS INCOMPATIBLE WITH LEFT HAND
SIDE

273. W TYPE OF RIGHT HAND SIDE OF ASSIGNMENT IS INCOMPATIBLE WITH LEFT HAND
SIDE

SECTION III - Arithmetic Statement Function

11. F /I/ IS AN UNDIMENSIONED ARRAY OR MISPLACED ASF
12. F UNEXPECTED /4/ FOLLOWING BALANCING PARENTHESES

13. F ILLEGAL STATEMENT OR /I/ USED PREVIOUSLY IN ASF ARGUMENT LIST

14. F ILLEGAL STATEMENT OR /8/ USED ILLEGALLY IN ASF

15. F ILLEGAL STATEMENT OR RIGHT PAREN AFTER , IN ASF IS ILLEGAL

16. F ILLEGAL STATEMENT OR = IS MISSING IN /7/ STATEMENT

224. F ILLEGAL STATEMENT OR UNEXPECTED /8/ IN ASF

B-4 DD02

SECTION IV - Assigned GOTO Statement

17. F 'TO' IS MISSPELLED OR MISSING IN 'ASSIGN' STATEMENT

18. F STATEMENT NUMBER IS MISSING IN 'ASSIGN' STATEMENT
19. F LABEL IN ASSIGN STATEMENT IS NOT BETWEEN 1 AND 99999
20. F 'TO' AND SWITCH NAME ARE MISSING IN 'ASSIGN' STATEMENT

21. F SWITCH NAME IS MISSING IN 'ASSIGN' STATEMENT
22. F SWITCH NAME IN 'ASSIGN' STATEMENT CONTAINS MORE THAN 8 CHARACTERS

SECTION V - CALL Statement

23. F /8/ FOLLOWING ')' IN CALL IS ILLEGAL, EXPECTING END OF STATEMENT

24. F SUBROUTINE NAME IS MISSING IN CALL STATEMENT
25. F MORE THAN 8 CHARACTERS IN SUBROUTINE NAME IN CALL STATEMENT

26. F /I/ USED AS /3/ , INVALID AS A SUBROUTINE NAME

SECTION VI - DATA Statement

27. F FIRST VARIABLE NAME IS MISSING IN /7/ STATEMENT

28. W EXPECTING COMMA AFTER /
29. F /8/ FOLLOWING LEFT PAREN OR COMMA IN /7/ STATEMENT IS ILLEGAL

30. F NON-INTEGER CONSTANT IN ARRAY SUBSCRIPT
31. F IDENTIFIER /I/ ON DATA LIST HAS NOT BEEN DIMENSIONED
32. F /8/ IS ILLEGAL FOLLOWING LEFT PAREN IN DATA STATEMENT

33. F UNEXPECTED /8/ FOLLOWING /I/ IN DATA STATEMENT
34. F /8/ FOLLOWING * IN SUBSCRIPT OF DATA STATEMENT IS ILLEGAL
35. F /8/ FOLLOWING /!/ IN SUBSCRIPT OF DATA STATEMENT IS ILLEGAL
36. F UNEXPECTED /8/ FOLLOWING + IN SUBSCRIPT OF DATA STATEMENT
37. F NUMBER OF SUBSCRIPTS FOR /!/ DOES NOT MATCH NUMBER IN DECLARATION

38. F /8/ FOLLOWING RIGHT PAREN OF /I/ IN DATA STATEMENT IS ILLEGAL
39. F CONTROL INDEX /I/ IS OUTSIDE IMPLIED DO LOOP
40. F /8/ IS ILLEGAL FOLLOWING = IN DATA STATEMENT
41. F /8/ FOLLOWING FIRST , IN DATA STATEMENT IS ILLEGAL
42. F /8/ FOLLOWING SECOND , IN IMPLIED DO LOOP IS ILLEGAL
43. f UNEXPECTED /8/ FOLLOWING STEP IN IMPLIED DO LOOP IN DATA STATEMENT

B-5 DD02

/%/ FOLLOWINGUNEXPECTED
LIST

RIGHT PARENTHESIS TERMINATING IMPLIED

45. F UNEXPECTED /2/ FOLLOWING VARIABLE OR RIGHT PAREN ON DATA LIST
46. F IMPLIED DO SPECIFICATION IS MISSING
47. F /8/ FOLLOWING / IN DATA LIST IS ILLEGAL STATEMENT
48 SUBSCRIPT IN DATA STATEMENT IS NOT OF FORM I*J+K OR I*J-K
49. F SUBSCRIPTS AND IMPLIED DO PARAMETERS MUST BE INTEGERS

445. F UNEXPECTED /8/ FOLLOWING /I/ IN DATA STATEMENT

446. F UNEXPECTED /8/ FOLLOWING COMMA IN DATA VARIABLE LIST
447. F UNEXPECTED /8/ FOLLOWING THE IMPLIED DO PARAMETER /!/
448. F VARIABLE /!/ ON IMPLIED DO LIST IS NOT A DO CONTROL
456 . F ILLEGAL/8/ IN OR FOLLOWING DATA SUBSCRIPT EXPRESSION

SECTION VII - DO Statement

50. F RECORD NUMBER IN /7/ MUST BE TYPE INTEGER

51. F LABEL FOR DO-END IS NOT BETWEEN 1 AND 99999
53. F EXECUTABLE STATEMENTS ARE ILLEGAL HERE

55. F INDEX VARIABLE FOR DO STATEMENT IS MISSING, STARTS WITH DIGIT OR
CHARACTERS

56. F UNEXPECTED /8/ FOLLOWING INITIAL PARAMETER OF /I/ STATEMENT
57. F DO END STATEMENT NUMBER /I/ IS MISSING

253. F UNEXPECTED /8/ AFTER INITIAL PARAMETER OF DO STATEMENT
306. F DO LOOP INDEX /I/ MUST BE AN INTEGER
307. F /3/ /I/ ILLEGAL AS CONTROL INDEX

308. F NESTED DO LOOPS ARE USING /l/ AS THE SAME INDEX

309. F ADJUSTABLE DIMENSION /I/ MAY NOT BE USED AS A DO LOOP INDEX

SECTION VIII - Entry, Function, Subroutine, Blockdata Statements

58 BLOCKDATA STATEMENT IS OUT OF PLACE
59. F ENTRY STATEMENT IS ILLEGAL IN /9/

60. F ENTRY MAY NOT BE DECLARED INSIDE DO LOOP

DO

B-6 DD02

THE ARGUMENT /!/ APPEARS TWICE IN ENTRY LIST
/2/ IS ILLEGAL IN63 ARGUMENT LIST FOR /7/ STATEMENT
OPTIONAL RETURN * OR $ IS ILLEGAL IN /7/ STATEMENT
UNEXPECTED /8/ IN DUMMY ARGUMENT LIST

66

MISSING NAME IN /7/ STATEMENT
69 . MORE THAN 8 CHARACTERS IN NAME OF /7/
70 FUNCTION DEFINITION FOR /!/ MUST BE FIRST STATEMENT OF SUBPROGRAM

FUNCTION HAS NO NAME
'SUBROUTINE' STATEMENT MUST APPEAR FIRST IN SUBPROGRAM
FUNCTION ENTRY MUST HAVE AN ARGUMENT LIST

SECTION Format Statement

FORMAT STATEMENT DOES NOT HAVE A STATEMENT LABEL
85 ONLY TWO LEVELS OF NESTED PARENTHESES ALLOWED IN FORMAT STATEMENT

X OR H FIELD IN FORMAT STATEMENT MUST HAVE A NUMERIC PREFIX
' T' SPECIFICATION CANNOT HAVE A NUMERIC PREFIX
THE LETTER /4/ IS ILLEGAL IN A SPECIFICATION

164 NO WIDTH FIELD IN FORMAT SPECIFICATION
170 'W' FIELD CANNOT BE ZERO IN FORMAT SPECIFICATION
180 IN /7/ SPECIFICATIONUNEXPECTED END OF STATEMENT
181 TOO MANY CONTINUATION LINES IN FORMAT SPECIFICATION
185 THE CHARACTER /4/ APPEARS ILLEGALLY IN A FORMAT SPECIFICATION
188 COMPILER ERROR WHILE PROCESSING FORMAT STATEMENT
222 THE CHARACTERS PRECEDING ABOVE FORMAT ERROR ARE /ll/

'P' SPECIFICATION IN FORMAT MUST HAVE NUMERIC PREFIX257
/4/ SPECIFICATION

Intrinsic FunctionsSECTION X

AN ARGUMENT OF /I/ IS /5/
TOO MANY ARGUMENTS FOR /I/

INCOMPATIBLE W. D FIELD IN

ILLEGAL CONTINUATION LINE FOLLOWING RIGHT PAREN

UNEXPECTED /4/ FOLLOWING SIGNED NUMBER - EXPECTING A P

/8/ AFTER ')' IS ILLEGAL IN ARGUMENT LIST OF /7/ STATEMENT

B-7 DD02

75. F TOO FEW ARGUMENTS FOR /I/ IN /7/ STATEMENT

240. F AN ARGUMENT OF /I/ IS NOT TYPELESS OR INTEGER

SECTION XI - CALL or FUNCTION Arguments

76. F /3/ /!/ ILLEGAL AS AN ARGUMENT OF FUNCTION OR CALL

SECTION XII - Equivalence Statement

UNEXPECTED /8/
/8/ IS ILLEGAL78 AFTER A VARIABLE NAME IN EQUIVALENCE STATEMENT

/!/ MUST BE POSITIVE INTEGERS OR INTEGER PARAMETERS80 SUBSCRIPTS FOR
81 DIMENSION CONSTANT IS TOO LARGE

MORE THAN 7 DIMENSIONS ARE SPECIFIED FOR /I/
AFTER PARAMETER OR CONSTANT IN /7/ STATEMENT/8/ IS ILLEGAL83.

84

/8/ IS ILLEGAL AFTER ')' CLOSING GROUP86 IN EQUIVALENCE STATEMENT
87. EQUIVALENCE GROUP MUST START WITH LEFT PAREN

310 . COMMA MUST PRECEDE START OF EQUIVALENCE GROUP FOLLOWING A RIGHT PARENW

/8/ AFTER
ILLEGAL

FOLLOWING DIMENSIONS IN EQUIVALENCE STATEMENT

IN EQUIVALENCE GROUP - EXPECTING VARIABLE NAME

SECTION XIII - External Statement

88. F FIRST VARIABLE NAME IN EXTERNAL STATEMENT IS MISSING

89 . F VARIABLE NAME IN /7/ STATEMENT IS > 8 CHARACTERS
90. F /8/ FOLLOWING , IN EXTERNAL STATEMENT IS ILLEGAL
91. F /8/ FOLLOWING /!/ IN EXTERNAL STATEMENT IS ILLEGAL
92. F /8/ FOLLOWING RIGHT PAREN IN EXTERNAL STATEMENT IS ILLEGAL

SECTION XIV - File Designators

93. F ILLEGAL CHARACTER AFTER FILE REFERENCE CONSTANT IN /I/ STATEMENT
94. F FILE REFERENCE /I/ IN /I/ STATEMENT IS NOT AN INTEGER
95. F FILE REFERENCE IS MISSING IN /I/ STATEMENT
96. F FILE REFERENCE IN /7/ STATEMENT IS > 8 CHARACTERS

B-8 DD02

SECTION XV - GOTO Statement

67. F UNEXPECTED /8/ IN GO TO LIST

97. F ILLEGAL CHARACTER IN STATEMENT NUMBER IN /7/ STATEMENT
98. F STATEMENT NUMBER OR SWITCH IN GO TO STATEMENT IS MISSING OR ILLEGAL

99. F ILLEGAL SWITCH VARIABLE OR LABEL IN GO TO STATEMENT
100. F INVALID SWITCH OR STATEMENT NUMBER IN COMPUTED GO TO
101. F /8/ FOLLOWING /I/ IN COMPUTED GO TO IS ILLEGAL
102. F /8/ FOLLOWING RIGHT PAREN IN /7/ STATEMENT IS ILLEGAL
103. F /8/ IS ILLEGAL AS TERMINATOR FOR COMPUTED GO TO STATEMENT
104. F COMPUTED GO TO EXPRESSION MUST BE TYPE INTEGER
105. F COMPILER ERROR IN CONTROL TEST
106. F SWITCH /I/ IN /I/ STATEMENT IS NOT TYPE INTEGER

107. F /8/ FOLLOWING /I/ IN COMPUTED OR ASSIGNED GO TO IS ILLEGAL
108. F /8/ FOLLOWING FIRST IN ASSIGNED GO TO IS ILLEGAL, EXPECTING '('

109. F /8/ FOLLOWING STATEMENT NUMBER IN ASSIGNED GO TO IS ILLEGAL
110. F STATEMENT NUMBER /!/ IN /7/ STATEMENT IS NOT INTEGER
112. F LABEL IN GO TO STATEMENT IS NOT BETWEEN 1 AND 99999
450. F GO TO LIST HAS NON INTEGER LABEL

SECTION XVI - Arithmetic IF Statement

113. F MISSING RIGHT PAREN IN EXPRESSION SECTION OF /7/ STATEMENT
114. F /5/ IS ILLEGAL FOR THE EXPRESSION SECTION OF /7/ STATEMENT
115. F ONLY STATEMENT NUMBERS

OF IF
OR SWITCHES ARE LEGAL AFTER EXPRESSION SECTION

STATEMENT

116. F ILLEGAL CONSTRUCT OF IF STATEMENT
117. F /8/ IS ILLEGAL AFTER A STATEMENT NUMBER OR SWITCH IN ARITHMETIC IF
118. F /8/ IS ILLEGAL AFTER THIRD STATEMENT NUMBER OR SWITCH IN ARITHMETIC

IF
119. F TOO MANY STATEMENT NUMBERS, SWITCHES OR FIELDS IN AN ARITHMETIC IF

STATEMENT
120. F MISSING A STATEMENT NUMBER, SWITCH OR FIELD IN AN ARITHMETIC IF

B-9 DD02

SECTION XVII Logical IF Statement

52. F THE TRUTH CLAUSE OF A LOGICAL IF MAY NOT BE /7/ STATEMENT
122. F MISSING RIGHT PAREN IN THE EXPRESSION SECTION OF /7/ STATEMENT

123. F MISSING VARIABLE NAME BEFORE = IN THE TRUTH CLAUSE OF LOGICAL IF
STATEMENT

443. F TRUTH CLAUSE OF A LOGICAL IF CANNOT BE NULL

SECTION XVIII

FOLLOWING TYPE DESIGNATION IN IMPLICIT STATEMENT IS ILLEGAL

/7/ STATEMENT IS ILLEGALAFTER * IN
OPTION IN /7/ STATEMENT IS ILLEGALAFTER SIZE
ENCOUNTERED IN /7/ STATEMENTUNEXPECTED /8/

/8/ FOLLOWING RIGHT PAREN IN /7/ STATEMENT IS ILLEGAL129
FOR IMPLICIT STATEMENT130
STATEMENT IS MISSING OR MISSPELLEDTYPE SPECIFICATION IN IMPLICIT

EXPECTINGNON-ALPHABETIC CHARACTER FOUND
LETTER

DELIMITER FOLLOWING 'FROM' ENTRY IN IMPLICIT STATEMENT IS ILLEGAL

/8/ IS ILLEGAL, EXPECTING TYPE

CHARACTER IN IMPLICIT LIST STARTING WITH /10/ ILLEGAL
LETTER

IN IMPLICIT STATEMENT

EXPECTING

SECTION XIX - PARAMETER Statement

135. F = IS MISSING IN /7/ STATEMENT

136. F LEFT HAND SIDE OF = IN PARAMETER STATEMENT MUST BE A VARIABLE NAME

137. F FIRST VARIABLE NAME IN PARAMETER STATEMENT IS MISSING
452. F RIGHT OF EQUALS IN PARAMETER STATEMENT IS NOT A CONSTANT

SECTION XX - Return Statement

139. F RETURN STATEMENT IS ILLEGAL IN /9/
140. F ILLEGAL CHARACTER AFTER CONSTANT IN RETURN STATEMENT
142. F VARIABLE NAME IS >8 CHARACTERS OR CONSTANT IS TOO LARGE IN /7/

STATEMENT
143. F ILLEGAL CHARACTER AFTER CONSTANT IN /7/ STATEMENT

B-10 DD02

SECTION XXI - Specification Statements

CAN ONLY HAVE ARRAY /!/ WITH ADJUSTABLE DIMENSIONS IN SUBPROGRAM
THE ADJUSTABLE DIMENSION /!/ MUST BE TYPE INTEGER

141. CONSTANT IN ARRAY SUBSCRIPT MUST BE INTEGER
145. BETWEEN 1 AND 131071CONSTANT FOR ARRAY DIMENSION IS NOT
146. IN /7/ STATEMENTUSE FOR SIZE OPTION IS ILLEGALOF
147. ILLEGAL IN /7/ STATEMENT

/7/ STATEMENT148. ILLEGAL AFTER SIZE OPTION IN
/3/ /I/ CANNOT BE USED AS AN ADJUSTABLE DIMENSION149. THE

MORE THAN 7 DIMENSIONS ARE SPECIFIED FOR /!/ IN /7/ STATEMENT

AFTER
SPECIFYING DIMENSIONS FOR /I/AFTER

AFTER

NAME IN /7/ IS MISSING OR STARTS WITH A DIGIT
IN /7/ STATEMENT
MISSING BEFORE

IS ILLEGALLY USED IN /7/ STATEMENTMISSING OR /8/
NAME IN /7/ STATEMENTAFTER VARIABLE
STATEMENT

STATEMENTA DIMENSION IS
ON DIMENSION LIST OF /7/ STATEMENTUNEXPECTED /8/16 3.

16 5. TWO IN A ROW IS ILLEGALDE LI MI TE RS
AFTER DATA GENERATION OPTION IN /7/166. IS ILLEGAL

OR SIZE OPTIONIS ILLEGAL
16 8. NOT USED

SIZE OPTION /I/ IS NOT A POSITIVE INTEGER CONSTANT

ARRAY /I/ IS 131071INDEX INTO
ARE MISSING FOR /I/DIMENSIONS

/3/ CANNOT19 2. BE TYPED

INCOMPLETE

Common, Dimension

1 IN /7/ STATEMENT

AFTER A ' ’

150.
151. F /8/ IS ILLEGAL
152. F /2/ IS ILLEGAL
153. F /8/ IS ILLEGAL
15 4. F FIRST 1VARIABLE
155. F /4/ IS ILLEGAL
156. F A DELIMITER IS
15 7. F A DELIMITER IS
15 8. F /8/ IS ILLEGAL
159. F /8/ IS ILLEGAL
16 0. F /7/ STATEMENT

B-ll DD0 2

SECTION XXII - Expressions

172. F REAL PART OF COMPLEX EXPRESSION TOO LARGE
173. F REAL PART OF COMPLEX EXPRESSION TOO SMALL
174. F IMAGINARY PART OF COMPLEX EXPRESSION TOO LARGE
175. F IMAGINARY PART OF COMPLEX EXPRESSION TOO SMALL

176. F ILLEGAL COMBINATION OF TYPES IN RELATIONAL EXPRESSION

SECTION XXIII - Array Subscripts

178. F SUBSCRIPTS FOR /l/ MUST BE TYPE INTEGER
179. F SUBSCRIPTS FOR /I/ DO NOT MATCH DIMENSION SPECIFICATION

SECTION XXIV - Subscripted Identifier Use

182. F /I/ IS AN UNDIMENSIONED ARRAY OR AN INVALID FUNCTION

183. F SUBSCRIPTED ARRAY /!/ ILLEGAL AS A SUBSCRIPT IN /7/ STATEMENT
184. F FUNCTION /I/ ILLEGAL AS A SUBSCRIPT IN /7/ STATEMENT
186. F THE FUNCTION /I/ IS NOT ALLOWED IN DATA LISTS

187. F NUMBER OR ARGUMENTS IN /I/ ASF DOES NOT MATCH NUMBER IN DEFINITION
312. F ASF CALL HAS MORE THAN 100 ARGUMENTS
460. F ARRAY /!/ CANNOT BE USED AS A SCALAR WHEN A DO PARAMETER
461. F /I/ HAS PREVIOUSLY BEEN DIMENSIONED

SECTION XXV - Scalar Use

189. F /I/ MUST BE TYPED INTEGER BECAUSE IT IS USED AS A SUBSCRIPT IN /7/
STATEMENT

190. F THE IDENTIFIER /I/ MUST BE A PREVIOUSLY DEFINED PARAMETER SYMBOL
191. F THE VARIABLE /I/ HAS BEEN PREVIOUSLY USED AS /3/

SECTION XXVI - Expression Syntax

193. W ILLEGAL CHARACTER PRECEDING QUOTE IN /7/ STATEMENT
194. F = IS ILLEGAL IN ANY EXPRESSION
195. F /7/ STATEMENT INCOMPLETE

196. F UNEXPECTED /8/ ENCOUNTERED WHILE PROCESSING EXPRESSION

B-12 DD02

197.
19 8.
199.
200 .
201.
202.

203.
204.

205 .
206 .

207.
208.

209 .

210.
211.
212.

341.
342.

SECTION

213.
214.

215.
216.
217.
218.

SECTION

219.

220.

F UNEXPECTED /8/ IN EXPRESSION FOLLOWING RELATIONAL OPERATOR
F MISSING RIGHT PARENTHESIS OR COMMA

F UNEXPECTED /8/ FOLLOWING IMAGINARY COMPONENT OF COMPLEX CONSTANT
F UNEXPECTED /8/ IN SUBSCRIPT EXPRESSION

F UNEXPECTED /8/ AT BEGINNING OF FIRST SUBSCRIPT EXPRESSION
F UNEXPECTED /8/ -EXPECTING RIGHT PARENTHESIS OR COMMA

F UNEXPECTED /8/ IN ASF ARGUMENT-EXPECTING RIGHT PAREN OR COMMA
F UNEXPECTED /8/ WHILE PROCESSING ARGUMENTS OF CALL STATEMENT

F UNEXPECTED /8/ WHILE PROCESSING CALL STATEMENT-EXPECTING 1)’ OR ',’
F UNEXPECTED /8/ WHILE PROCESSING DATA CONSTANT LIST

F UNEXPECTED /8/ WHILE PROCESSING THE SECOND OR THIRD INDEX ’- 3AMETER
F UNEXPECTED /8/ WHILE PROCESSING FIRST INDEX PARAMETER OF -EXPECTING

t

F UNEXPECTED /8/ WHILE PROCESSING LEFT HAND SIDE OF ASSIGNMENT
STATEMENT-EXPECTING =

F /8/ ILLEGALLY USED IN /7/ STATEMENT EXPRESSION

F THE RELATIONAL OPERATOR /2/ IS ILLEGAL IN A RELATIONAL EXPRESSION
F ASF /I/ EXPANDS INCORRECTLY
F UNEXPECTED /8/ NEAR START OF I/O LIST

F UNEXPECTED /8/ IN ARRAY SUBSCRIPT-EXPECTING RIGHT PAREN OR COMMA

XXVII - Unary Operators

/5/ 'S MAY NOT BE USED WITH .NOT. OPERATOR
.NOT. MAY NOT BE USED WITH ARITHMETIC EXPRESSIONS
TYPE /5/ MAY NOT BE USED WITH A UNARY + OPERATOR
UNARY + MAY ONLY BE USED IN ARITHMETIC EXPRESSIONS
UNEXPECTED /8/ TERMINATING CHARACTER STRING IN /3/ STATEMENT
/5/ VARIABLE NAMES MAY NOT BE USED WITH UNARY -

XXVIII - Expression Semantics

ILLEGAL COMBINATION OF LOGICAL, CHARACTER OR TYPELESS ENTITY IN
EXPRESSION

LOGICAL OPERATORS MUST BE USED WITH LOGICAL EXPRESSIONS OR VARIABLE
NAMES

B-13 DD0 2

221. F CHARACTER, LOGICAL OR TYPELESS ILLEGAL IN EXPONENTIAL EXPRESSIONS
223. F ILLEGAL COMBINATION OF TYPES IN EXPONENTIAL EXPRESSION

SECTION XXIX - Constant Operations

225

ASSUMEDLARGEST INTEGER VALUE444 INTEGER CONSTANT IS TOO LARGE
CHARACTER CONSTANT MAY NOT BE GREATER THAN 511 CHARACTERS449

TOO SMALL IN /7/ STATEMENT, ZERO ASSUMEDREAL CONSTANT IS

226 . F REAL CONSTANT IS TOO LARGE IN /7/ STATEMENT

227. F NEGATIVE INTEGER CONSTANT IS TOO LARGE
228. F NEGATIVE REAL CONSTANT IS TOO LARGE

229. F NEGATIVE REAL CONSTANT IS TOO SMALL, ZERO ASSUMED

230 . F NEGATIVE REAL PART OF A COMPLEX CONSTANT IS TOO LARGE

231. F NEGATIVE IMAGINARY PART OF A COMPLEX CONSTANT IS TOO LARGE

232 . F NEGATIVE REAL PART OF A COMPLEX CONSTANT IS TOO SMALL, ZERO ASSUMED

233. F NEGATIVE IMAGINARY PART OF A COMPLEX CONSTANT IS TOO SMALL, ZERO
ASSUMED

234. F COMPLEX CONSTANTS ARE ILLEGAL IN RELATIONAL EXPRESSIONS

235. F VALUE OF ARITHMETIC EXPRESSION WITH INTEGER CONSTANTS IS TOO LARGE

236 . F ARITHMETIC EXPRESSION WITH REAL CONSTANTS IS TOO LARGE

237. F ARITHMETIC EXPRESSION WITH REAL CONSTANTS IS TOO SMALL, ZERO ASSUMED

238 . F ARITHMETIC EXPRESSION WITH DOUBLE PRECISION CONSTANTS IS TOO LARGE

239 . F ARITHMETIC EXPRESSION WITH DOUBLE PRECISION CONSTANTS IS TOO SMALL,
ZERO ASSUMED

241. F 0**0 IS ILLEGAL
242. F 0**-J IS ILLEGAL

SECTION XXX - Constant List Processor

243. F /2/ IS ILLEGAL FOLLOWING / OR , IN DATA LIST FOR /7/ STATEMENT
244. F /8/ FOLLOWING / OR , IN DATA LIST FOR /7/ STATEMENT IS ILLEGAL
245. F /8/ FOLLOWING VARIABLE NAME OR CONSTANT IN DATA LIST IS ILLEGAL
246. F /8/ FOLLOWING VARIABLE NAME OR CONSTANT IN DATA LIST IS ILLEGAL
247. F REPEAT FACTOR IN /7/ STATEMENT MUST BE A POSITIVE INTEGER

248. F /2/ FOLLOWING * IN DATA LIST FOR /7/ STATEMENT IS ILLEGAL
249. F /8/ AFTER * IN DATA LIST FOR /7/ STATEMENT IS ILLEGAL

B-14 DD0 2

251. F THE IDENTIFIER /I/ IN DATA CONSTANT LIST IS NOT A CONSTANT

SECTION XXXI - Data List Constant

252. F COMPILER ERROR IN PROCESSING LABEL OR VARIABLE
254. F COMPLILER ERROR IN HANDLING ARGLIST
255. F MAY NOT REDEFINE /3/ /I/
256. F COMPILER ERROR IN PROCESSING ERROR
258 COMPILER ERROR

SECTION XXXII - Initial Statement Analysis

259. F STATEMENT INCOMPLETE
260 . F = FOLLOWING LEFT PARENTHESIS IS ILLEGAL
261. F DELIMITER MISSING
262 . F CONSTANT FOLLOWED BY LEFT PAREN IS ILLEGAL
263. UNEXPECTED /8/ FOLLOWING OPERATOR
264. F PARENTHESES DO NOT BALANCE IN AN ASF DEFINITION

/8/ FOLLOWING RIGHT PAREN IS ILLEGAL265 .

266. F ILLEGAL , IN ASF DEFINITION
267. F END OF STATEMENT OR = FOLLOWING , IS ILLEGAL

268. F PARENTHESES DO NOT BALANCE
269 . F = OR ' IS USED ILLEGALLY IN STATEMENT

SECTION XXXIII - Identifier, Constant, and Label Formation

270. F VARIABLE IN STATEMENT HAS > 8 CHARACTERS
271. F ILLEGAL LETTER FOLLOWING DIGIT, EXPECTING 'D' OR 'E'

272. F MORE THAT 2 DIGITS IN THE EXPONENT IN /7/ STATEMENT
274. F LOGICAL OR RELATIONAL OPERATOR IS INCOMPLETE IN /7/ STATEMENT
275. F SOMETHING IS MISSING AFTER PERIOD IN /7/ STATEMENT
276. F LOGICAL CONSTANT IS INCOMPLETE IN /7/ STATEMENT
277. F CHARACTER CONSTANT IS INCOMPLETE IN /7/ STATEMENT
278. F EXPONENT INCOMPLETE IN /7/ STATEMENT

279. F NON-FORTRAN CHARACTER ILLEGAL IN STATEMENT

B-15 DD02

280. F $ IS NOT FOLLOWED BY A STATEMENT NUMBER OR SWITCH IN /7/ STATEMENT

281. F /4/ FOLLOWING $ IS ILLEGAL IN /7/ STATEMENT
283. F UNEXPECTED /4/ WHILE PROCESSING IDENTIFIER
284. F ILLEGAL RELATIONAL OR LOGICAL OPERATOR /10/ AFTER PERIOD
285. F /4/ IS ILLEGAL IN RELATIONAL OR LOGICAL OPERATOR OR LOGICAL CONSTANT

287. F /4/ IS ILLEGAL AFTER A LOGICAL OR CHARACTER CONSTANT IN /7/ STATEMENT
288. F /4/ IS ILLEGAL IN AN ARITHMETIC CONSTANT IN /7/ STATEMENT
289. F /4/ IS ILLEGAL IN A SWITCH NAME IN /7/ STATEMENT
290. F /4/ IS ILLEGAL IN STATEMENT NUMBER IN /7/ STATEMENT
291. F /2/ IS NOT A RELATIONAL OPERATOR IN /7/ STATEMENT

292. F RECEIVED A /8/ FOLLOWING BLOCKNAME INSTEAD OF A'/'
293. F /I/ IS USED AS A SWITCH IN /7/ STATEMENT AND IS NOT TYPED INTEGER

294. F /I/ MUST BE A SCALAR VARIABLE TO BE A SWITCH
295. F TRUNCATION IS REQUIRED FOR ARITHMETIC CONSTANT IN /7/ STATEMENT

296. F = IS ILLEGAL IN /7/ STATEMENT
297. F STATEMENT NUMBER MUST BE BETWEEN 1 AND 99999
313. F NON-FORTRAN CHARACTER ENCOUNTERED
317. F FIRST LINE NUMBER MAY NOT BE FOLLOWED BY AN &

SECTION XXXIV - General Statement Formation

298. F /4/ IS ILLEGAL AS THE FIRST CHARACTER OF A STATEMENT

299 . F NON-FORTRAN CHARACTER IS ILLEGAL AS FIRST LETTER OF STATEMENT
300. F STATEMENT UNRECOGNIZABLE OR FIRST VARIABLE IS >8 CHARACTERS
301. F NON-FORTRAN CHARACTER ENCOUNTERED NEAR START OF STATEMENT

302. F . OR ' IS USED ILLEGALLY NEAR START OF STATEMENT

30 3 FIRST WORD OF THE STATEMENT IS UNRECOGNIZABLE OR THE FIRST DELIMITER
IS ILLEGAL

304. F FIRST DELIMITER OF /7/ STATEMENT IS ILLEGAL
305. F FIRST WORD OF STATEMENT IS FOLLOWED BY AN ILLEGAL DELIMITER

3

SECTION XXXV - Statement Legality Checks

314. F /7/ STATEMENT IS ILLEGAL AS A 'DO' END
315. F EXECUTABLE STATEMENTS ARE ILLEGAL IN BLOCKDATA SUBROUTINES

B-16 DD02

316. F THE TRUTH CLAUSE OF A LOGICAL IF MUST BE EXECUTABLE

SECTION XXXVI - Statement Labels

319. F STATEMENT NUMBER /I/ HAS PREVIOUSLY BEEN DEFINED
320. F /I/ HAS BEEN REFERENCED AS A FORMAT LABEL
321. F THE STATEMENT WITH STATEMENT LABEL /I/ IS ILLEGAL AS THE END OF A DO

LOOP
322. F ILLEGAL REFERENCE TO NON-EXECUTABLE STATEMENT AT STATEMENT NUMBER /I/
323. F STATEMENT NUMBER /I/ PREVIOUSLY REFERENCED AS A NON-EXECUTABLE

STATEMENT
336. F /I/ PREVIOUSLY USED AS A REFERENCE TO A FORMAT STATEMENT

SECTION XXXVII - Identifier Semantics

324. F /l/ USED AS A DUMMY ARGUMENT IN AN ENTRY SUBROUTINE OR FUNCTION
STATEMENT

325. F /I/ HAS BEEN USED AS AN ABNORMAL FUNCTION OR HAS APPEARED IN
STATEMENT

A COMMON

326. F /I/ HAS PREVIOUSLY APPEARED IN AN EQUIVALENCE STATEMENT

327. F /I/ HAS PREVIOUSLY BEEN USED AS A VARIABLE NAME, ASF
BLOCKNAME

NAME OR

328. F /I/ HAS PREVIOUSLY BEEN REFERENCED AS EXTERNAL TO THIS PROGRAM

329 . F /I/ HAS PREVIOUSLY BEEN USED IN A CONFLICTING WAY

330 . F /I/ HAS PREVIOUSLY BEEN USED AS A SCALAR VARIABLE

331. F /I/ HAS PREVIOUSLY BEEN USED AS THE NAME OF THIS FUNCTION
332. F /I/ HAS PREVIOUSLY BEEN USED AS THE NAME OF AN ASF

333. F /I/ HAS PREVIOUSLY BEEN DIMENSIONED
334. F /I/ INCOMPATIBLE WITH BEING ADJUSTABLY DIMENSIONED OR

SUBROUTINE, ENTRY OR FUNCTION ARGUMENT
USED AS

335. F /I/ HAS PREVIOUSLY APPEARED IN A TYPE STATEMENT

337. F /I/ HAS PREVIOUSLY BEEN USED AS A SUBROUTINE NAME IN A CALL STATEMENT

338. F /I/ PREVIOUSLY IN AN ABNORMAL STATEMENT OR IS USED AS AN
FUNCTION

ABNORMAL

339. F /I/ HAS PREVIOUSLY BEEN USED AS A NORMAL FUNCTION

457. W /3/ /I/ MAY NOT BE REDEFINED IN CALL OR ABNORMAL FUNCTION

458. F MAY NOT REDEFINE /3/ /I/
459 . F MAY NOT REDEFINE /3/ /I/ BY USE AS A BUFFER TERM

B-17 DD02

SECTION XXXVIII Miscellaneous

144.

250 .

286 .

318.
340 .
343.

344.

345 .
346 .
347.
348.

349.
350 .

351.
352.
353.
354.
355.

356.
357.
358.

359.

360 .
361.
362 .

363.
364.
365.

F VARIABLE NAME AFTER /7/ MUST BE TYPE INTEGER OR CHARACTER
W ’END* STATEMENT MISSING - SIMULATED

W ’STOP* STATEMENT MISSING - SIMULATED
F FILE REFERENCE IN /7/ STATEMENT IS NOT AN INTEGER
F STATEMENT NUMBER /I/ HAS BEEN DEFINED AS A FORMAT LABEL
F UNEXPECTED /8/ WHILE PROCESSING I/O LIST-EXPECTING RIGHT PAREN OR

COMMA
F PROGRAM ILLEGALLY STARTS WITH CONTINUATION CARD OR NFORM NOT

SPECIFIED
F THE DO-END STATEMENT NUMBER /I/ IS OUT OF PLACE

F /I/ USED OR REFERENCED AS THE LABEL OF A FORMAT STATEMENT
W STATEMENT NUMBER /I/ REFERENCED AS AN EXECUTABLE STATEMENT
F SINGLE OR DOUBLE QUOTE MISPLACED IN 1 H’ FIELD
F CHARACTERS IN 1 H1 FIELD EXCEED COUNT
F TOO MANY DIGITS IN OCTAL CONSTANT
F ILLEGAL CHARACTER IN A DATA CONSTANT
F ILLEGAL CHARACTER IN OCTAL CONSTANT
F UNEXPECTED END OF STATEMENT WHILE PROCESSING /7/ STATEMENT
F COMPILER ERROR-UNUSUAL CONSTRUCT ON I/O LIST
F I/O LIST ELEMENT HAS REDUNDANT PARENTHESIS OR MISPLACED IMPLIED DO

LIST

F = FOLLOWING IDENTIFIER IS ILLEGAL
F UNEXPECTED /2/ AT START OF I/O LIST ELEMENT
F UNEXPECTED /8/ TERMINATING /7/ STATEMENT
F TYPE OF COMPONENT OF COMPLEX CONSTANT IS NOT INTEGER, REAL,

DOUBLE-PRECISION
F THE REAL AND IMAGINARY PARTS OF A COMPLEX CONSTANT MUST BE CONSTANTS
F COMPILER ERROR-IMPROPER PROCESSING OF LOGICAL CONSTANT
F COMPILER ERROR-IMPROPER PROCESSING OF CONSTANTS
F ILLEGAL COMPLEX OPERATION
F /I/ HAS PREVIOUSLY BEEN USED IN A CONFLICTING WAY
F UNEXPECTED /4/ WHEN EXPECTING OPTION IN /7/ STATEMENT

B-18 DD02

366 .

367.
36 8.

369 .
370.
371.
372.

373.
374.

375.

376.
377.
378.
379.
380.

381.

382.
383.
384.

385.

386.
387.
388.

389.
390.

391.
39 2.
393.
394.
395.
396.
397.

F OPTION BEGINNING WITH /10/ ILLEGAL OR MISSPELLED

F ILLEGAL CONSTRUCT IN ASSIGN STATEMENT

F ILLEGAL /8/ IN OPTION FIELD OF /7/ STATEMENT
F UNEXPECTED /8/ FOLLOWING FIRST PARAMETER OF /7/ STATEMENT
F UNEXPECTED /8/ IN /7/ LIST
F FORMAT LABEL IS NON INTEGER OR NOT BETWEEN 1 AND 9999

F STATEMENT NUMBER IS TOO LARGE IN /7/ STATEMENT

F /8/ IS ILLEGAL AS AN OPTION IN /7/ STATEMENT
F THERE ARE TWO ERR OPTIONS IN /7/ STATEMENT
F THERE ARE TWO END OPTIONS IN /7/ STATEMENT
F UNRECOGNIZABLE OPTION IN /7/ STATEMENT
F AN I/O LIST SHOULD NOT BE GIVEN WHEN A NAMELIST VARIABLE IS USED
F CANNOT PERFORM I/O-ROUTINE NOT AVAILABLE IN LIBRARY
F THE PARAMETER SYMBOL /l/ CANNOT BE TYPED
F FIRST PARAMETER OF /7/ MUST BE A VARIABLE NAME TYPED CHARACTER

F /ll/ IS NOT TYPE CHARACTER

F /3/ /I/ IS ILLEGAL AS A BUFFER TERM
F /I/ IS NOT A LEGAL BUFFER VARIABLE
F THE /3/ /I/ IMPROPERLY USED AS A VARIABLE FORMAT LABEL OR NAMELIST

NAME
F VARIABLE FORMAT LABEL /I/ NOT DIMENSIONED
F /I/ MUST BE A NAMELIST NAME OR A VARIABLE FORMAT LABEL
F NAMELIST NAME MISSING IN /7/ STATEMENT
F FIRST VARIABLE NAME IS NOT A LEGAL VARIABLE NAME
F THE FORMAT STATEMENT NUMBER IN /7/ STATEMENT HAS ILLEGAL CHARACTER
F INPUT LIST ITEM MAY NOT BE A CONSTANT, EXPRESSION OR UNDIMENSIONED

ARRAY
F EXPRESSION OR CONSTANT ILLEGAL IN /7/ LIST

F THE /3/ /I/ IS ILLEGAL ON I/O LIST
F /I/ MUST BE DIMENSIONED IN ORDER TO APPEAR ON I/O LIST
F UNEXPECTED /8/ IN /7/ STATEMENT, EXPECTING A ’/’
F UNEXPECTED /8/ AFTER 1/' IN /7/ STATEMENT
F UNEXPECTED /8/ AFTER NAMELIST NAME-EXPECTING A ’/’

F UNEXPECTED /8/ AFTER /I/ IN NAMELIST STATEMENT

B-19

398 .

399 .

400 .
401.
402.

403.
404 .
405 .

406.

407 .

408 .

409.
410.

411.
412.
413.
414.

415.

416.

417.
418.

419 .
420.
421.

422.
423.

424.

425.

426.
427.

428.

429 .

F UNEXPECTED /8/ AFTER COMMA IN /7/ STATEMENT

F UNEXPECTED /2/ FOLLOWING DECLARED VARIABLE NAME IN /!/ STATEMENT
F LENGTH OF ARRAY /I/ IS > 131071

F = IS USED ILLEGALLY IN /7/ STATEMENT
F ’ IS USED ILLEGALLY IN /7/ STATEMENT

F PREVIOUS TYPING OF PARAMETER SYMBOL /I/ WILL BE IGNORED

F DO END STATEMENT NUMBER /I/ REFERENCES A NON-EXECUTABLE STATEMENT
F UNEXPECTED /8/ WHILE PROCESSING I/O LIST

F /!/ PREVIOUSLY USED AS THE STATEMENT NUMBER OF AN EXECUTABLE
STATEMENT

F ARGUMENT OF /I/ IS NOT INTEGER, REAL, LOGICAL, TYPELESS OR CHARACTER
F MAY NOT REDEFINE INDEX VARIABLE /I/
F MAY NOT REDEFINE .ADJUSTABLE DIMENSION /I/
F /I/ MUST BE TYPE INTEGER

F /3/ /I/ CANNOT BE TYPED
F ARRAY SUBSCRIPT REPRESENTED BY PARAMETER SYMBOL /I/ IS NOT INTEGER
F COMPILER ERROR - TWO CONSECUTIVE IDENTIFIERS IN /7/
F /8/ IS ILLEGAL AFTER A BLOCKNAME OR BLOCKNAME IS MISSING
F UNEXPECTED /8/ AFTER RIGHT PARENTHESIS IN /7/ STATEMENT
F CONSTANT FOR SIZE OPTION IS NOT AN INTEGER
W /!/ PREVIOUSLY TYPED IN A CONFLICTING WAY - NEW TYPE IGNORED
F ARRAY /I/ HAS LOGICAL OR CHARACTER SUBSCRIPT
F A DIVIDE CHECK FAULT OCCURRED WHILE PROCESSING CONSTANT EXPRESSION
W ARRAY /I/ IS BEING USED AS A SCALAR
F /!/ USED AS AN ADJUSTABLE DIMENSION OR ADJUSTABLY DIMENSIONED ARRAY

F /!/ HAS PREVIOUSLY BEEN USED TO REFERENCE AN EXECUTABLE STATEMENT
F THE FILE REFERENCE IN /I/ IS NOT AN INTEGER
F THE TRUTH CLAUSE OF THE LOGICAL IF ILLEGAL STARTS WITH THE CHARACTER

/4/
F /I/ PREVIOUSLY USED AS A STATEMENT NUMBER OF A NON-EXECUTABLE

STATEMENT
F /2/ USED ILLEGALLY IN EXPRESSION
F .NOT. OPERATOR USED ILLEGALLY IN EXPRESSION

W UNEXPECTED /8/ AFTER RIGHT PARENTHESIS IN /7/ STATEMENT
F DO END STATEMENT LABEL /I/ IS MISPLACED

B-20 DD02

430 .

431.
432.
433.

434.

435.
436.
437.
438.
439.

440.
441.
442.
451.
453.
455.
462.

463.

464.
465.
46 6.
467.
468.

469.
470.

471.
472.

475.

476.

F /I/ HAS PREVIOUSLY BEEN DEFINED
F ONLY ONE VARIABLE NAME IN EQUIVALENCE GROUP
W RETURN STATEMENT MISSING-SIMULATED
F /I/ HAS PREVIOUSLY BEEN DEFINED, POSSIBLY BY USE IN COMMON OR

EQUIVALENCE
F SWITCH NAME IN GO TO STATEMENT IS ILLEGAL
W ’X1 FIELD IN FORMAT MUST HAVE A NUMERIC PREFIX
W THE LOGICAL IF STATEMENT DOES NOT HAVE AN ASSOCIATED TRUTH CLAUSE
F ILLEGAL COMBINATION WITH CHARACTER TYPE IN RELATIONAL EXPRESSION

F UNEXPECTED /8/ ENCOUNTERED IN /7/ STATEMENT

F THE 1 H* FIELD COUNT OF A LITERAL MAY NOT BE ZERO
F FILE NUMBER MUST BE TYPE INTEGER IN /7/ STATEMENT

F RECEIVED CHARACTER OR LOGICAL TYPE IN EXPRESSION
F CONSTANT FOR DO PARAMETER IS NOT BETWEEN 1 AND 262143
F THE VARIABLE FORMAT /I/ IS NOT TYPE CHARACTER
F VARIABLE NAME OR PARAMETER CONSTANT MUST BE A POSITIVE INTEGER

UNUSED
F UNEXPECTED /8/ FOLLOWING RIGHT PARENTHESIS IN I/O LIST ELEMENT
W THE INITIAL DO PARAMETER /I/ IS ALSO THE CURRENT DO INDEX
F THE DO TERMINAL PARAMETER OR STEP /!/ IS ALSO THE CURRENT DO INDEX
W SIZE OPTION FOR THE CHARACTER VARIABLE /I/ EXCEEDS 511, 511 ASSUMED
W THE CHARACTER 1&’ APPEARS ILLEGALLY, IT HAS BEEN IGNORED
W SIZE OPTION IN /7/ STATEMENT IS TOO LARGE - 511 ASSUMED
W NON-BLANK CHARACTERS IN COLUMNS 1-5 ILLEGAL - CHECK FORM/NFORM OPTION

F ASF LEFT OF EQUALS MUST EXPAND INTO AN IDENTIFIER OR ARRAY ELEMENT
W EQUALITY OR NON-EQUALITY COMPARISON MAY NOT BE MEANINGFUL IN LOGICAL

IF EXPRESSIONS
W SIZE OPTION IS MISSING OR IS ZERO - /7/ ASSUMED
F THE FUNCTION OR SUBROUTINE /!/ MAY NOT HAVE AN ADJUSTABLE SIZE

SPECIFICATION
F THE ADJUSTABLE SIZE OPTION /I/ IS ILLEGAL IN AN IMPLICIT STATEMENT
F THE VARIABLE MODIFIED BY THE ADJUSTABLE SIZE OPTION /!/ IS NOT TYPE

CHARACTER
F THE ADJUSTABLE SIZE OPTION /I/ IS LEGAL ONLY IN A SUBPROGRAM

F THE /3/ /I/ CANNOT BE USED AS AN ADJUSTABLE SIZE OPTION

B-21 DD02

4 / 7.

478.

479.

4 80.

481.

482 .

483.

484.
485.

PHASE2

201.
202.

20 3.
204.

205.
206.
207.
208.
209 .

210.
211.

212.
213.
214.
215 .
216 .
217.

218.

219.

W A ZERO SIZE OPTION IS ILLEGAL - STANDARD DEFAULT ASSUMED

W PREVIOUS USAGE OF /!/ CONFLICTS WITH BEING TYPED - TYPING IGNORED

F THE GENERIC FUNCTION /I/ DOES NOT SUPPORT /5/ ARGUMENTS

F TRANSFORMATION OF GENERIC FUNCTION /!/ ILLEGAL DUE TO PRIOR USE OF
/I/

W TYPING OF ASF /!/ WILL BE IGNORED IN LEFT OF EQUALS APPEARANCE.
F 1ST AND 2ND ARGS OF FLD LEFT OF EQUAL MUST BE POSITIVE INTEGERS WHOSE

SUM IS < = 36

F 3RD ARG OF FLD LEFT OF EQUAL IS NOT SCALAR OR ARRAY OR IS TYPE
LOGICAL

F TOO MANY ARGS FOR FLD LEFT OF EQUAL
F EXPRESSION RIGHT OF EQUAL CANT BE TYPE LOGICAL

ERROR MESSAGES

W EQUATING /!/ WITH /!/ IS REDUNDANT
F EQUATING /I/ WITH /!/ IS INCONSISTENT

F EQUATING /l/ WITH /!/ CAUSES CONTRADICTORY ALIGNMENT
F PROGRAM CONTAINS MORE THAN 510 SYMREFS

W /!/ AND /!/ IN COMMON HAVE REDUNDANCY IN EQUIVALENCE
F /!/ AND /!/ IN COMMON HAVE INCONSISTENCY IN EQUIVALENCE
F /!/ IN EQUIVALENCE EXTENDS COMMON BLOCK /I/ BELOW ORIGIN
F EQUATING /!/ WITH /!/ CAUSES COMMON EXTENSION
W STATEMENT CANNOT BE REACHED

W STATEMENT IS NEVER REFERENCED
F BRANCH TO NON-EXISTENT LABEL /!/
F ILLEGAL TRANSFER TO /I/ RANGE OF DO
F ILLEGAL TRANSFER INTO PARALLEL DO AT /I/
F ILLEGAL TRANSFER INTO DO AT /I/ FROM NESTED DO
F ILLEGAL TRANSFER INTO OF NESTED DO AT /I/ FROM DO
F PROGRAM CONTAINS MORE THAN 1023 EQUATED NAMES

F /I/ IS USED AS AN ARRAY IN AN EQUIVALENCE STATEMENT BUT IS NOT
DIMENSIONED

F /!/ AND /I/ IN DIFFERENT COMMON BLOCKS ILLEGALLY EQUIVALENCED
W /!/ IS REFERENCED AS AN ARRAY BUT IS NEVER DEFINED

B-22 DD02

220 .
221.

222.

223.

224.

225.

226.

227.

228.
229.

230.
231.
232.

233.
234.

PHASE4

401.
402.

40 3.
404.
405.
40 6.
407.
408 .
409.

410.
411.

F THE SUBPROGRAM DUMMY ARGUMENT /I/ IS EQUIVALENCED

F THE ARRAY /I/ HAS ADJUSTABLE DIMENSIONS BUT IT IS NOT AN ARGUMENT TO
THIS SUBPROGRAM

W THIS ILLEGAL TRANSFER TO /l/ INSIDE A DO CANNOT BE REACHED BY ANY
TRANSFER OUT OF THE DO

W /I/ IS AN ILLEGALLY DEFINED DO PARAMETER IN THE EXTENDED RANGE OF THE
DO AT LINE /6/

W THIS DO MAY BE ILLEGALLY EXTENDED. IT IS CONTAINED IN THE EXTENDED
RANGE OF THE DO AT LINE /6/

W THIS DO IS CONTAINED IN EXTENDED RANGE OF DO AT LINE /6/ AND SOME
CONTROL PARAMETERS ARE THE SAME

W THERE IS AN ILLEGAL TRANSFER TO /l/ INSIDE A DO FROM THE EXTENDED
RANGE OF THE DO AT LINE /6/

W COMPILER TABLES EXCEEDED DURING EXTENDED-DO FLOW ANALYSIS. ANALYSIS
TERMINATED. COMPILATION CONTINUES

F RETURN /6/. THERE ARE ONLY /6/ RETURNS SPECIFIED
W /I/ IN EQUIVALENCE REALIGNS COMMON BLOCK /l/
W /I/ APPEARS IN A LABEL ASSIGNMENT STATEMENT
W /I/ NEVER APPEARS IN A LABEL ASSIGNMENT STATEMENT

F /I/ COMMON BLOCK SIZE IS GREATER THAN 131071 WORDS
W /I/ IS NEVER REFERENCED IN /I/
F /I/ COMMON BLOCK SIZE IS ZERO

ERROR MESSAGES

W DATA STATEMENT: /I/ IS INCONSISTENT WITH /I/
W DATA STATEMENT: VARIABLE LIST EXCEEDS LITERAL LIST
W DATA STATEMENT: LITERAL LIST EXCEEDS VARIABLE LIST
F DATA STATEMENT: /I/ IS IN BLANK COMMON
F DATA STATEMENT: /I/ IS NOT IN BLOCK COMMON
F DATA STATEMENT: /l/ IS IN BLOCK COMMON
F DATA STATEMENT: TOO MANY IMPLIED, NESTED DO'S
T COMPILER ABORT IN PHASE4
F TOO MANY ARGS
F LOGICAL TABLE OVERFLOW
T COMPILER ABORT IN PHASE4B

B-23 DD02

412. W /!/ IS NOT DEFINED
413. W THE CHARACTER ASSIGNMENT INVOLVES A TRUNCATION OF THE RIGHT OF EQUALS
414. F THE ADJUSTABLE DIMENSION /!/ IS NOT AN ARGUMENT TO THIS SUBPROGRAM
415. F FILE B* IS NOT BIG ENOUGH
416. F FORMAT NUMBER /I/ DOES NOT EXIST
417. W THE CHARACTER CONSTANT /I/ WAS TRUNCATED TO FIT /I/
418. W FORMAT NUMBER /I/ IS MISSING; FORMAT (V) SIMULATED
419. W SUBSCRIPT FOR ARRAY /I/ IS OUTSIDE RANGE

420 . F LABEL /I/ IS NOT DEFINED
421. F COMPILER ERROR. CODE GENERATED MAY BE INCORRECT
422 . F THE ADJUSTABLY DIMENSIONED CHARACTER SCALAR /I/ IS NOT AN ARGUMENT TO

THIS SUBPROGRAM

EXECUTIVE ERROR MESSAGES

001. W ALTER FILE ERROR FOLLOWING $ ALTER /6/, /6/
002. W ALTER FILE PROCESSING STOPS WITH $ ALTER /6/, /6/
003. W $ UPDATE CARD MUST BE FOLLOWED BY $ ALTER CARD

004. F COMDK SEQUENCE NUMBER IS /6/, IT SHOULD BE /6/
005. F CHECKSUM ERROR ON COMDK CARD NUMBER /6/
006. F PREMATURE EOF WHILE READING COMDK
007. W MEMORY EXPANDED, USE $ LIMITS OR CORE = OPTION FOR NEXT RUN
008. T NO MORE MEMORY EXPANSION ALLOWED
009. F NOT ENOUGH MEMORY AT PRESENT, TRY AGAIN
010 . F MEMORY EXPANSION IMPOSSIBLE, USE $ LIMITS CARD OR CORE = OPTION FOR

NEXT RUN
Oil. W OPTZ CAN OPERATE ON NO MORE THAN /6/ SUBEXPRESSIONS
012. T OPTZ CAN OPERATE ON NO MORE THAN /6/ SUBEXPRESSIONS
013. T PREMATURE EOF WHILE READING S*. UNABLE TO COMPILE.
014. T COMPILER ABORT IN PHASE /6/

015. W INCORRECT OPTION ON $ FORTRAN CARD

B-24 DD02

TIME SHARING BASED FORTRAN ERROR MESSAGES

File and Record Control Type Errors

1. GET CODE 5 - File Code
Record size is zero in record control word

2. PUT CODE 4 - File Code
Current logical record larger than buffer

3. CLOSE CODE 3 - File Code

File to be closed is not in chain
4. GET CODE 4 - File Code

Block serial number error
5. FILE SPACE EXHAUSTED - File Code

Attempts to ’’grow” this file have been denied by the Time Sharing
System.

6. BACK/FORWARDSPACE ERROR - File Code
Bad Status returned on DRL FILSP

Compiler Abort

COMPILER ABORTING
This message is printed at terminal followed by DRL ABORT. The compiler
abort code is stored into slave prefix cell 0.

RUN Command Error Messages

<61> LAST RUN COMMAND NOT PROCESSED
"RUN” not first three characters of input.

CONCATENATION IMPOSSIBLE IF RANDOM
RUN "random file;" random file illegal.

LINE NO. INTERVAL ILLEGAL IF NOT ASCII
Line number interval specified for other than type 5 or 6 ASCII.

NOT IN RECOGNIZABLE FORMAT
The input file specified is not legal as compiler or loader input.

B-25 DD02

MULTIPLE ALTER FILES NOT PERMITTED

Only one alter file (A*) is permitted.

SAVE FILE(S) CANNOT BE SPECIFIED

"RUN HSTAR =; save file" is illegal.

ILLEGAL DELIMITER IMMEDIATELY FOLLOWING"="

Delimiter is not semicolon, comma, left parenthesis, pound sign, or
carriage return.

MUST BE RANDOM TO SAVE H*

RUN fs = fh, where fh is not a random file.

MUST BE LINKED TO SAVE C*

RUN fs - fh; fc, where fc is not a linked file.

ILLEGAL OPTION — xxxx

The compiler/loader option indicated by xxxx is illegal.

ILLEGAL DELIMITER FOLLOWING RUN OPTION "xxxx"
Delimiter must be comma or right parenthesis.

ILLEGAL NAME = SPECIFICATION

Illegal character in name in NAME = option.

USER LIBARIES EXPECTED

ULIB option specified but no user libraries specified.

USER LIBRARIES NOT EXPECTED
ULIB option not specified but user libraries designated.

TOO MANY USER LIBRARIES SPECIFIED
Maximum of nine user libraries can be specified.

TOO MANY TTY FILE CODES

Maximum of ten terminal file codes can be specified.

LOGICAL FILE CODE NON-NUMERIC OR >43
FORTRAN File codes can range from 1-43.

B-26 DD02

TOO MANY FILES REQ1D FOR EXECUTION
Maximum of 20 files can be specified.

TEST FILE HAS NOT BEEN ACCESSED

TEST option specified but appropriate ** test compiler has not been
accessed.

066 - SPAWN UNSUCCESSFUL—STATUS n
Unsuccessful status returned from derail TASK, where n is equal to

1 - undefined file
2 - no SNUMB available
3 - duplicate SNUMB
4 - no program number available
5 - activity name undefined
6 - illegal user limit (time,size, etc.)
7 - bad status on *J read or write

Refer to TSS System Programmer’s Reference Manual for information on TASK
derail.

CANNOT LOCATE MAIN PROGRAM IN LOAD FILE
The name of the main program cannot be found in the catalog block of the H*
file.

<50> WORK FILE — FILE TABLE FULL

An attempt to define a temporary work file (B*,R*,*J,etc.) has failed; AFT
is full.

<50> WORK FILE — SYSTEM TEMP. LOADED
System refuses to allocate a temporary work file through derail DEFIL.

Catalog file string errors - (xxxx = file name):
ILLEGAL DELIMITER IN FIELD FOLLOWING xxxx DESCRIPTION

ILLEGAL CHARACTER IN FIELD FOLLOWING xxxx DESCRIPTION
STRING ELEMENT TOO LONG IN FIELD FOLLOWING xxx DESCRIPTION
ILLEGAL PERMISSIONS IN FIELD FOLLOWING xxxx DESCRIPTION
ALTNAME ILLEGAL IN FIELD FOLLOWING xxxx DESCRIPTION
FILE DESCRIPTION TOO LONG IN FIELD FOLLOWING xxxx DESCRIPTION
NO DATA IN STRING IN FIELD FOLLOWING xxxx DESCRIPTION

B-27 DD02

File access errors:

<50> FILE xxxx — STATUS nn
<50> FILE xxxx — I/O ERROR
<50> FILE xxxx — NO PERMISSION
<50> FILE xxxx — FILE BUSY
<50> FILE xxxx — NON-EXISTENT FILE
<50> FILE xxxx — NO FILE SPACE
<50> FILE xxxx — INVALID PASSWORD

<50> FILE xxxx — FILE TABLE FULL
<50> FILE xxxx — SYSTEM LOADED
<50> FILE xxxx — ILLEGAL CHAR.

Reading and writing I/O errors:
<51> FILE xxxx — I/O STATUS
<51> WORK FILE — I/O STATUS

where nn is status code returned

nn
nn

from derail DIO.

RUNL Command Error Messages

FILE NAME MUST BE OBJECT DECK (C*) FILE
The file specified is not an object deck file.
If no C*’s are specified left of the equals sign, the message is:
*SRC MUST BE OBJECT DECK

INCORRECT LINK PHRASE IN RUNL COMMAND
For example: Link(,B) or Link(A,)

Link(A,B,) or Link (B,C)
Link(A,,) or Link(,B,)
Link ()

INCORRECT SYNTAX FOR RUNL COMMAND
Generally, an illegal delimiter has been specified.

H* SAVE FILE NOT SPECIFIED

H* save file must be specified to right of equals sign.

ILLEGAL CHAR(S) IN LINK NAME

Characters must be alphabetic, numeric, and dash.

B-28 DD02

TOO MANY CHARS IN LINK NAME
More than six characters in link identifier.

028 - READ LINKED FILES ONLY WITH THIS COMMAND
This message appears when the "PSTR” load map file is random; it must be
linked.

SAVE FILE(S) CANNOT BE SPECIFIED
This message appears when H* save file appears to the left of the equals
sign.

M6 - CALL/RSTR CHECKSUM
This message appears when the H* save file is not sufficiently large enough
(in current size) to contain the bound link/overlay structure.

ADDRESS OUTSIZE OF FILE LIMITS
This message appears when the H* save file
(in current size) to contain the bound
attempt is made to "RUN” the file.

is not sufficiently large enough
link/overlay structure and an

DIAGNOSTIC MESSAGES ISSUED BY TIME SHARING LOADER

All messages are prefixed by either W for warning or F for fatal. The
majority of errors are diagnosed as warnings because the user has the ability to
hit the break key at any time. Thus, the decision is left to the user to
continue or stop.

XXXXXX UNDEFINED

Symbol (XXXXXX) is an undefined SYMREF. DRL ABORT is substituted for all
references.

XXXXXX LOADED PREVIOUSLY

SYMDEF (XXXXXX) previously defined in load table.

INCONSISTENT PREFACE FIELD (Deck) (Card)

One of two conditions occur on card number
The conditions are: (1) a SYMREF (type 5)
field (bits 0-17) in the preface card; or,
appears with a zero size field (bits 0-17)

(card) in deck number (deck).
appears with a non-zero size
(2) a LABELED COMMON (type 6)

LABELED COMMON XXXXXX - SIZE INCONSISTENT

LABELED COMMON (XXXXXX) defined previously with smaller size. Loading
continues using original size.

B-29 DD02

ILLEGAL CHECKSUM (Deck) (Card)

The checksum on card number (Card) of deck (Deck) does not compare when
recalculated. Loading continues.

ILLEGAL BINARY CARD (Deck) (Card)

Card number (Card) of deck (Deck) is not either preface (type 4), binary
(type 5), or BCD (type 6). Card is ignored. This message may also appear
where a preface or binary card appears out of expected order.

COMMON SIZE INCONSISTENT (Deck) (Card)

Blank common already defined. A subsequent deck is encountered having a
larger blank common region specified. The deck is ignored and loadincr
continues.

ILLEGAL LOAD ADDRESS (Deck) (Card)

A calculated storage address falls outside loadable store. The deck is
ignored but loading continues.

XXXXXX LOADED PREVIOUSLY, LABELED COMMON ILLEGAL

SYMDEF (XXXXXX) already defined. XXXXXX appearing n current preface
is a Labeled Common. Deck is ignored. record

The following diagnostics are preceded by a printout of the record in error
and are generally associated with OCTAL correction processing.

NON-OCTAL DIGIT IN LOCATION FIELD

Self explanatory.

FIELD EXCEEDS 12 DIGITS

Twelve octal digits is maximum allowed in word.

ILLEGAL TERMINATOR

Octal field is eliminated incorrectly.
Loader manual. Check syntax rules in the General

IC MODIFICATION NOT POSSIBLE

Field requested IC modification ($code). In this case no other modifiers
are allowed. Bits 30-35 of the constructed instruction are checked and
found to be nonzero.

B-30 DD02

XXXXXX UNDEFINED LINK ID IS YYYYYY

Where XXXXXX is an object symbol(SYMDEF) name and YYYYYY is a link
identifier. Meaning is XXXXXX is an unresolved SYMREF within the bounds of
overlay YYYYYY.

XXXXXX UNDEFINED LINK ID

Link identifier XXXXXX is being used to define an origin point for the next
overlay. It has yet been undefined.

XXXXXX NOT LINK ID

Symbol XXXXXX appearing here as a link identifier has been used and entered
into the load table previously as another type symbol.

LINK ID XXXXXX USED PREVIOUSLY

The identifier, XXXXXX, for the upcoming overlay has been previously
entered in the load table as a link identifier.

Fatal Diagnostics

EOF READING BINARY (Deck) (Card)

Unexpected EOF while reading binary, identification of last record read is
supplied.

ENTRY NOT FOUND

Primary entry name (or first primary SYMDEF) was not found in load
table. Diagnostic may also appear when subroutine .SETU. is not found.

H* TOO SMALL, TOTAL BLOCKS NEEDED XXXX

File specified as save file (H*) not large enough to hold program.

REQUEST FOR MORE STORE TO EXPAND LOAD TABLE - DENIED

A request for IK to be added at the upper address end of the load table was
denied by the system. Loading terminates. Suggest user rerun job.

9/76 B-31 DD02B

REQUEST FOR MORE STORE TO EXPAND PROGRAM - DENIED

A request to expand memory size for object program denied by the system.
Suggest user rerun job.

ILLEGAL STATUS WHILE READING (File)

Only status accepted other than EOF is ready.

BLOCK SERIAL ERROR READING (File)

Block number in file (File) does not agree with expected number.

LIBRARY SEARCH TABLE EXCEEDED

Table used to collect pointers into random library has been exceeded.
Table size is arbitrarily set at 200.

REQUEST FOR MORE STORE TO EXPAND LOAD TABLE - DENIED

Addmem request denied. Probable need for increasing TSS memory size.

FORTRAN Compiler Aborts

NOTE: The abort code Y1 is always displayed as the reason code for
any abort. The specific code is contained in the upper 18 bits
of the Q-register, or in cell 0 of the ABRT file when a time
sharing DRL abort occurs. (The reason codes follow the abort
code Y1 in parentheses below.)

Y1 (XI) Compiler space management module has unsuccessfully attempted to
allocate contiguous memory block for internal table. Rerun with DUMP
option and $ SYSOUT card for file code *F. Return dump to Honeywell
Field Support - PCO.

Y1 (X2) Compiler has attempted to execute request for additional memory more
than 10 consecutive times (initial memory plus maximum of 30K).
Increase allocation via $ LIMITS card or via "CORE=" option on TSS
RUN.

Y1 (X3) GCOS has denied compiler request for additional memory for internal
tables. Increase allocation via $ LIMITS card or via "CORE=" option
on TSS RUN.

Y1 (P3) Expression being handled has tree structure depth greater than 64.
Expression must be divided.

Y1 (P4) Unrecoverable error occurred in code generator; error message will
print following source statement causing abort. Rerun with DUMP
option and $ SYSOUT card for file code *F. Return dump to Honeywell
Field Support - PCO.

9/76 B-32 DD02B

Execution Aborts

LK No $ ENTRY card for this link.
QI Logical Unit Table overflow.
Q2 Missing Logical Unit Table.
Q3 No space for Logical Unit 6 Buffer.
Q4 Machine error or unexpected error to FORTRAN compilers
Q5 FXEM told to take an alternate return but an alternate return name was

not supplied.
Q6 Termination of object program execution via FXEM (FORTRAN Execution

Error Monitor).

9/76 B-3 3 DD02B

APPENDIX C

SYSTEM CHARACTERISTICS

The compiler compiles all FORTRAN programs originating from batch or time
sharing, local or remote. A collection of source programs can be compiled, some
through time sharing, some through batch, and the object modules combined for
execution in either environment.

SOURCE COMPATIBILITY

The source files processed by FORTRAN can be any combination of the
following:

1. A BCD card image file, with or without alters.
2. A COMDK file, with or without alters.

3. A time sharing ASCII file.
4. A formatted BCD line image file, with or without slew controls.
5. A formatted ASCII line image file, with or without slew controls.

FILE CONTENTS

The source file contents can be in standard source format or in the relaxed
"free-form" format especially suitable in time sharing, with or without line
numbers. Files in any of the accepted file or source formats may be compiled
without conversion, from either batch or time sharing.

COMPILATION Of SUBPROGRAMS

Many compilations can be done within one activity provided that the options
are the same for a collection of subprograms. The batch user stacks his source
programs, back to back, behind one compiler call card. The time sharing user
lists a series of source files to be compiled or provides multiple subprograms
in a source file. To the compiler there is one input file, S*, and source
programs are separated by END statements.

For larger programs requiring more memory to compile than that allocated to
an activity, the compiler "grows" in an attempt to satisfy this need. Normally a
satisfactory compilation will result; however, the operating system may deny
more memory to the compiler. The user is warned, in any event, that his $ LIMITS
card should be changed for subsequent recompilations.

C-l DD02

ERROR DETECTION and DIAGNOSTICS

All diagnostics are classified as either Warning, Fatal, or Terminated.
Warning does not cause compilation to be terminated; Fatal causes execution to
be deleted; and Terminated causes a termination of compilation. See Appendix B.

COMPILER CONSTRUCTION

The compiler is written in and generates object modules in "pure
procedure". .DATA. space and instruction space are clearly separated and the
instruction space remains constant over the life of the execution process.

ALLOCATION of STORAGE

Storage allocation for the object program is done in two phases of the
compiler. Phase 2 allocates storage for arrays, equivalenced variables, and all
data that is in blank or labeled common. Phase 4 allocates storage for local
scalars, namelists, switch variables, and compiler generated constants and
temporary data. Phase 4 also allocates space and generates code for the
procedure.

All variables (except those in blank or labeled common), constants, and
temporary data are allocated to the local data storage area .DATA, which is
treated by the loader as a local labeled common. Figure C-l shows the storage
layout for two typical low-loaded FORTRAN object programs.

.DATA

arrays and equivalenced
variables (allocated
by Phase 2)

error linkage
all other local
data (allocated
by Phase 4)
For main programs and
subprograms that do
not use index
registers

procedure

High Addresses
register storage area
error linkage

.DATA A
arrays and
equivalenced variables
(allocated by Phase 2)
all other local
data (allocated
by Phase 4)
For subprograms that
use index registers

procedure
Low Addresses

Figure C-l. Storage Allocation for Object Programs

9/76 C-2 DD02B

ASCII Standard System Format Files

This file format is common for batch and time sharing users as are the
library routines that read and write them. This common procedure for batch and
time sharing guarantees symmetry and compatibility. The file format for ASCII
conforms with the File and Record Control rules for "standard system format".
Every line is recorded as a logical record.

PERFORMANCE

The performance objective of the FORTRAN compiler is to provide a fast
compiler that can generate fast executing object modules. It is generally
realized that the more analysis done to improve the efficiency of the object
module, the greater the time spent in compilation. Consequently, this analysis
is subdivided into two classes:

1. Local Optimization (LO) - that analysis generally dona at the
statement level.

2. Global Optimization (GO) - that analysis done over many szatements,
i.e., program blocks as defined by the ANSI FORTRAN standard.

To give the user some control over the balance between compilation and
object efficiency it was decided to collect the GO analysis into a unique
compiler phase, callable by option. LO analysis is always performed.

Local Optimization

Following are some of the object efficiency functions done on a local
basis:

1. Logical expressions are sorted so that shorter alternative passages
are executed first, and evaluation ceases as soon as the true/false
state has been determined.

2. Subscript expressions may be register contained, eliminating multiple
computations.

3. Constants may be register contained across statements.
4. Multiplication and division by powers of two are performed using shift

or exponent register operations except for integer operations.

5. Constant arithmetic is done at compile time.
6. Many special operator/operand relationships are recognized to

capitalize on the machine instruction set. Examples are 1*1, 1**1,
1=0, 1=1+1, I=I+J.

7. Where possible, operations involving constants make use of the DU, DL
modifiers.

8. Where there is no redefinition of a scalar dummy argument within a
subprogram, the value of that argument is stored locally. This
eliminates an indirect cycle for each reference to that argument.

C-3

Compilation Performance

Compile speed is also a function of the properties of the program being
compiled and directly related to the options selected on the $ FORTY or $
FORTRAN control card. The Global Optimization compiler phase will increase
compile time for most programs by a factor of about twenty percent. For many
programs the specification of LSTOU will double the compile time. Measured in
statements per minute, the compilation rate improves with larger ;_ograms. The
smaller the program the greater the effect of the basic overhead to start
compilation, step through the phases, and terminate. Binary and compressed
decks, source listing, storage maps, cross reference reports, etc. decrease the
compilation rates.

DD02

APPENDIX D

TIME SHARING SYSTEM DEFINITIONS AND FILE DESCRIPTION

DEFINITIONS

Line Numbers

Line numbers are required for line sequencing purposes. A line number
consists of one to eight numeric characters (including blanks).

Manual Mode

In manual mode, the user must provide (type)
line.

the line numbers for each

Automatic Mode

In automatic mode, the system provides the line numbers. They are printed
as the build-mode request for input (asterisk) is issued. The number is written
onto the collector file as a part of the statement.

New File

A new file is a temporary file created for the user when
command or response NEW. It is assumed the user will build a file
be saved, thus creating an old file. A new file is created by a
reinitialization of the current file.

he uses the
which then may
(destructive)

Old File

An old file is a previously built and saved file which the
with the OLD command or response, naming the desired file. The
copied onto the current file where it is available to the user for
modification.

user selects
old file is
processing or

DD02

Current File

The current file is a temporary file assigned to the user, on which a new
file is built or on which the selected old file is copied. Regardless of the
intervening commands or subsystem selections, the current file contains the last
NEW or OLD selection, with whatever modifications that may have been entered.
The modifications are, therefore, temporary until the file is saved by means of
the command SAVE. The original old file, if one existed, will not be altered
until a RESAVE command naming the old file is executed.

Collector File

The collector file is a temporary file assigned to each user when he logs
on. All input which is not a recognizable command is gathered onto this file
for example, numbered statements. Then, when the file becomes full or a command
is typed, depending upon the subsystem, the collector file is merged with the
current file and the entire current file is edited and sorted if necessary. For
example, when the commands RUN, LIST, or SAVE are encountered, and data exists
in the collector file, it is merged with the current file in sort order. (The
collector file is normally transparent to the user.)

Available File Table

An available file table (AFT) is provided for each time sharing system
user. This table holds a finite number of file names (currently set at 20) which
are entered in the AFT when the files are initially accessed (opened). The
advantages of the AFT are:

1. Files requiring passwords or long catalog/file descriptions may be
referended by file name alone, once they have been entered in the
table.

2. Files used repeatedly remain readily available, thus reducing the
overhead time and cost of accessing the file each time.

The following commands cause the named permanent files to be placed in the
AFT.

LIST filename(s)
OLD filename(s)
SAVE/RESAVE filename(s)
GET filename(s)
PRINT filename(s)
PERM tempfile, filename

D-2 DD02

Because the AFT is of finite length, it can become full. If this happens
and a command is given which requires a new filename to be placed in the AFT,
the command subsystem will print an error message indicating that the AFT is
full. At this point, the user must remove any unneeded files from the AFT in
order to continue. The STATUS FILES command produces a listing of all of the
user’s files in the AFT. The REMOVE command can be used to remove specified
files from the AFT. The files are not purged or altered in any way; only the
name is removed from the AFT and the file is set not-busy.

DESCRIPTION OF FILES

File Specification

The specification
formats:

1. filename
2. filedescr

of permanent files

where the file name
where the full file
following formats:

is provided for

only is required.
description may be

in the following

used, in any of the

a. filename
b• filename$password
c. userid/catalog$password...

/catalog$password/filename$password

If a required password is not given (format a), the system will
for the password.

explicitly ask

If a required password is omitted in the string format (format c), a
REQUEST DENIED message will be issued.

If the file was previously opened (e.g., with a GET), only the filename
need be given regardless of its full description. If the requested file is not
already open, it must emanate directly from the user’s master catalog
(quick-access type file) in order for formats a and b to be applicable.

Where desired-permissions and/or
specified in the following format:

alternate-name are applicable, they are

filedescr,permi ssions
or

filedescr"altname"permissions

D-3 DD02

where:

permissions may be any one or combination of the following, separated by
commas:

READ (or R)
WRITE (or W)
EXECUTE (or E)
APEND (or A)

aItname may be a valid file name (one to eight characters)r enclosed in
double-quote signs.

Where a desired-permissions specification is applicable, a null permissions
field implied READ and WRITE permissions; i.e. , the default interpretation for-
desired permissions is R,W.

If a file-segment specification, of the form (i, j) where i and j are line
numbers, is given in addition to desired permissions and/or alternate-name, it
must appear last in the specification string; e.g.:

filedescr,permissions(i , j)
or

filedescr "altname”,permissions(i,j)

Examples:

OLD FIL1$GOGO,R
SAVE /CAT1CAT2 $MAYI/FIL0 $HERE
LIST FILE2$HOHO(1,100)
PURGE FIL3$ARIZ;FIL4;FIL5$SUN
GET JJONES/DATACAT/BATCHWRLDFIL”INFILE"

Categories of Files

bases:two separate

file-system-usageFile-access
distinction

File mode, which has primarily to do with the kinds
under the FORTRAN system. (Both of these categorie

type, which is a general time sharing,
and is not exclusive to FORTRAN; and,

of files produced
of distinctions

between permanentIn the time sharing environment, distinctions are made
files on

D-4 DD02

FILE-ACCESS TYPES

There are three types of files, according to the method of
subsequent accessing of the file:

creation and

1. Quick-access files — those permanent files that were automatically
created (i.e., defined) by the system as a result of use of a SAVE
filename or PERM tempfile; filename command as first reference to the
named file. Quick-access files can also be created under ACCESS,
provided no intermediate catalog structure is specified. This type of
file has the following characteristics:

a. It can be accessed by its creator simply by the filename form of
commands, and, in the case of data files (input or output), will
be accessed automatically upon execution of a program reference
to it — i.e., it need not be pre-accessed by command.

b. It has general READ permission assigned. It can be accessed with
READ permission only by any other user who can describe it
completely (creator's user ID/filename).

2. Quick-access files with password attached — those permanent files
that (normally) were automatically created (i.e., defined) by the
system as a result of use of a SAVE filename?password command as first
reference to a particular file name. This type of file is the same as
the simple, quick-access type described above, except that it has the
specified password attached. It has the following characteristics:

It can be accessed by its creator either by the filename or the
filename?password form of commands; in the former case, if ?password
is omitted, the system will explicitly ask for the password. Also, m
the case of data files, it will be accessed automatically upon
execution of a program reference to it, but the system will explicitly
ask for the password.

3. Nonquick-access files — those permanent files that either do not
"belong” to the user himself (i.e., where created by another user) or
do not emanate directly from user's master catalog. In the latter
case, the file is not completely described by user-ID and
filename?password (intermediate catalogs exist), and, in general, use
was made of the ACCESS subsystem in explicitly creating some or all of
the catalog/file strings describing the file.

The nonquick-access type of file can be accessed either with the GET
command, or with similar extended forms of other commands.

Note that quick-access files (with or without password) are only
quick-access type relative to the file's creator. That is to say, a quick-access
file for user A is by definition not a quick-access file for any other user.

NOTE: Once a type of file is initially accessed, whether by a GET or any
other command, it can thenceforward be referred to simply by file
name, unless explicitly removed from the AFT.

D-5 DD02

FILE MODES

Three inodes of files can be produced under the FORTRAN system.

Mode Characteristics
ASCII A linked (sequential) file of

ASCII character code; i.e.,
character strings.

i.e. ,
variable-length records in
a file composed of 9-bit

Binary A linked (sequential) file of
binary.

variable-length records in

Random A random file of fixed-length records in binary.

Source program files may be either time sharing format ASCII (type 5) or
standard system format ASCII (type 6). ASCII input data files must be in type 5
format. Standard system format ASCII (type 6) may be converted to type 5 format
using the time sharing command ASCASC. ASCII output data files written in
FORTRAN are written as type 5 files. To use these output files in other time
sharing systems, they must be converted to type 6, using the ASCASC command.
Refer to the TSS General Information manual for a description of the ASCASC
command.

FORTRAN object programs can produce linked binary-mode files as output.

FORTRAN object programs can produce random-mode files as output. Random is
always the mode of object-program files themselves; i.e., compiler output is
always in random mode.

Files created under execution and written must be converted to type 6 (with
the ASCASC command) if the files are to be run under the Series 60 FORTRAN.

All files, of any mode, must be explicitly saved by use of the SAVE or PERM
commands in order to be retained as permanent files. If the specified permanent
file does not already exist, it will be implicitly created with the correct
linked or random characteristic, as required by the file mode. (Linked is the
standard, or default, type of file created.) If, however, the specified
permanent file was explicitly created (predefined by the user, normally by use
of the Create-File function of the ACCESS subsystem), the user must have been
careful to create the file with the random (R) specification if a random-mode
file is to be saved or made permanent. This is true particularly for the file
specified as savefile, in the RUN statement, on which the compiler output is
saved. If this is a pre-existent file, it must have previously been created —
implicitly or explicitly — as a random file. See the TSS General Information
manual, for a description of the ACCESS subsystem.

D-6 DD02

ALTERNATE NAMING OF FILES

Permanent files may be temporarily renamed, with the altname capability of
the time sharing command language, when necessary or desirable. Alternate naming
is effective only during the terminal session in which the altname is assigned
and the original file name in the file system is not altered. Two cases in which
alternate naming would be required are as follows:

1. When a file created in the batch environment
a name longer than eight characters is to be
program, it must be given an alternate name
less.

(e.g., a data file) with
referred to by a FORTRAN
of eight characters or

2. When two or more files with identical file names are to be referred to
in one time-sharing session, whether by commands or by the FORTRAN
program, one or more must be differentiated by alternate names. (If
the user is working only with his own quick-access files -- the
’’normal” case — this problem does not arise.)

Alternate naming may conveniently be employed in the case where the file
name used in FORTRAN program and the name of the actual permanent file to be
referred to do not agree. Here the file may be given an altname, rather than
changing the program reference. This case might frequently arise when working
with common data files.

An alternate name can be assigned with the GET command, when
"pre-accessing" data (or source) files, or can be assigned with extended forms
of most other commands. Briefly, the syntax of alternate naming is:

filename"altname"
(or)
filename$password"altname"

D-7 DD0 2

APPENDIX E

FORTRAN EXECUTION ERROR MONITOR EXAMPLES

This appendix illustrates the use of the FORTRAN Execution Error Monitor
(FXEM) in both time sharing and batch modes, utilizing CALL FXEM.

Figure E-l lists a program and its execution in time sharing. The trace
shown indicates that error number 61 (see Table 6-5) occurred in subroutine SUB2
at line 320, that SUB2 had been called from subroutine SUB1 at line 210, and
that SUB1 had been called from the main program () at line 110. The
message "Argument <0" indicates the reason for aborting the execution of the
program via the call to FXEM.

Figure E-2 lists the program of Figure E-l but shows its execution in
batch. The trace shown indicates that error number 61 (see Table 6-5) occurred
in Subroutine SUB2 at alter number 3. The octal value of the three arguments
used for CALL FXEM are also shown. The trace also shows that SUB2 had been
called from subroutine SUB1 at alter number 2, along with the octal
representation for the floating point argument (-20). SUB1 was called from the
main program () at alter number 2 with the same argument. "Argument < 0"
indicates the reason for aborting the program via the call to FXEM.

E-l DD02

100 A = -2.0
110 CALL SUB1(A)
120 SLOP
130 END
200 SUBAOULINE SUB 1(B)
210 CALL SUB2CB)
220 AEIUAN
230 END
300 SUBPOUITNE SUB2(C)
310 IF (C .GT. 0.) RETUAN
320 CALL FXEM (61, “ARGUMENT < 0“,3)
330 STOP
340 END

ready

*R UN
***PROG. L# (ERA #61)
SUB2 320
SUB1 210
.............. 110
ARGUMENT. < 0
aoort code 06

Figure E-l. FXEM Example in Time Sharing Mode

E-2 DD02

<

CQ

cn

rd’
CQ

CXI
CQ

tn

CD f 1_ < r-i
tn *—• o tn -u

✓
A
X
v
A
X
V
A
X
v

X
V

X
V
A
X
V
A
X
v
A
X
V
A
X

A
X
V
A
X

X
V
A
X
v
A
X
V
A
X

A
X
v
A
X
V
A
X
V
A
X
v
A
X
V
A
X
V
A
X
v
A
X
v
A
X
v
A
X
V
A
X
V
A
X
V

X
V
A
X
v
A
X

A
X
V
A
X
V
A
X
V
A
X

A
X
V

E-3 DD02

Fi
gu

re
 E

-2
. F

XE
M

Ex
am

pl
e

in
 B

at
ch

 M
od

e

APPENDIX F

FORTRAN DEBUGGING SYSTEM

The FORTRAN debugging system (FDS) is a comprehensive monitoring. system
that provides a dynamic interactive debugging facility, a symbolic dump
facility, an automatic subprogram timing measurement system, and post-execution
wrapup procedures.

NOTE: The initial version of this debugging system was developed by Bell
Laboratories.

FDS CAPABILITIES

The FORTRAN debugging system provides the following capabilities:

1. All output data produced by the debugging system uses notation similar
to the FORTRAN source program being debugged. Analysis of this data
reguires only the knowledge necessary to prepare the source program.

2. The debugging requests are similar in syntactic construction to the
FORTRAN language that is being debugged.

3. Unless it is invoked, the debugging system does not affect execution
time or memory requirements.

4. All of the debugging aids and measurement tools are available in both
the batch and time sharing environments of the operating system
(GCOS).

INVOKING THE FORTRAN DEBUGGING SYSTEM

The FDS is an optional feature rather than a default function and is
invoked at the discretion of the user.

Batch Mode

The FORTRAN debugging system is invoked in the batch mode by including the
FDS option in the operand field on the $ FORTY or $ FORTRAN control card.

9/76 F-l DD02B

Time Sharing Mode

The FORTRAN debugging system is invoked in the time sharing mode by
including the FDS option with the RUN command on the terminal:

RUN=(FDS)

DYNAMIC DEBUGGING FACILITY

The dynamic debugging module is named FDEBUG.

In the batch mode, FDEBUG is called into execution when:

1. A CALL FDEBUG statement is encountered during the execution of a
FORTRAN source program.

CALL FDEBUG(di,do)
where: di represents the file designator from which the debugging

requests are to be read.

do represents the file designator on which the debugging
output is to be written.

If di is omitted or is not a positive number, the requests are read
from file designator 44. If do is omitted or is not a positive
number, the debugging output data is written to file designator 6.

2. File designator 44 is present in the EXECUTE (or RLHS or PROGRAM)
activity. In this case, the FDEBUG module is entered before the
execution of the main FORTRAN program is initiated; it reads any
debugging requests from file designator 44 until an end-of-file or FDS
RETURN request is encountered, whereupon control returns to the main
program.

3. An FDS PAUSE request (breakpoint) is encountered during the execution
of the program.

NOTE: The FDS PAUSE request is defined below in the Debugging
Requests paragraph; it has no relationship to the FORTRAN
PAUSE statement described in Section IV.

In the time sharing mode, FDEBUG is called into execution when:

1. A CALL FDEBUG statement is encountered during the execution of a
FORTRAN source program.

CALL FDEBUG(di,do)

where: di represents the file designator from which the debugging
requests are to be read.

do represents the file designator on which the debugging
output is to be written.

If di is omitted or is not a positive number, the debugging requests
are read from the terminal. If do is omitted or is not a positive
number, the debugging output data is written to the terminal.

9/76 F-2 DD02B

The FDS option is specified with the RUN command. In this case, the
FDEBUG module is entered before the execution of the main program is
initiated. It reads any debugging requests from the terminal until an
end-of-file or FDS RETURN request is encountered, whereupon control
returns to the main program.
An abnormal termination (abort or break) is encountered and no
preventive action has been taken. The FDEBUG module is called from
the wrapup procedures; these procedures are described later m t is
appendix.
An FDS PAUSE request (breakpoint) is encountered during the execution
of the program.

messages that indicate the method by which FDEBUG isIn the batch mode,invoked are printed on the execution report. The ’name' used in the message
designates the name of the program in control when FDEBUG is engaged.

If file designator 44 is present, FDEBUG is always entered before the
program is initiated. The message is:

FDEBUG
If the method of entry is via a CALL FDEBUG statement in the source
program, the message is:

FDEBUG CALLED FROM name IN LINE lineno
If an FDS PAUSE request (breakpoint) is encountered during the
execution of the program, the message is:

FDEBUG: PAUSE IN name AT STMT # n

In the time sharing mode, messages that indicate the method by which FDEBUG
is invoked are printed on the terminal:

1. When the FDS option is used with the RUN command, FDEBUG is entered
before the program is initiated. The message is:

FDEBUG
2. If the method of entry is via a CALL FDEBUG statement in the source

program, the message is:
FDEBUG CALLED FROM name IN LINE lineno

3. If a program terminates abnormally, FDEBUG prints

FDEBUG CALLED FROM name
following the termination message.
An interrupt (break) will cause the FDEBUG module to be re-entered and
the following message is printed:

FDEBUG: BREAK IN name
When FDEBUG regains control, it reads the input from the terminal to
obtain the debugging requests.

9/76 F-3 DD02B

If an FDS PAUSE request (breakpoint) is encountered during the
execution of the program, the message is:

FDEBUG: PAUSE IN name AT STMT # n

Debugging Requests

The
requests

following conventions apply to the descriptions of the debugging

The first two characters of the request (underlined) can be used as
the abbreviated form of the request.

Whenever the term 'expr' is shown, it represents an expression that is
formed from variables or array elements, constants, and the operators
+' *' /' ** r . NE. , . LE. , .LT., .GE., .GT., .AND., .OR., and
.NOT. . The exponent following ** must be type INTEGER. No function
references are allowed.

If the request is preceded by 'n’, that request will be inserted
(implanted for interpretation during execution) at the location of the
FORTRAN statement label 1 n’.

The names and descriptions of the FDEBUG requests are listed below:

n CALL name(expr,expr,...)

The CALL request allows user-supplied or system—supplied subroutines
to be called; a maximum of ten arguments can be supplied. Statement
label n is optional. A CALL FDEBUG request cannot be inserted.
Subroutines that are to be called from an inserted CALL request cannot
contain CALL FDEBUG statements in the source program, nor can they
have FDEBUG requests inserted into them. If FORTRAN input-output
statements are contained in the called subroutine, the CALL request
should not be invoked if FDS was entered by depressing the interrupt
(break) key while the FORTRAN program was performing input-output
operations.

the preceding restrictions are violated and the named subroutine
has previously invoked FDEBUG, the interpretation of the illegal CALL
request will. cause a RECURSIVE CALL error message to be printed and
the request will be ignored. Otherwise, the results of interpreting
the CALL request will be unpredictable. The results will usually be
either an abnormal program termination or, in time sharing, a loop
that can be resolved only by entering a DONE, QUIT, or STOP request.
(It may be necessary to depress the interrupt key to invoke FDEBUG to
accept an input request.)

n CONTINUE

The CONTINUE request causes all
statement label ’n’ to be removed,
the request is ignored.

debugging requests inserted at
If statement label ’n1 is omitted,

DONEn

Causes the execution of the program
’n’ is optional. to be terminated. Statement label

9/76 F-4 DD02B

FUNCTION name
An identifier request; this request identifies FUNCTION 'name' as the
program unit in which subsequent requests will be interpreted until
another identifier request is encountered. When FDEBUG is invoked,
the default identification in which subsequent requests will be
interpreted will be that of the FORTRAN program unit that is currently
in control.

n GOTO label
This request causes an unconditional transfer to the indicated source
statement label to be inserted at statement label 'n'. If statement
label 'n' is omitted, the request is ignored and an error message is
printed.

n IF(expr) request
The logical expression 'expr' is evaluated. If the value is .TRUE.,
the debugging request will be interpreted. If statement label ’n' is
omitted, the request is ignored.

MAIN
An identifier request; this request identifies the main program as the
program unit in which subsequent requests will be interpreted until
another identifier request is encountered. When FDEBUG is invoked,
the default identification in which subsequent requests will be
interpreted will be that of the FORTRAN program unit that is currently
in control.

n PAUSE
The PAUSE request causes a breakpoint to be inserted at statement
label 'n'. Whenever the breakpoint is encountered during program
execution, the FDEBUG module will be invoked. If statement label 'n'
is omitted, the request is ignored.

n PRINT expr,expr...
The PRINT request causes the values of the expressions ’expr’ to be
printed in the appropriate format. If a nonsubscripted array name
appears in ’expr', only the value of the first element of the array
will be printed. Statement label 'n' is optional.

n QUIT
Causes the execution of the program to be terminated. Statement label
*n' is optional.

RETURN
The RETURN request causes the FDEBUG module to return control to the
program that is being executed. Control is always returned to the
point where FDEBUG was entered.

SHOW
The SHOW request displays the location and text of all currently
inserted requests in all program units.

9/76 F-5 DD02B

n STOP
Causes the execution of the program to be terminated. Statement label
’ n* is optional.

SUBROUTINE name
An identifier request; this request identifies SUBROUTINE 'name' as
the program unit in which subsequent requests will be interpreted
until another identifier request is encountered. When FDEBUG is
invoked, the default identification in which subsequent requests will
be interpreted will be that of the FORTRAN program unit that is
currently in control.

n var=expr
This request causes the value of the scalar variable or array element
1 var* to be set to the value of the expression 1expr’. The rules of
allowable assignment apply except that a CHARACTER expression may be
assigned to an INTEGER. Statement label ’n’ is optional.

! text
This request causes all text that follows the exclamation point to be
transmitted to the time sharing system as a command to be executed.
Time sharing system commands that are applicable at the system level
are accepted. This request is not available in the batch mode of
operation. If a statement label 1 n* is included, a SYNTAX ERROR error
message will be printed.

Debugging Request Execution

The execution of debugging requests can be accomplished by two methods:

1. If a debugging request is preceded by statement label ’n’, FDEBUG
inserts the request at the indicated executable FORTRAN source
statement. When the program is executed, the FDEBUG requests will be
interpreted in the order of insertion before the original source
statement is executed.
If a debugging request is not preceded by statement label 1 n’, FDEBUG
interprets the request immediately.

9/76 F-6 DD02B

FDEBUG Error Messages

The following error messages are produced by the FDEBUG module:

Error Message Description

ANSWER PROMPT WITH PROGRAM
INPUT

BREAKPOINT OVERWRITTEN

() - CHARACTER SIZE
ILLEGAL

CONSTANT TOO BIG OR TOO SMALL

() - ENTRY NOT FOUND

() - ILLEGAL ADDRESS

ILLEGAL TYPE CONVERSION/
COMBINATION

INTEGER OR REAL TOO LARGE

LABEL NOT ALLOWED

LABEL NOT FOUND

LABEL REQUIRED

NAME NOT FOUND

NESTING LIST OVERWRITTEN

() - NOT FOUND

OUT OF SPACE

RECURSIVE CALL

The BREAK key was depressed while data was
being entered at the terminal, or FDEBUG
was called just prior to program input and
a RETURN request is received. Respond
with program input.
An inserted request in object code has
been overwritten.
An adjustable character variable size is
out of range.
A constant contained in an expression that
is used in an FDEBUG request is either too
large or too small.
A CALL request was given to FDEBUG but the
entry point to the subroutine could not be
found.
An attempt was made to reference a dummy
argument that has been passed incorrectly
to a subprogram.
An attempt was made to assign data of
incompatible types or to combine
incompatible data types with an operator.
An integer or real number used in an
FDEBUG request was too large to process.
An FDEBUG request has a label 1n’, but a
label is not allowed with this request.
A request containing a source program
label was given to FDEBUG but the label
could not be found.
An FDEBUG request requires label ’n’ and
the label is missing.
A CALL request to a subroutine was made
and the subroutine name cannot be found.
The nesting list, maintained for traceback
purposes, has been overlayed in such a
manner that the traceback activity cannot
be performed. Usually occurs when FDEBUG
executes a CALL that performs I/O.
An FDEBUG request specified a name that
could not be found.
Insufficient memory available to
accommodate all inserted FDEBUG requests.
A call to FDEBUG was made but FDEBUG is
already in control.

9/76 F-7 DD02B

Error Message Description

STACK OVERFLOW

STATEMENT TOO COMPLEX

SUBPROG NOT FOUND

() - SUBSCRIPT OR
DIMENSION ILLEGAL

Internal stack overflow; indicates that an
expression is too complicated.
An arithmetic expression used in an FDEBUG
request was too complex for the system to
evaluate.
A subprogram referenced by an FDEBUG
request cannot be found.

A subscript or adjustable dimension
associated with the named variable is out
of range.

SYMBOL TABLE EMPTY OR MISSING

SYMBOL TABLE OVERWRITTEN

SYNTAX ERROR

TOO MANY BREAKPOINTS

UNDERFLOW, OVERFLOW OR DIVIDE
CHECK

Either the FDS option was not used for the
compilation of the subprogram or no symbol
table could be found for the FDEBUG
requests. Use the MAIN, SUBROUTINE, or
FUNCTION request and the requests will be
processed.
The symbol table could not be found or has
been overlayed. FDEBUG is unable to
process this request.
An FDEBUG request is either misspelled,
incomplete, or not recognized.
Too many FDEBUG requests have been
inserted.

An expression used in an FDEBUG request
caused an underflow, overflow, or divide
check condition to occur.

WRONG # OF SUBSCRIPTS An FDEBUG request contained a subscripted
variable, but the number of subscripts
does not match the number of declared
dimensions.

F-8 DD02B

FDS Examples

Examples of the use of the FORTRAN debugging system are presented in Tables
F-l, F-2, and F-3. In both the batch mode and the time sharing mode, FDEBUG
prints six periods (.....) to indicate the main FORTRAN program.

Table F-l. FDS Example in the Batch Mode

10##S,J :,8,16,32
20$:IDENT
30$:OPTION:FORTRAN
40$:FORTY:NFORM,NLNO,FDS
50 A=1.0; B=1.0
60 X=2.0; Y=2.0
70 Z=0; ANS=0
80 CALL FDEBUG(44)
90 CALL SUMF(A,B,ANS)
100 WRITE(6,25)A,B,ANS
110 25 FORMAT(3F8.2)
120 CALL FDEBUG(46)
130 STOP;END
140 SUBROUTINE SUMF(ZA,ZB,ZANS)
150 ZANS=ZA+ZB
160 52 CONTINUE
170 RETURN;END
175$:EXECUTE
180$:DATA:44
190 MAIN
200 RETURN
210 MAIN
220 CALL SUMF(X,Y,Z)
230 PRINT X,Y,Z
240 SU SUMF
250 52 PR,ZA,ZB,ZANS
260 52 IF(ZANS.EQ.2.0)PR,ZA,ZB
270 SHOW
280 RETURN
290$:DATA:46
300 CALL FDUMP
310 RETURN
320$:ENDJOB

OUTPUT OF RUN
1 FDEBUG
2 FDEBUG CALLED FROM IN LINE 4
3 X =2., Y =2., Z =4.
4 SUMF
5 52 PR,ZA,ZB,ZANS
6 IF(ZANS.EQ.2.0)PR,ZA,ZB
7 ZA = 1., ZB = 1., ZANS = 2.
8 ZA = 1., ZB = 1.
9 1.00 1.00 2.00

10 FDEBUG CALLED FROM..... IN LINE 8
11 FDUMP CALLED FROM IN LINE NUMBER 1
12 SUBPROGRAM
13 A 1.0000000E 00
14 B 1.0000000E 00
15 X 2.0000000E 00
16 Y 2.0000000E 00
17 Z 4.0000000E 00
18 ANS 2.0000000E 00
19 FDUMP COMPLETE

9/76 F-9 DD02B

In the batch mode example described in Table F-l, file designators 44 and
46 are used for the CALL FDEBUG statements.

The FDEBUG module is entered before program execution. For this reason,
the first two requests on file 44 are MAIN and RETURN. If desired, additional
FDEBUG requests can also be entered at this location.

The next time the FDEBUG module is entered is when the CALL FDEBUG(44)
statement is executed at line 80. On file 44, the FDEBUG CALL request is
demonstrated by calling a user-supplied subroutine and then printing the
variables X, Y, and Z.

Two FDEBUG requests, PRINT (PR) and IF, are then inserted in statement
label 52 of the subroutine named SUMF. These two requests will be executed
whenever SUMF is called and can be removed by using a CONTINUE request.

The SHOW request at line 270 causes lines 4, 5, and 6 of the output to be
printed during program execution. Control is then returned to the calling
program. Lines 7 and 8 of the output contain the results of the PRINT and IF
requests inserted in the subroutine SUMF.

The FDEBUG module is next entered when the CALL FDEBUG(46) statement at
line 120 is executed. The only request contained on file 46 is CALL FDUMP.
Lines 11 through 19 of the output contain the results of the FDUMP routine.

Table F-2 illustrates the procedure for using FDEBUG in the batch mode with
linked overlays.

The FDEBUG module is first entered before program execution but the only
request interpreted on file 44 is the RETURN request.

The only explicit call to the FDEBUG module occurs in line 70. Two IF
requests are inserted at statement label 1 in the subroutine (SU) LODLNK.
Control is then returned to the main program.

NOTE: Refer to the Debugging Linked Overlay Programs paragraph in this
appendix for information concerning the LODLNK subroutine.

When the CALL LLINK("ASUBA") statement is executed, FDEBUG is entered since
the PAUSE request is inserted in the LODLNK subroutine. The SU SUBA instruction
establishes subroutine SUBA as the context for the next two requests. Note that
these two requests are inserted at statement label 40 in subroutine SUBA.

The same procedure is followed for the CALL LINK("BSUBB") statement. The
FDEBUG module is again entered and two FDEBUG requests are inserted at statement
label 45 in subroutine SUBB. The results of inserting these requests in
subroutines SUBA and SUBB are shown in the output printed from the run.

9/76 F-10 DD02B

Table F-2. FDS Example in the Batch Mode with Linked Overlays

10##S,J :,8,16,32
20$:IDENT
30$:OPTION:FORTRAN
40$:FORTY:NFORM,NLNO,FDS
50 WRITE (6,15)
60 15 FORMAT(14H THIS IS MAIN)
70 CALL FDEBUG(44)
80 CALL LLINK("ASUBA")
90 CALL SUBA
100 CALL LINK("BSUBB")
110 STOP;END
120$:LINK:ASUBA
130$:FORTY:NFORM,NLNO,FDS
140 SUBROUTINE SUBA
150 40 WRITE(6,26)
160 41 WRITE(6,26)
170 26 FORMAT(14H THIS IS LINKA)
180 27 CONTINUE
190 RETURN;END
200$:LINK:BSUBB,ASUBA
210$:ENTRY:SUBB
220$:FORTY:NFORM,NLNO,FDS
230 SUBROUTINE SUBB
240 45 WRITE(6,28)
250 46 WRITE(6,28)
260 28 FORMAT(14H THIS IS LINKB)
270 29 CONTINUE
280 RETURN;END
2 9 0 $:EXECUTE:DUMP
300$.-DATA: 44
310 MAIN
320 RETURN
330 SU LODLNK
340 1 IF(LINK.EQ."ASUBA")PAUSE
350 1 IF(LINK.EQ."BSUBB")PAUSE
360 RETURN
370 SU SUBA
375 40 PRINT, "HI FROM LINKA"
380 40 GOTO 41
390 RETURN
400 SU SUBB
405 45 PRINT,"HI FROM LINKB"
410 45 GOTO 46
420 RETURN
430$:ENDJOB

OUTPUT OF RUN
FDEBUG
THIS IS MAIN
FDEBUG CALLED FROM IN LINE 3
FDEBUG: PAUSE IN LODLNK AT STMT # 1
"HI FROM LINKA
THIS IS LINKA
FDEBUG: PAUSE IN LODLNK AT STMT # 1
"HI FROM LINKB "
THIS IS LINKB

9/76 F-ll DD02B

Table F-3. FDS Example in the Time Sharing Mode

010 1=10
015 CALL FDEBUG(44)
020 PRINT,"HELLO FROM MAIN"
030 CALL SUBA
040 CALL SUBB
050 5 STOP;END
060 SUBROUTINE SUBA
070 PRINT,"HELLO FROM SUBA"
080 ISUB=1
090 10 RETURN;END
100 SUBROUTINE SUBB
110 PRINT,"HELLO FROM SUBB"
120 ISUB=2
130 20 RETURN;END

\ Terminal
Input

RUN=(FDS)

1 FDEBUG
2 ?RETURN
3 FDEBUG CALLED FROM IN LINE 15
4 I = 10
5 SUBA
6 10 IF (ISUB.EQ.1)PRINT,"HI FROM A"
7 HELLO FROM MAIN
8 HELLO FROM SUBA
9 "HI FROM A "

10 HELLO FROM SUBB
11 ISUB = 1000
12 "HI FROM SUBB"

Output from
Program and
FDEBUG

MAIN
PRINT,I
SUBROUTINE SUBA
10 IF(ISUB.EQ.1)PRINT,"HI FROM A"
SHOW
SUBROUTINE SUBB
20 IF(ISUB.EQ.2)ISUB=1000
20 PR ISUB
20 PRINT,"HI FROM SUBB"
RE

FDS Requests
) on File 44

Table F-3 illustrates the procedure for using the FORTRAN debugging system
in the time sharing mode.

The FDEBUG module is entered before program execution and control is given
to the terminal. The message FDEBUG is displayed on line 1. Whenever FDEBUG
expects terminal input, a question mark (?) or equal sign (=) is displayed on
the terminal (line 2 of the terminal output). Since no terminal commands are
required, the terminal operator enters a RETURN request following the question
mark.

The FDEBUG module is next entered when the CALL FDEBUG(44) statement is
encountered (line 015 of the terminal input), and the requests contained on file
44 are then interpreted. Following the PRINT request, one request is inserted
at statement label 10 in subroutine SUBA and three requests are inserted at
statement label 20 in subroutine SUBB. The abbreviated form of the RETURN
request (RE) is used on file 44.

9/76 F-12 DD02B

The SHOW request on file 44 causes lines 5 and 6 of the terminal output to
be printed. Lines 9, 11, and 12 of the terminal output contain the results of
interpreting the FDEBUG requests from file 44 in subroutines SUBA and SUBB.

SYMBOLIC DUMP FACILITY

In the batch mode, a symbolic dump can be produced in two ways:

1. A symbolic dump is automatically produced when a program that contains
the FDS option on the $ FORTY or $ FORTRAN control card in the job
control language terminates abnormally.

2. A symbolic dump can be produced after the FDS
specifying the following FORTRAN statement:

has been invoked by

CALL FDUMP(n,6)
The symbolic dump will be written on file designator 6 (defaults to
SYSOUT) and will include the ’n’ subprograms that were most recently
entered into the nesting list.

In the time sharing
been invoked by entering

mode, a symbolic dump
the following FORTRAN

can be produced after the FDS has
statement at the terminal:

CALL FDUMP(n,6)

The symbolic dump will be displayed on the terminal and will include the
1n' subprograms that were most recently entered into the nesting list.

Example:

If a main program calls subprogram A, which
subprogram B executes the statement

in turn calls subprogram B, and

CALL FDUMP(n,6)
then: If n < 0, the call is ignored.

If n = 1, a symbolic dump of subprogram B is
displayed on the terminal.

written to SYSOUT or

If n = 2, a symbolic dump of subprograms B and A is written to SYSOUT or
displayed on the terminal.
If n > 3, a symbolic dump of subprograms B, A, and also the main program
is written to SYSOUT or displayed on the terminal.
If n is omitted, the nesting list will be traced back to the main
program.

The format of the dump output begins with a heading that indicates the
method by which the dump facility was invoked, followed by a symbolic dump of
each subprogram that was contained in the nesting list when the dump was
produced.

9/76 F-13 DD02B

If the dump facility was invoked using a CALL statement, the heading reads:

FDUMP CALLED FROM name IN LINE NUMBER lineno

If the dump facility was invoked from the wrapup procedures after the
execution of the program is terminated, the heading reads:

FDUMP CALLED FROM WRAPUP

After printing the heading, the dump process traces the nesting list back
to the main program and prints out the names and values of the variables used in
each subprogram. If the dump facility was invoked with a CALL FDUMP statement
in the source program, the variables of the subprogram that executed the CALL
FDUMP statement appear first in the dump. If the dump is produced as the result
of an abnormal program termination, the FORTRAN subprogram that was in control
when the termination occurred appears first in the dump.

The following subheading is printed at each level of the nesting list:

SUBPROGRAM namel
CALLED FROM name2 IN LINE NUMBER lineno

where: namel is the name of the subprogram whose variables will follow.

name2 is the name of the subprogram that is calling namel.
lineno is the line number of the CALL namel in subprogram name2.

When the main program level is reached, the second line of the subheading
is omitted.

The subheading is followed by a listing of the nonsubscripted variables and
arrays, together with their associated values. The arrays are printed in column
form; the ellipsis (...) is used to indicate successive lines of identical
output. The ellipsis is also used to indicate successive columns that are
identical.

The format used for each type of variable is listed below:

Integer 113
Real 1PE15.7
Logical 013
Complex 1P2E15.7
Double precision 1PD26.18
Character An

Symbolic Dump Example

is presented in Table F-4.An example of a symbolic dump

9/76 F-14 DD02B

Table F-4. Example of a Symbolic Dump

FDUMP CALLED FROM WRAPUP
SUBPROGRAM JOE
CALLED FROM..... IN LINE NUMBER 170
ISTART 0
NPTRS 78
LI 623
L2 545
LL2 000735000000
TIME 1.3800000E-06

TYPE (*)
1: 60 78 0
5: 0 0 0

• • •
97: 0 0 0

0
0
0

SUBPROGRAM
I 30
A (*, 1)

1: 1.0000000E+00 2.0000000E+00 3.0000000E+00 4.0000000E+00
5: 5.0000000E+00 6.0000000E+00 7.0000000E+00 8.0000000E+00
9: 0. 0. 0. 0.

• • •
25: 2.5000000E+01 2.6000000E+01 2.7000000E+01 2.8000000E+01
29: 2.9000000E+01 7.0000000E+00

A (*, 2)
1: 0.

• • •
29: 0.

0. 0.
8.0000000E+00

0.

A (*,
1: 0.

• • •

29: 0.
FDUMP COMPLETE

10)
0.
0.

Symbolic Dump Messages

The symbolic dump facility provides several error condition messages and a
final termination message.

If a symbol table is not available or has been overwritten, or there is not
enough memory available in which to load the table, the following message is
printed:

SYMBOL TABLE NOT AVAILABLE OR OVERWRITTEN

When a portion of the nesting list has been overwritten in such a manner
that it cannot be traced back to the main program, the dump will terminate
prematurely and the following message is printed:

NESTING LIST OVERWRITTEN, DUMP TERMINATED

9/7*6 F-15 DD02B

When a program has called other programs recursively, intentionally or not,
the nesting list is caused to loop back on itself. When this condition occurs,
the dump will terminate prematurely and the following message is printed:

CIRCULAR CALL DETECTED, DUMP TERMINATED

An example of this condition occurs when subprogram A calls subprogram B,
which in turn calls subprogram C, and subprogram C then calls subprogram A.

The symbolic dump facility will occasionally detect errors in the methods
in which arguments are passed to subprograms. One of the following two messages
is printed:

ERROR IN ACT. ARG. FOR ()
ERROR IN ADJ. DIM. OR ACT. ARG. FOR ()

The first message usually occurs for scalar variables and indicates that
the address passed to the subprogram for the actual argument is out of range
(usually zero). The second message occurs for array variables and indicates
that an adjustable dimension has an implausible value.

If no error conditions are encountered during the processing of the dump
and the dump has been successfully completed, the following message is printed:

FDUMP COMPLETE

CALL FDUMP Examples

Table F-5 contains an example of an FDS program and a subroutine referenced
within the program from which the FDUMP feature is called. An example of the
results produced when the CALL FDUMP statement is executed is contained in Table
F-6. Each variable and array in Table F-6 is displayed by type.

Table F-5. Example of FDS Program and Subroutine used with FDUMP

FDS Program

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

INTEGER IARR(5,5)
DIMENSION ARR(3,3)

DO 10 1=1,3
DO 20 J=l,3
ARR(I,J)=I*J
20 CONTINUE
10 CONTINUE
DO 30 1=1,5
DO 40 J=l,5
40 CONTINUE
30 CONTINUE
A=1.3;B=2.3
CALL CALC(A,B,RESU)
PRINT,A,B,RESU
C=A*B;R=RESU**2
55 CONTINUE
KINDX=KINDX+1
IF (KINDX.LT.5)GO TO 55
STOP;END

9/76 F-16 DD02B

Table F-5 (cont). Example of FDS Program and Subroutine used with FDUMP

Subroutine Referenced in Line 14
1 SUBROUTINE CALC(X,Y,ANSW)
2 X=X*Y+X
3 ANSW=Y+Y*X
4 INDX=INDX+1
5 CALL FDUMP
6 RETURN;END

Table F-6. Example of FDUMP Output

FDUMP CALLED FROM CALC IN LINE NUMBER 5

SUBPROGRAM CALC
CALLED FROM IN LINE NUMBER

FDUMP COMPLETE

INDX 1
X
ANSW

4.2900000E
2.3000000E
1.2167000E

00
00
01

SUBPROGRAM
I
KINDX

B
RESU
C
R

4.2900000E
2.3000000E
1.2167000E
0.
0.

5
5
0
00
00
01

IARR
1:

(*, 1)
2 3

IARR
1:

(*, 2)
3 4

IARR
1:

(*, 3)
4 5

IARR
1:

(*, 4)
5 6

IARR
1:

(*, 5)
6 7

ARR
1:

(*, 1)
1.OOOOOOOE: oo 2.0000000E

ARR
1:

(* 2)
2.0000000E: oo 4.OOOOOOOE

ARR
1:

(* 3 j
3.0000000E: oo 6.OOOOOOOE

14

4 5 6

5 6 7

6 7 8

7 8 9

8 9 10

00 3.OOOOOOOE 00

00 6.OOOOOOOE 00

00 9.OOOOOOOE 00

9/76 F-17 DD02B

SUBPROGRAM TIMING MEASUREMENT SYSTEM

The FORTRAN debugging system provides an option that allows the performance
of subprograms to be measured in terms of the amount of processor time required
to execute those subprograms. This option is called the subprogram timing
measurement system. The measurements are given only for those subprograms
compiled with the FDS option.

In the batch mode, the timing measurement system is invoked either by
including a CALL FTIMER statement in the main program or by including the name
FTIMER in the variable field on a $ USE card.

In the time sharing mode, the timing measurement system is invoked by
including a CALL FTIMER statement in the main program. The CALL FTIMER
statement cannot be inserted from the FDEBUG module.

The timing measurement system determines the following information for each
executed subprogram:

1. The number of times the subprogram was called.

2. Global timing, including the processor time used by all called
subsidiary subprograms:
a. Total processor time.
b. Percentage of processor time used.
c. Average processor time per call.

3. Local timing, excluding the processor time used by timed subsidiary
subprograms:
a. Total processor time.
b. Percentage of processor time used.
c. Average processor time per call.

All times are reported in milliseconds.

Timing Measurement System Examples

Table F-7 contains an example of the listing that is printed when the
subprogram timing measurement system is invoked. Table F-8 contains an example
of the execution of a time sharing program using a CALL FTIMER statement.

NOTE: When the total amount of global time is the same as the total amount
of local time, the subprogram has no subsidiaries.

9/76 F-18 DD02B

Table F-7. Timing Measurement System Parameters

NO. OF
CALLS

TOT. MS.
GLOBAL

GLOBAL %
OF RUN

.... 1
TESTS 1
REDUN 1
SBSCR4 1
SUB4 1
SBSCR1 1
SBSCR3 1
SUB1 1
SUB3 1
SBSCRI 1
SUB 1
SBSCR2 1
SUB2 1
COMP 290
SUBZZA 1
SUBZZZ 1
SPEC 1
LEXICA 1
CONST 1
DOIF 1
ONESB 1
COMMON 1
CON 1
COMPLX 1
ASFL 1
CLEARA 2 6
EOS 1
RDDN 2
IDOIF 2
TOTAL ELAPSED TIME
TOTAL MEASURED TIME
TIMER OVERHEAD

885.59 100.00
867.70 97.98
150.20 16.96
135.97 15.35
135.78 15.33
93.38 10.54
93.27 10.53
93.22 10.53
93.09 10.51
62.11 7.01
61.98 7.00
57.06 6.44
56.89 6.42
56.86 6.42
49.84 5.63
49.59 5.60
43.00 4.86
41.48 4.68
27.45 3.10
25.00 2.82
15.28 1.73
12.58 1.42
8.98 1.01
5.13 0.58
4.75 0.54
2.30 0.26
0.19 0.02
0.05 0.01
0.05 0.01

2361.56
885.59
1475.97

AVG. MS.
PER CALL

885.59
867.70
150.20
135.97
135.78
93.38
93.27
93.22
93.09
62.11
61.98
57.06
56.89
0.20

49.84
49.59
43.00
41.48
27.45
25.00
15.28
12.58
8.98
5.13
4.75
0.09
0.19
0.02
0.02

TOT. MS.
LOCAL

17.89
54.61

137.38
0.19

129.05
0.16
0.17

88.94
88.95
0.13

57.17
0.17

52.64
56.86
0.25

41.48
28.47
38.48
24.36
22.88
13.98
11.83
8.42
4.56
4.00
2.30
0.19
0.05
0.05

LOCAL %
OF RUN

2.02
6.17
15.51
0.02

14.57
0.02
0.02

10.04
10.04
0.01
6.46
0.02
5.94
6.42
0.03
4.68
3.21
4.35
2.75
2.58
1.58
1.34
0.95
0.52
0.45
0.26
0.02
0.01
0.01

AVG. MS.
PER CALL

17.89
54.61

137.38
0.19

129.05
0.16
0.17

88.94
88.95
0.13

57.17
0.17

52.64
0.20
0.25

41.48
28.47
38.48
24.36
22.88
13.98
11.83
8.42
4.56
4.00
0.09
0.19
0.02
0.02

9/76 F-19 DD02B

Table F-8 Timing Measurement System in Time Sharing

0010 CALL FTIMER
0020 DO 100 1=1,5
0030 CALL SUBA1
0040 CALL SUBA2
0050 PRINT,"BACK TO MAIN"
0060 100 CONTINUE
0070 STOP;END
0080 SUBROUTINE SUBA1
0090 PRINT,"WE ARE IN SUBA1"
0100 DO 200 J=l,1000
0110 200 K=K+J
0120 RETURN;END
0130 SUBROUTINE SUBA2
0140 PRINT,"WE ARE IN SUBA2"
0150 CALL SUBB2
0160 RETURN;END
0170 SUBROUTINE SUBB2
0180 PRINT,"WE ARE IN SUBB2"
0190 RETURN;END

*LINELENGTH 81
*RUN= (FDS)
WE ARE IN SUBA1
WE ARE IN SUBA2
WE ARE IN SUBB2
BACK TO MAIN
WE ARE IN SUBA1
WE ARE IN SUBA2
WE ARE IN SUBB2
BACK TO MAIN
WE ARE IN SUBA1
WE ARE IN SUBA2
WE ARE IN SUBB2
BACK TO MAIN
WE ARE IN SUBA1
WE ARE IN SUBA2
WE ARE IN SUBB2
BACK TO MAIN
WE ARE IN SUBA1
WE ARE IN SUBA2
WE ARE IN SUBB2
BACK TO MAIN

NO. OF
CALLS

TOT. MS.
GLOBAL

GLOBAL %
OF RUN

AVG. MS.
PER CALL

TOT. MS.
LOCAL

LOCAL %
OF RUN

AVG. MS.
PER CALL

1 153.72 100.00 153.72 20.52 13.35 20.52SUBA1 5 89.52 58.23 17.90 89.52 58.23 17.90SUBA2 5 43.69 28.42 8.74 24.56 15.98 4.91SUBB2 5 19.13 12.44 3.82 19.13 12.44 3.82
TOTAL ELAPSED TIME 230.50
TOTAL MEASURED TIME 153.72
TIMER OVERHEAD 76.78

9/76 F-20 DD02B

WRAPUP PROCEDURES

The FORTRAN debugging system provides a mechanism called a wrapup list that
allows a user to designate one or more subprograms to be called when a program
terminates. The user can also add subprograms to the wrapup list to allow
post-execution diagnostic activities or additional functions to be performed.
For example, complex data structures such as symbol tables may be analyzed and
printed in a readable format.

The wrapup list is maintained dynamically by the FDS in a
first-in/first-out sequence; the first subprogram that is entered into the list
will be called first.

In the batch mode, the wrapup list is inspected whenever a program
terminates abnormally or is terminated by the execution of a FORTRAN STOP
statement. When a program terminates abnormally, the first entry in the wrapup
list is FDUMP and a symbolic dump is automatically produced.

In the time sharing mode, the wrapup list is inspected whenever a program
terminates abnormally with an interrupt (break) or is terminated by the
execution of a FORTRAN STOP statement. When a program terminates abnormally,
the first entry in the wrapup list is FDEBUG and the dynamic debugging module is
entered.

Adding Wrapup Subprograms

An external subprogram can be added
following statements in the source program:

to the wrapup list by including the

EXTERNAL subr
CALL ATCALL(subr)
CALL NTCALL(subr)

If an external subprogram is added to the wrapup list by including the CALL
ATCALL statement, it will be called whenever the program terminates abnormally.

If an external subprogram is added to the wrapup list by including the CALL
NTCALL statement, it will be called whenever the program terminates in a normal
manner.

If a CALL NOCALL(subr) statement is included, all occurrences of ’subr'
will be deleted from the wrapup list.

The FDS option is not required to process the CALL ATCALL, CALL NTCALL, or
CALL NOCALL statements, but the subroutine name must be declared EXTERNAL or
else an op code fault will be generated.

9/76 F-21 DD02B

Example:

The following statements are used to
to insert FDEBUG in its place:

remove FDUMP from the wrapup list and

EXTERNAL FDUMP,FDEBUG
CALL NOCALL(FDUMP)
CALL ATCALL(FDEBUG)

In this example, FDEBUG will be called if the program terminates
abnormally.

NOTE: In the batch mode, the desired debugging requests must be present on
file 44 and must begin with a RETURN request to enable them to be
read by FDEBUG when it is called at program termination. A CALL
NOCALL (subr) statement cannot be inserted as a debugging request.

Excluding Wrapup Subprograms

The wrapup mechanism provides a method to avoid calling any of the
subprograms contained in the wrapup list. The list will not be inspected or
called when a CALL FTERM statement is executed.

NOTE: The execution of a CALL FTERM statement causes the immediate
termination of the program. A CALL FTERM statement cannot be
inserted as a debugging request.

OPTIONAL DEBUGGING FEATURES

Special Printing Formats

If the values of variables or arrays are to be printed in a format other
than the default format, subroutines similar to the following may be included in
a program:

SUBROUTINE PR(A,N,FORMAT)
INTEGER A(N),FORMAT(1)
WRITE(6,FORMAT)A
RETURN
END

An FDEBUG request such as
CALL PR(ARRAY,3,”(1X,3A6)")

can then be used to print data under a special format. In this example, the
first three elements of ARRAY are printed with the A6 format.

9/76 F-22 DD02B

Debugging Linked Overlay Programs

If linked overlay programs are to be debugged, a subroutine supplied by the
FDS can be used to assist in this process. This subroutine is called by the
LINK/LLINK overlay subroutine immediately after a link is loaded; it consists of
the following statements:

SUBROUTINE LODLNK(LINK)
CHARACTER*6 LINK

1 RETURN
END

To allow control to pass to FDEBUG after a certain link has been loaded,
the following FDEBUG requests may be inserted:

SUBROUTINE LODLNK
1 IF (LINK .EQ. ’'linkname”) PAUSE

where: "linkname" represents the name of a link having six characters or less.

This coding inserts a request that causes FDEBUG to be entered immediately
after "linkname" is loaded. Any FDEBUG requests previously inserted into the
overlay area will be ignored. (The SHOW request can be used to determine if any
previous requests are still present in the program.)

Since a CALL LINK statement can cause the currently executing link to be
overlayed, thereby eliminating the subroutine nesting list and possibly LODLNK,
control is passed directly to the link entry point by LINK without calling
LODLNK. In this case, control cannot be passed to FDEBUG, and it is recommended
that LLINK be used instead. In addition, when LLINK is used, the program is
more easily moved to other environments by supplying a dummy subroutine named
LLINK.

Refer to Table F-2 for an example of FDEBUG requests that are inserted into
linked overlay structures.

Debugging Optimized Programs

When optimized programs
complicated by the fact that the
registers rather than in memory.
DO loop indices in loops that
loop index cannot be printed (it
cannot be used in other ways.

are to be debugged, the procedure may be
values of certain variables are often stored in
This condition is particularly applicable to

exit only from the bottom. The value of the DO
appears to remain constant), and the value

9/76 F-23 DD02B

FPS Programming Techniques

The following information is provided to assist in the most effective use
of the FORTRAN debugging system:

The FDEBUG requests represent a language of considerable complexity
since:

a. Conditional requests can be used.
b. The inserted FDEBUG requests can be dynamically modified.
c. The GOTO request, particularly when used with the IF request, can

significantly change the executed logical flow of the
subprogram(s) being debugged from the logical flow specified in
the source coding.

FDEBUG output data can be difficult to interpret unless strongly
supported by using the SHOW request. It is generally helpful to
provide a SHOW request prior to each RETURN request (except, perhaps,
at the initial invocation of the FDEBUG module). When debugging a
complex loop, it will also be helpful to create a display of all
inserted requests prior to each pass through the loop.

2. Since the FDEBUG module is always entered prior to program execution
in the batch mode when file 44 is present, a program that is being
processed in the batch mode should contain a RETURN request as the
first instruction on file 44 unless FDEBUG requests are to be
interpreted or inserted before the proaram is executed.

3. When the first CALL FDEBUG (fc) statement in a program is executed,
the FDEBUG module processes debugging requests beginning with the
first request contained on file 1fc’. If another CALL FDEBUG (fc)
statement is encountered during the execution of the program, FDEBUG
will begin to process requests immediately following the most recently
processed RETURN request. A CALL FCLOSE (fc) statement will not force
file ’fc’ to be rewound.

4. If an attempt is made to call or otherwise invoke the FDEBUG module
and FDEBUG is already currently in control, a RECURSIVE CALL error
message will be printed and the call or invocation will be ignored.

5. Files containing FDEBUG requests cannot be line numbered.
6. A GOTO request cannot be used to transfer from the FDEBUG module to a

statement label of a user’s program because the GOTO request is always
inserted at statement label ’n’; it does not affect FDEBUG control
logic. Control is always returned to the next instruction following
the CALL FDEBUG statement. (It is possible to circumvent the control
return mechanism by issuing a DONE, QUIT, or STOP request; however,
these requests terminate the program.)

7. More than one debugging request may be inserted at a statement label
in the user’s program. All requests that have been inserted at a
given statement label can be removed by providing one CONTINUE request
at that statement label.

8. If FDUMP or FDEBUG is invoked for a subroutine that contains no
symbols or statement labels, a ’SYMBOL TABLE NOT AVAILABLE OR
OVERWRITTEN’ message will be printed.

9/76 F-24 DD02B

9. The FDEBUG module will not operate in a correct manner when FTIMER has
been invoked.

10. The timing measurement system cannot be called from within the FDEBUG
module. To obtain timing data for time sharing programs, a CALL
FTIMER statement must be present in the source program. during the
compilation phase. In the batch mode, as an alternative, the name
FTIMER may be included in the variable field on a $ USE card.

11. In the time sharing mode, the FDEBUG module is entered before program
execution and the message FDEBUG is displayed on the terminal. A
prompting question mark (?) is printed as the first character on the
next line, indicating that data is expected; FDEBUG requests can be
inserted into the program at this time. The program will begin to
execute when a RETURN request is entered at the terminal.

12. If a carriage return is the initial response when FDEBUG is entered in
the time sharing mode, a traceback will be printed. A carriage return
following a new identifier request will also produce a traceback.

13. When the wrapup list is inspected, a traceback will include the FDS
WRAPUP routine.

14. If the ’.text request is issued when operating in the time sharing
mode, the FDEBUG module may lose control. For example, FDEBUG will
lose control if the time sharing command ’.RUN=PROG is entered at the
terminal, since the program named PROG would then be executed.

9/76 F-25 DD02B

INDEX

ABNORMAL
ABNORMAL statement 4-7

ABORTS
Compiler Aborts B-33
System Aborts B-33

ABS
ABS 6-5

ACCESS
serial access files 4-55
serial access files 4-64

ADJUSTABLE
Adjustable Dimensions 2-16

AIMAG
AIMAG 6-5

AINT
AINT 6-5

ALLOCATION
ALLOCATION of STORAGE C-2

ALOG
ALOG 6-13

ALOG10
ALOGIO 6-13

ALPHANUMERIC
Alphanumeric Fields 5-26

AMAXO
AMAXO 6-5

AMAX1
AMAX1 6-5

AMINO
AMINO 6-5

AMIN1
AMIN1 6-5

AMOD
AMOD 6-5

AMPERSAND
ampersand

DD02

ANYERR
CALL ANYERR 6-36

APOSTROPHES
apostrophes 2-2

ARCCOS
Arccos 6-13

ARCOS
ARCOS 6-13

ARCSINE
Arcsine 6-13

ARCTANGENT
Arctangent 6-13

ARGUMENT
Dummy Argument 6-22

ARITHMETIC
ARITHMETIC STATEMENT FUNCTIONS 6-2
Arithmetic Assignment Statement 4-2
Arithmetic statements 2-24
arithmetic expression 2-17
arithmetic IF statement 4-42
arithmetic operation symbols 2-17
arithmetic operators 2-18
IF, ARITHMETIC 4-42

ARRAY
Array 2-14
Array Declarator 2-16
Array Element 2-14
Array Element Successor Function 2-15
array declarator 4-21
array name 4-21
logical array element 4-3

ARROW
vertical arrow 2-3

ARSIN
ARSIN 6-13

ASCII
ASCII 3-13
ASCII 3-2

ASCII/BCD
ASCII/BCD CHARACTER SET A-1
ASCII/BCD CONSIDERATIONS 3-28

ASSIGN
ASSIGN 4-4

ASSIGNMENT
Arithmetic Assignment Statement 4-2
Character Assignment Statement 4-4
Label Assignment Statement 4-4
Logical Assignment Statement 4-3

ASTERISK
asterisk 2-3

i-2 DD02

ATAN
ATAN 6-13

ATAN 2
ATAN2 6-13

ATTACH
ATTACH 6-26

BACKSPACE
BACKSPACE 4-8

BATCH
BATCH COMPILATION LISTINGS AND REPORTS 3-32
BATCH MODE 3-1
Batch Activity Spawned by the YFORTRAN Time Sharing System RUN
Command 3-21

Batch Activity to Build Time Sharing H* File 3-21
Batch Call Card 3-1
REMOTE BATCH INTERFACE 3-27
Sample Batch Deck Setup 3-3

BCD
BCD 3-2
BCD 3-13

BINARY
binary sequential files 4-64
binary sequential files 4-55
random binary file 5-14
random binary file WRITE 4-64
random binary files 4-55

BLOCK
BLOCK DATA 4-9

BOOL
BOOL 6-6

CA
CA 6-35

CABS
CABS 6-5

CALL
Batch Call Card 3-1
CALL 4-10
CALL ANYERR 6-36
CALL CALLSS 6-27
CALL CNSLIO 6-27
CALL CONCAT 6-28
CALL CORFL 6-28
CALL CORSEC 6-29
CALL CREATE 6-29
CALL DATIM 6-30
CALL DEFIL 6-30
CALL DETACH 6-31
CALL DUMP 6-31
CALL DVCHK 6-32
CALL EXITT 6-33
CALL FCLOSE 6-3 3
CALL FILBSP 6-33
CALL FILFSP 6-33

i-3 DD02

CALL (cont)
CALL FLGEOF 6-34
CALL FLGERR 6-34
CALL FLGFRC 6-34
CALL FPARAM 6-36
CALL FXALT 6-37
CALL FXDVCK 6-32
CALL FXEM 6-37
CALL FXOPT 6-37
CALL LINK 6-43
CALL LLINK 6-43
CALL MENSIZ 6-43
CALL OVERFL 6-32
CALL or FUNCTION Arguments B-8
CALL PDUMP 6-31
CALL PTIME 6-43
CALL RANSIZ 6-44
CALL SETBUF 6-44
CALL SETFCB 6-45
CALL SETLGT 6-45
CALL SLITE 6-46
CALL SLITET 6-46
CALL SORT 6-46
CALL SORTD 6-47
CALL SSWTCH 6-48
CALL TERMNO 6-48
CALL TERMTM 6-49
CALL USRCOD 6-49

CALLSS
CALL CALLSS 6-27
CALLSS 6-24

CARET
caret 2-3

CARRIAGE
Carriage Control 5-22

CCOS
CCOS 6-13

CEXP
CEXP 6-13

CHARACTER
ASCII/BCD CHARACTER SET A-l
CHARACTER 4-12
CHARACTER FUNCTION 4-37
CHARACTER statement 4-12
Character Assignment Statement 4-4
Character Constants 2-12
Character Field Descriptors 4-35
Character Positioning Field Descriptors 5-27
Character String Compare 6-15
Character Variable 2-14
character datum 2-9
character set 3-2
space character 2-2

CLOG
CLOG 6-13

CMPLX
CMPLX 6-6

DD02

CNSLIO
CALL CNSLIO 6-27

CODE
T Format Code 5-27
X Format Code 5-27
Error Codes and Meanings 6-38
media codes 2-3

COMDK
COMDK 3-2

COMMA
comma 2-2

COMMAND
Batch Activity Spawned by the YFORTRAN Time Sharing System RUN
Command 3-21
RUN Command Error Messages B-25
RUNL Command 3-22
RUNL Command Error Messages B-28
The FORTRAN Time Sharing System RUN Command 3-15
The YFORTRAN Time Sharing System RUN Command 3-12
Time Sharing Commands of the YFORTRAN and FORTRAN Time Sharing
Systems 3-4

COMMENT
comment line 2-3
DIAGNOSTIC ERROR COMMENTS B-l

COMMON
COMMON 4-21
COMMON 4-13
Common Logarithm 6-13

COMPARE
Character String Compare 6-15
Compare 6-14

COMPILATION
BATCH COMPILATION LISTINGS AND REPORTS 3-32
COMPILATION of SUBPROGRAMS C-l
Compilation Performance C-4
Compilation Statistics Report 3-36

COMPILER
COMPILER CONSTRUCTION C-2
Compiler Aborts B-33
Compiler Control Statement 2-25
Compiler control statements 2-24

COMPL
COMPL 6-6

COMPLEX
A complex datum 2-9
COMPLEX 4-15
COMPLEX FUNCTION 4-37
COMPLEX statement 4-15
Complex Constants 2-11
Complex Number Fields 5-26
complex constant 2-11

CONCAT
CALL CONCAT 6-28
CONCAT 6-24

i-5 DD02

CONDITIONAL
CONDITIONAL FORMAT SELECTION 5-18

CONJG
CONJG 6-6

CONSTANT
complex constant 2-11
double precision constant 2-11
logical constant 2-12
real constant 2-10
Character Constants 2-12
CONSTANTS 2-9
Complex Constants 2-11
Double Precision Constants 2-11
Integer Constants 2-10
Logical Constants 2-12
Octal Constants 2-10
Real Constants 2-10

CONSTRUCTION
COMPILER CONSTRUCTION C-2

CONTINUATION
continuation line 2-3

CONTINUE
CONTINUE 4-16

CONTROL
Carriage Control 5-22
Compiler Control Statement 2-25
Compiler control statements 2-24
Control Statements 2-24
Control statements 2-24
control cards 3-3
File and Record Control Type Errors B-25
OUTPUT DEVICE CONTROL 5-19

CONVERSION
INTERNAL DATA CONVERSION 5-16

CORFL
CALL CORFL 6-28
CORFL 6-24

CORSEC
CALL CORSEC 6-29
CORSEC 6-24

COS
COS 6-13

COSINE
Trigonometric Cosine 6-13

CREATE
CALL CREATE 6-29

CSIN
CSIN 6-13

CSQRT
CSQRT 6-13

CURRENCY
currency symbol 2-2

i-6 DD02

DABS
DABS 6-5

DATA
BLOCK DATA 4-9
DATA 4-17
DATA TYPES 2-8
Data Input Referring to a FORMAT Statement 5-23
Data Input Referring to a NAMELIST Statement 5-9
Data Output Referring to a NAMELIST Statement 5-11
data initialization statement 4-17
INTERNAL DATA CONVERSION 5-16

DATAN
DATAN 6-13

DATAN2
DATAN2 6-13

DAT IM
CALL DATIM 6-30
DATIM 6-24

DBLE
DBLE 6-5

DCOS
DCOS 6-13

DDIM
DDIM 6-5

DEBUG
DEBUG 3-2
DEBUG 3-13
Debug Symbol Table (DEBUG) 3-36

DECK
DECK 3-2
Sample Batch Deck Setup 3-3

DECLARATOR
Array Declarator 2-16
array declarator 4-21
declarator statement 2-16
declarator subscript 2-16

DECODE
DECODE 4-20
DECODE 5-16
DECODE 5-1
DECODE statement 4-20

DEFIL
CALL DEFIL 6-30
DEFIL 6-24

DESCRIPTOR
Logical Field Descriptor 5-27
Character Field Descriptors 4-35
Character Positioning Field Descriptors 5-27
Numeric and Logical Field Descriptors 4-35
Numeric Field Descriptors 5-23

DESIGNATION
File Designation 5-3

12/75 i-7 DD02A

DETACH
CALL DETACH

DEVICE
OUTPUT DEVICE CONTROL

DEXP
DEXP

DIAGNOSTIC
DIAGNOSTIC ERROR COMMENTS
ERROR DETECTION and DIAGNOSTICS
Fatal Diagnostics

DIM
DIM

DIMENSION
DIMENSION
Adjustable Dimensions

DIRECT-MODE
Supplying Direct-Mode Program Input

DLOG
DLOG

DLOG10
DLOGIO

DMAX1
DMAX1

DMIN1
DMIN1

DMOD
DMOD

DO
DO
implied DO
nested set of DO statements

DO'S
nested implied DO's

DOUBLE
DOUBLE PRECISION
DOUBLE PRECISION FUNCTION
DOUBLE PRECISION statement
Double Precision Constants
double precision constant
double precision datum

DSIGN
DSIGN

DSIN
DSIN

DSQRT
DSQRT

DUMMY
Dummy Argument

6-31

5- 19

6- 13

B—1
C-2
B-32

6-5

4-21
2- 16

3- 26

6-13

6-13

6-5

6-5

6-5

4- 22
5- 5
4- 22

5- 5

4-26
4-37
4-26
2-11
2-11
2-8

6-5

6-13

6-13

6-22

i-8 DD02A

DUMP
CALL DUMP 6-31
DUMP 3-3

DVCHK
CALL DVCHK 6-32

EDITING
EDITING STRINGS WITH ENCODE 5-17

ELEMENT
Array Element 2-14
Array Element Successor Function 2-15
logical array element 4-3

ENCODE
EDITING STRINGS WITH ENCODE 5-17
ENCODE 5-16
ENCODE 5-1 I
ENCODE 4-27

END
END 4-28
END 4-54
END statement 4-28

END-OF-FILE
end-of-file 4-54

ENDFILE
ENDFILE 4-29

ENTRY
ENTRY 4-30
ENTRY statement 6-21
Multiple Entry Points Into a Subprogram 6-21

EQUALITY
equality sign 2-3

EQUIVALENCE
EQUIVALENCE 4-31

ERR
ERR 4-54
ERR 4-64

ERROR
DIAGNOSTIC ERROR COMMENTS B-l
ERROR DETECTION and DIAGNOSTICS C-2
Error Codes and Meanings 6-38
Error Transfer 4-54
error transfer 4-64
FORTRAN EXECUTION ERROR MONITOR 6-36
Input Error Recovery 3-12
PHASE1 ERROR MESSAGES B-4
RUN Command Error Messages B-25
RUNL Command Error Messages B-28
File and Record Control Type Errors B-25

EXECUTION
Emergency Termination of Execution 3-27
FORTRAN EXECUTION ERROR MONITOR 6-36

EXITT
CALL EXITT 6-33

12/75 i-9 DD02A

EXP
EXP 6-13

EXPLICIT
explicit type statements 4-62

EXPONENTIAL
Exponential 6-13

EXPRESSION
arithmetic expression 2-17
logical expression 2-19
logical expression 4-3
relational expression 2-20
Evaluation of Expressions 2-22
EXPRESSIONS 2-17

EXTERNAL
EXTERNAL 4-34
EXTERNAL statement 4-34
External Variable 2-13

FCLOSE
CALL FCLOSE ' 6-33

FIELD
Character Field Descriptors 4-35
Character Positioning Field Descriptors 5-27
Field Separators 5-20
Logical Field Descriptor 5-27
Numeric and Logical Field Descriptors 4-35
Numeric Field Descriptors 5-23
Alphanumeric Fields 5-26
Complex Number Fields 5-26

FILBSP
CALL FILBSP 6-33
FILBSP 6-24

FILE
Batch Activity to Build Time Sharing H* File 3-21
FILE CONTENTS C-l
FILE FORMATS 3-29
FILE HANDLING STATEMENTS 5-16
FILE SYSTEM INTERFACE 3-27
File and Record Control Type Errors B-25
File Designation 5-3
File Properties 5-15
File Updating 5-15
file reference 5-14
file reference 4-64
file reference 4-54
formatted file READ 4-54
formatted file READ 4-55
formatted file statements 5-14
formatted file WRITE 4-64
NAMELIST file READ 4-55
namelist file WRITE 4-64
random binary file 5-14
random binary file WRITE 4-64
Source Program File Characteristics 2-4
Source Program File Types 2-3
Unformatted Random File Input/Output Statements 5-14
Unformatted Sequential File Input/Output Statements 5-14

i-10 DD02 A

FILE (cont)
unformatted file READ 4-55
unformatted file READ statement 4-55
unformatted file WRITE 4-64
binary sequential files 4-55
binary sequential files 4-64
Random Files 5-15
random binary files 4-55
Sequential Files 5-15
serial access files 4-64
serial access files 4-55

FILFSP
CALL FILFSP 6-33
FILFSP 6-24

FLAT
FLAT 6-14

FLD
FLD 6-6

FLGEOF
CALL FLGEOF 6-34

FLGERR
CALL FLGERR 6-34

FLGFRC
CALL FLGFRC 6-34
FLGFRC 6-24

FLOAT
FLOAT 6-5

FORM
FORM 3-13
FORM 3-2
FORM FORMATTED LINES 2-4
Form of Subscript 2-14

FORM/NFORM
FORM/NFORM 2-6

FORMAT
CONDITIONAL FORMAT SELECTION 5-18
Data Input Referring to a FORMAT Statement 5-23
FORMAT 4-35
FORMAT and NAMELIST statements 5-3
FORMAT SPECIFICATIONS 5-20
FORMAT statement 5-3
FORMAT statement 4-35
Format of Program-Statement Input 3-8
SOURCE PROGRAM FORMAT 2-3
T Format Code 5-27
Variable Format Specifications 5-27
X Format Code 5-27

FORMATION
SYMBOL FORMATION 2-8

FORMATS
FILE FORMATS 3-29
Multiple Record Formats 5-21

12/75 i-11 DD02 A

FORMATTED
FORM FORMATTED LINES 2-4
Formatted Input/Output Statements 5-14
Formatted Read/Write Statements 5-3
formatted file READ 4-55
formatted file READ 4-54
formatted file statements 5-14
formatted file WRITE 4-64
formatted PRINT 4-52
LIST DIRECTED FORMATTED INPUT/OUTPUT STATEMENTS 5-6
List directed formatted input/output 5-2
NFORM FORMATTED LINES - LNO 2-5
NFORM FORMATTED LINES - NLNO 2-5

FORMATV
FORMAT(V) 5-2

FORTRAN
FORTRAN EXECUTION ERROR MONITOR 6-36
The FORTRAN Time Sharing System RUN Command 3-15
Time Sharing Commands of the YFORTRAN and FORTRAN Time Sharing

Systems 3-4

FPARAM
CALL FPARAM 6-36

FUNCTION
Array Element Successor Function 2-15
CALL or FUNCTION Arguments B-8
CHARACTER FUNCTION 4-37
COMPLEX FUNCTION 4-37
Defining FUNCTION Subprograms 6-10
DOUBLE PRECISION FUNCTION 4-37
Example of FUNCTION Subprogram 6-17
FUNCTION 4-37
FUNCTION SUBPROGRAMS 6-10
FUNCTION statement 4-37
FUNCTION subprogram 4-37
INTEGER FUNCTION 4-37
LOGICAL FUNCTION 4-37
REAL FUNCTION 4-37
Referencing FUNCTION Subprograms 6-16
Returns From Function And Subroutine Subprograms 6-19
Supplied FUNCTION Subprograms 6-11
ARITHMETIC STATEMENT FUNCTIONS 6-2
Shift Functions 6-12
SUBROUTINES, FUNCTIONS, AND SUBPROGRAM STATEMENTS 6-1
SUPPLIED INTRINSIC FUNCTIONS 6-4
Supplied Intrinsic Functions 6-5
Typeless Intrinsic Functions 6-9

FXALT
CALL FXALT 6-37

FXDVCK
CALL FXDVCK 6-32

FXEM
CALL FXEM 6-37
FXEM 6-36

FXOPT
CALL FXOPT 6-37

i-12 DD02A

GENERATORS
Random Number Generators 6-15

GLOBAL
GLOBAL OPTIMIZATION 3-30

GO
GO 3-14

GO TO ASSIGNED
GO TO, Assigned 4-40

GO TO COMPUTED
GO TO, Computed 4-41

GO TO UNCONDITIONAL
GO TO, Unconditional 4-4C

H*
Batch Activity to Build Time Sharing H* File 3-21

HYPERBOLIC
Hyperbolic Tangent 6-13

IABS
IABS 6-5

IDIM
IDIM 6-5

IDINT
IDINT 6-5

IF
arithmetic IF statement 4-42
IF, ARITHMETIC 4-42
IF, LOGICAL 4-43
logical IF statement 4-43

IFIX
IFIX 6-5

ILR
ILR 6-14

ILS
ILS 6-14

IMPLICIT
IMPLICIT 4-45
IMPLICIT type statement 4-45

IMPLIED
implied DO 5-5
nested implied DO’s 5-5

INITIALIZATION
data initialization statement 4-17

INPUT
Data Input Referring to a FORMAT Statement 5-23
Data Input Referring to a NAMELIST Statement 5-9
Entering Program-Statement Input 3-8
Format of Program-Statement Input 3-8

i-13 DD02 A

INPUT (cont)
INPUT AND OUTPUT 5-1
Input Error Recovery 3-12
Keyboard input 3-4
List Directed Input 5.3
NAMELIST Input 5.3
Paper Tape Input 3-27
Supplying Direct-Mode Program Input 3-26

INPUT/OUTPUT
Formatted Input/Output Statements 5-14
Input/Output Statements 2-24
Input/Output statements 2-24
LIST DIRECTED FORMATTED INPUT/OUTPUT STATEMENTS 5-6
List directed formatted input/output 5-2
Namelist Input/Output Statements 5-8
Unformatted Random File Input/Output Statements 5-14
Unformatted Sequential File Input/Output Statements 5-14

INT
INT 6-5

INTEGER
INTEGER 4—46
INTEGER FUNCTION 4-37
INTEGER statement 4-46
Integer Constants 2-10
integer datum 2-8

INTERFACE
FILE SYSTEM INTERFACE 3-27
REMOTE BATCH INTERFACE 3-27
TERMINAL/BATCH INTERFACE 3-28
USER INTERFACES 3-1

INTERNAL
INTERNAL DATA CONVERSION 5-16

INTRINSIC
SUPPLIED INTRINSIC FUNCTIONS 6-4
Supplied Intrinsic Functions 6-5
Typeless Intrinsic Functions 6-9

IRETSW
IRETSW 6-14

IRL
IRL 6-14

IRS
IRS 6-14

ISETSW
ISETSW 6-14

ISIGN
ISIGN 6-5

JREST
JREST 3-2

KEYBOARD
Keyboard input 3-4

KOMPCH
KOMPCH 6-! 4

i-14 DD02A

LABEL
Label Assignment Statement 4-4

LEFT
Left Rotate 6-14
Left Shift 6-14

LINE
comment line 2-3
continuation line 2-3
FORM FORMATTED LINES 2-4
NFORM FORMATTED LINES - LNO 2-5
NFORM FORMATTED LINES - NLNO 2-5

LINK
CALL LINK 6-43

LIST
Cross Reference List (XREF) 3-36
LIST DIRECTED FORMATTED INPUT/OUTPUT STATEMENTS 5-6
List Directed Input 5-2
List Directed Output 5-2
List Directed Punch 5-2
List directed formatted input/output 5-2
List Specifications 5-4
PRINT t, list 4-52
PRINT, list 4-52
PUNCH t, list 4-53
PUNCH, list 4-53
READ t, list 4-54
READ, list . 4-54

LISTINGS
BATCH COMPILATION LISTINGS AND REPORTS 3-32

LLINK
CALL LLINK 6-43

LNO
LNO 3-13
LNO 3-2
NFORM FORMATTED LINES - LNO 2-5

LOCAL
Local Optimization C-3

LOG-ON
Log-On Procedure 3-6

LOGARITHM
Common Logarithm 6-13
Natural Logarithm 6-13

LOGICAL
IF, LOGICAL 4-43
LOGICAL 4-47
LOGICAL FUNCTION 4-37
LOGICAL statement 4-47
Logical 2-19
Logical Assignment Statement 4-3
Logical Constants 2-12
Logical Field Descriptor 5-27
logical array element 4-3
logical constant 2-12
logical datum 2-9

12/75 i-15 DD02 A

LOGICAL (cont)
logical expression
logical expression
logical IF statement
logical operators
logical variable name
Numeric and Logical Field Descriptors
Right Logical

LSTIN
LSTIN
Source Program Listing (LSTIN)

LSTOU
LSTOU
Object Program Listing (LSTOU)
Program Preface Summary (LSTOU)

4-3
2-19
4-43
2-19
4-3
4-35
6-14

3-2
3-33

3-2
3-35
3-34

MAP
MAP
Storage Map (MAP)

MAX
MAX

MAXO
MAXO

MAXI
MAXI

MEDIA
media codes

MEMSIZ
CALL MEMSIZ
MEMSIZ

MESSAGES
PHASE1 ERROR MESSAGES
RUN Command Error Messages
RUNL Command Error Messages

MIN
MIN

MINO
MINO

MINI
MINI

MINUS
Minus sign

MOD
MOD

MODE
BATCH MODE
MODE
Mode Determination

MULTIPLE
MULTIPLE RECORD PROCESSING
Multiple Entry Points Into a Subprogram
Multiple Record Formats

3-2
3-34

6-5

6-5

6-5

2-3

6-43
6-25

B-4
B-25
B-28

6-5

6-5

6-5

2-2

6-5

3-1
6-14
6-15

5- 16
6- 21
5-21

i-16 DD02

NAME
array name 4-21
logical variable name 4-3
symbolic name 2-8

NAMELIST
Data Input Referring to a NAMELIST Statement 5-9
Data Output Referring to a NAMELIST Statement 5-11
FORMAT and NAMELIST statements 5-3
NAMELIST 4-48
NAMELIST file READ 4-55
NAMELIST Input 5-8
NAMELIST Output 5-8
NAMELIST PRINT 4-52
NAMELIST statement 4-48
NAMELIST statement 5-3
Namelist Input/Output Statements 5-8
namelist file WRITE 4-64

NATURAL
Natural Logarithm 6-13

NCOMDK
NCOMDK 3-2

NDEBUG
NDEBUG 3-2
NDEBUG 3-13

NDECK
NDECK 3-2

NDUMP
NDUMP 3-3

NESTED
nested implied DO’s 5-5
nested set of DO statements 4-22

NFORM
NFORM 3-2
NFORM 3-13
NFORM FORMATTED LINES - LNO 2-5
NFORM FORMATTED LINES - NLNO 2-5

NJREST
NJREST 3-2

NLNO
NFORM FORMATTED LINES - NLNO 2-5
NLNO 3-13
NLNO 3-2

NLSTIN
NLSTIN 3-2

NLSTOU
NLSTOU 3-2

NOGO
NOGO 3-14

NOISE
noise word 5-25

NOLIB
NOLIB 3-14

12/75 i-17 DD02A

NOMAP
NOMAP 3-2

NONSTANDARD
Nonstandard returns 6-21

NOPTZ
NOPTZ 3-3
NOPTZ 3-13

NREST
NREST 3-2

NUMERIC
Numeric and Logical Field Descriptors 4-35
Numeric Field Descriptors 5-23

NWARN
NWARN 3-3
NWARN 3-13

NXREF
NXREF 3-2

OBJECT
Object Program Listing (LSTOU) 3-35

OCTAL
Octal Constants 2-10

OPERATORS
arithmetic operators 2-18
logical operators 2-19
relational operators 2-21
Unary Operators 2-23

OPTIMIZATION
GLOBAL OPTIMIZATION 3-30
Local Optimization C-3

OPTZ
OPTZ 3-13
OPTZ 3-2

OUTPUT
Data Output Referring to a NAMELIST Statement 5-11
INPUT AND OUTPUT 5-1
List Directed Output 5-2
NAMELIST Output 5-8
OUTPUT DEVICE CONTROL 5-19

OVERFL
CALL OVERFL 6-32

PAPER
Paper Tape Input 3-27
paper tape 3-4

PARAMETER
PARAMETER 4-49
PARAMETER statement 4-49
Parameter Symbols 2-13

PARENTHESES
Parentheses 2-2

i-18 DD02A

PAUSE
PAUSE 4-50
PAUSE statement 4-50

PDUMP
CALL PDUMP 6-31

PERIOD
period 2-3

PHASE1
PHASE1 ERROR MESSAGES B-4

PLUS
Plus sign 2-2

PRINT
formatted PRINT 4-52
NAMELIST PRINT 4-52
PRINT 4-52
PRINT 5-8
PRINT statement 4-52
PRINT t 4-52
PRINT t, list 4-52
PRINT x 4-52
PRINT, list 4-52

PROGRAM-STATEMENT
Entering Program-Statement Input 3-8
Format of Program-Statement Input 3-8

PTIME
CALL PTIME 6-43

PUNCH
List Directed Punch 5-2
PUNCH 4-53
PUNCH statement 4-53
PUNCH t 4-53
PUNCH t, list 4-53
PUNCH x 4-53
PUNCH, list 4-53

QUOTATION
Quotation marks 2-2

RAND
RAND 6-14

RANDOM
Random Files 5-15
Random Number 6-14
Random Number Generators 6-15
random binary file 5-14
random binary file WRITE 4-64
random binary files 4-55
Unformatted Random File Input/Output Statements 5-14

RANDT
RANDT 6-14

RANGE
range 4-22

12/75 i-19 DD02 A

RANSIZ
CALL RANSIZ 6-44

READ
formatted file READ 4-54
formatted file READ 4-55
NAMELIST file READ 4-55
READ 5-14
READ 5-8
READ 4-54
READ statement 4-54
READ t 4-54
READ t, list 4-54
READ x 4-54
READ, list 4-54
unformatted file READ 4-55
unformatted file READ statement 4-55

READ/WRITE
Formatted Read/Write Statements 5-3
Unformatted Read/Write Statements 5-3

REAL
REAL 4-56
REAL 6-5
REAL FUNCTION 4-37
REAL statement 4-56
Real Constants 2-10
real constant 2-10
real datum 2-8

RECORD
File and Record Control Type Errors B-25
MULTIPLE RECORD PROCESSING 5-16
Multiple Record Formats 5-21
Record Sizes 5-15

RECOVERY
Input Error Recovery 3-12

RELATIONAL
relational expression 2-20
relational operators 2-21

REMO
REMO 3-14

REMOTE
REMOTE BATCH INTERFACE 3-27

REPEAT
Repeat Specification 5-20

REPORT
Compilation Statistics Report 3-36
cross reference report 3-2
BATCH COMPILATION LISTINGS AND REPORTS 3-32

RESET
Reset Switch Word 6-14

REST
REST 3-2

12/75 i-20 DD02 A

RETURN
RETURN
RETURN statement
RETURN statement
RETURN statement
Nonstandard returns
Returns From Function And Subroutine Subprograms

4-57
4-57
6-19
6-20
6-21
6-19

REWIND
REWIND

RIGHT
Right Logical
Right Shift

ROTATE
Left Rotate

4-58

6-14
6-14

6-14

RUN
Batch Activity Spawned by the YFORTRAN Time Sharing System RUN

Command
RUN Command Error Messages
The FORTRAN Time Sharing System RUN Command
The YFORTRAN Time Sharing System RUN Command

3-21
B-25
3-15
3-12

RUNL
RUNL Command
RUNL Command Error Messages

3-22
B-2 8

SCALAR
Scalar Variable

SCALE
Scale Factors

SEMICOLON
semicolon

2-13

5-20

2-3

SEPARATORS
Field Separators 5-20

SEQUENTIAL
binary sequential files
binary sequential files
Sequential Files
Unformatted Sequential File Input/Output Statements

4-64
4- 55
5- 15
5-14

SERIAL
serial access files
serial access files

4-64
4-55

SET
ASCII/BCD CHARACTER SET
character set
nested set of DO statements
Set Switch Word

A-l
3- 2
4- 22
6-14

SET/RESET
Set/Reset Program Switch Word 6-12

SETBUF
CALL SETBUF 6-44

SETFCB
CALL SETFCB 6-45

i-21 DD02

SETLGT
CALL SETLGT 6-45

SHIFT
Left Shift 6-14
Right Shift 6-14
Shift Functions 6-12

SIGN
equality sign 2-3
Minus sign 2-2
Plus sign 2-2
SIGN 6-5

SIN
SIN 6-13

SINE
Trigonometric Sine 6-13

SLASH
slash 2-3

SLITE
CALL SLITE 6-46

SLITET
CALL SLITET 6-46

SNGL
SNGL 6-5

SORT
CALL SORT 6—46
SORT 6-25
CALL SORTD 6-47
SORTD 6-25

SOURCE
SOURCE COMPATIBILITY C-l
Source Program Listing (LSTIN) 3-33

SOURCE PROGRAM
SOURCE PROGRAM FORMAT 2-3
Source Program File Characteristics 2-4
Source Program File Types 2-3

SPACE
space character 2-2

SPECIFICATION
Repeat Specification 5-20
Specification Statements 2-25
Specification statements 2-24
FORMAT SPECIFICATIONS 5-20
List Specifications 5-4
Variable Format Specifications 5-27

SQRT
SQRT 6-13

SQUARE
Square Root 6-13

SSWTCH
CALL SSWTCH 6-48

12/75 i-22 DD02 A

STATEMENTS
Arithmetic statements 2-24
Compiler control statements 2-24
Control Statements 2-24
Control statements 2-24
explicit type statements 4-62
FILE HANDLING STATEMENTS 5-16
FORMAT and NAMELIST statements 5-3
Formatted Input/Output Statements 5-14
Formatted Read/Write Statements 5-3
formatted file statements 5-14
Input/Output Statements 2-24
Input/Output statements 2-24
LIST DIRECTED FORMATTED INPUT/OUTPUT STATEMENTS 5-6
Namelist Input/Output Statements 5-8
nested set of DO statements 4-22
Specification Statements 2-25
Specification statements 2-24
SUBROUTINES, FUNCTIONS, AND SUBPROGRAM STATEMENTS 6-1
Subprogram Statements 2-25
Subprogram statements 2-24
Unformatted Random File Input/Output Statements 5-14
Unformatted Read/Write Statements 5-3
Unformatted Sequential File Input/Output Statements 5-14

STATISTICS
Compilation Statistics Report 3-36

STOP
STOP 4-59
STOP statement 4-59

STORAGE
ALLOCATION of STORAGE C-2
Storage Map (MAP) 3-34

STRING
Character String Compare 6-15
EDITING STRINGS WITH ENCODE 5-17

SUBPROGRAM
Example of FUNCTION Subprogram 6-17
FUNCTION subprogram 4-37
Multiple Entry Points Into a Subprogram 6-21
SUBROUTINE subprogram 4-10
SUBROUTINE subprogram 4-60
SUBROUTINES, FUNCTIONS, AND SUBPROGRAM STATEMENTS 6-1
Subprogram Statements 2-25
Subprogram statements 2-24
COMPILATION of SUBPROGRAMS C-l
Defining FUNCTION Subprograms 6-10
Defining SUBROUTINE Subprograms 6-18
FUNCTION SUBPROGRAMS 6-10
Referencing FUNCTION Subprograms 6-16
Referencing SUBROUTINE Subprograms 6-18
Returns From Function And Subroutine Subprograms 6-19
SUBROUTINE SUBPROGRAMS 6-17
SUBROUTINE subprograms 6-23
Supplied FUNCTION Subprograms 6-11
Supplied SUBROUTINE Subprograms 6-23

SUBROUTINES
NAMING SUBROUTINES 6-1
SUBROUTINES, FUNCTIONS, A1JD SUBPROGRAM STATEMENTS 6-1

12/75 i-23 DD02 A

SUBSCRIPT
declarator subscript 2-16
Form of Subscript 2-14
Subscripted Variables 2-15
Subscripts 2-14

SWITCH
Reset Switch Word 6-14
Set Switch Word 6-14
Set/Reset Program Switch Word 6-12

SYMBOL
currency symbol 2-2
Debug Symbol Table (DEBUG) 3-36
SYMBOL FORMATION 2-8

SYMBOLIC
symbolic name 2-8

SYMBOLS
arithmetic operation symbols 2-17
Parameter Symbols 2-13

TANGENT
Hyperbolic Tangent 6-13

TANK
TANK 6-i3

TAPE
Paper Tape Input 3-27
paper tape 3-4

TERMINAL/BATCH
TERMINAL/BATCH INTERFACE 3-28

TERMINATION
Emergency Termination of Execution 3-27

TERMNO
CALL TERMNO 6-48
TERMNO 6-25

TERMTM
CALL TERMTM 6-49
TERMTM 6-25

TEST
TEST 3-14

TIME
Batch Activity Spawned by the YFORTRAN Time Sharing System RUN

Command 3-21
Batch Activity to Build Time Sharing H* File 3-21
The FORTRAN Time Sharing System RUN Command 3-15
TIME SHARING SYSTEM OPERATION 3-3
Time Sharing Commands of the YFORTRAN and FORTRAN Time Sharing

Systems 3-4

TO-FROM
To-From Transfer Table (XREF) 3-34

TRACE
TRACE 6-25

i-24 DD02

TRANSFER
' Error Transfer

error transfer
To-From Transfer Table (XREF)

4-54
4-64
3-34

TRIGONOMETRIC
Trigonometric Cosine
Trigonometric Sine

6-13
6-13

TYPE
explicit type statements
File and Record Control Type Errors
IMPLICIT type statement
TYPE
Type statement
Variable Type Definition

4-62
B-25
4-45
4-62
4-21
2-13

TYPELESS
Typeless
Typeless Intrinsic Functions

ULIB
ULIB 3-14

UNARY
Unary Operators 2-23

UNFORMATTED
Unformatted Random File Input/Output Statements
Unformatted Read/Write Statements
Unformatted Sequential File Input/Output Statements
unformatted file READ
unformatted file READ statement
unformatted file WRITE

5-14
5-3
5-14
4-55
4-55
4-64

UNIFM2
UNIFM2 6-14

USER
USER INTERFACES

USRCOD
CALL USRCOD
USRCOD

3-1

6-49
6-25

VARIABLE
Character Variable
External Variable
logical variable name
Scalar Variable
Variable Format Specifications
Variable Type Definition
Subscripted Variables
VARIABLES

VERTICAL
vertical arrow

2-14
2-13
4- 3
2-13
5- 27
2-13
2-15
2-13

2-3

WORD
noise word
Reset Switch Word
Set Switch Word
Set/Reset Program Switch Word

5- 25
6- 14
6-14
6-12

12/75 i-25 DD02A

WRITE
formatted file WRITE 4-64
namelist file WRITE 4-64
random binary file WRITE 4-64
unformatted file WRITE 4-64
WRITE 5-14
WRITE 4-64
WRITE 5-14

XOR
XOR 6-6

XREF
Cross Reference List (XREF) 3-36
To-From Transfer Table (XREF) 3-34
XREF 3-2

YFORTRAN
Batch Activity Spawned by the YFORTRAN Time Sharing System RUN
Command 3-21

The YFORTRAN Time Sharing System RUN Command 3-12
Time Sharing Commands of the YFORTRAN and FORTRAN Time Sharing
Systems 3-4

i-26 DD02

C
U

T A
LO

N
G

 LI
N

E
HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE SERIES 60 (LEVEL 66)/6000 FORTRAN
ORDER NO. DD02, REV. 0

DATED JANUARY 1975

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

r\ Your comments will be promptly investigated by appropriate technical personnel and action will be taken
/ as required. If you require a written reply, check here and furnish complete mailing address below.

FROM: NAME —---------------------------- --

TITLE _____________________________ _ ___________________

C 0M P A N Y _ ________________________

ADO R ESS___ ____________________________ _ _________________

DATE

I

PLEASE FOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms

o
z
o
—I

H
D
O

LU
Z

FIRST CLASS
PERMIT NO. 39531 f
WALTHAM, MA |
02154

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTENTION: PUBLICATIONS, MS 486

Honeywell

LU
z
-J
0
z
o

<
Q

O
u_

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE SERIES 60(LEVEL 66)/6000 FORTRAN
ADDENDUM B

DATED SEPTEMBER 1976

ORDER NO. DD02B, REV. 0

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

“"K Your comments will be promptly investigated by appropriate technical personnel and action will be taken
y as required. If you require a written reply, check here and furnish complete mailing address below.

FROM: NAME _______________

TITLE

C DM P A N Y________________ ___________________________________

ADD R ESS

DATE

PLEASE FOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms

FIRST CLASS
PERMIT NO. 39531 |
WALTHAM, MA |
02154

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTENTION: PUBLICATIONS, MS 486
LU
z

Honeywell

Honeywell
Honeywell Information Systems

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F

20828, 2578, Printed in U.S.A, DD02, Rev. 0

