
Honeywell LISP USER’S GUIDE

SERIES 60 (LEVEL 66)

SOFTWARE
1

$

Htoneywell LISP USER’S GUIDE

SERIES 60 (LEVEL 66)

SUBJECT:
Standard Functions of the LISP System plus Improved Character-Handling Facilities and File-Oriented
Input/Output Capability for Programmers Familiar with the LISP System

SPECIAL INSTRUCTIONS:
This guide pertains to Version 2.3 of LISP.

DATE:
June 1976

ORDERNUMBER:
AW41, Rev. 0

PREFACE

LISP is an interpreter/compiler which assists in the symbolic computa­
tions common to language translation, theorem proving, symbolic mathe­
matics, and artificial intelligence, operating in time sharing mode. It is a
compatible superset of LISP 1.5 as described in the LISP 1.5 Programmers
Manual? and has a built-in set of functions defined in “Standard LISP.*”'3

aMcCarthy, Abrahams, Edwards, and Hart, LISP 1.5 Programmers Manual. MIT Press, 1965.
^Hearn, A.C. “Standard LISP.” Stanford Artificial Intelligence Report, AI-90, May 1969.

© 1976, Honeywell Information Systems Inc. File No.: 1 P42

AW41

CONTENTS

F
Section 1. Introduction..........

Getting Online..........
Command Line Options.............
System Messages
Runtime Error Messages

Section 2. Built-In Functions
Elementary Functions
Logical Connectives..................................
Interpreter Functions........ ..
Property List Functions
fable Building Functions
List Handling Functions
Functionals *••• •• • • * n

Variable Specifications
Functions.......................

Compiler/LAP Support
Functions.......... ..

System Control and
Debugging Functions................................

Miscellaneous Functions.............
System Constants

9.9

2-3

2-3
2-4
2-4

Page
Appendix A. Error .Messages....................... A-l

Appendix B. Known Problems B-l

Appendix C. Glossary for LISP/66 C-l

TABLES

Table

2-1. LISP/66 System Constants2-4

Section 3. Arithmetic 3-i
Reading and Printing
Numbers................... 3.]

Arithmetic Functions 3-1
Arithmetic Predicates..................................3- j
Logical Operators..................... 3„2
Arrays # 3„2

Section 4. LISP Programs , . . 4-1

Section 5. Input/Output 5-1
Initializing Channels 5-1
Selecting Input/Output
Channels.. 5_j

Input/Output Functions 5-1

Section 6. Character Manipulation 6-1
Character Input/Output............................... 6-1
Character Functions................... 6-1
Character Predicates............................... 6-1

Section 7. Internal Formats7-1
LISP Cells....................................... 7-1
Atomic Symbols and
Property Lists...................................... 7-1

SUBRs and FSUBRs............................. ’ \ . 74
Sample Atom 7-1

ni AW41

SECTION

INTRODUCTION

If LISP/66 hangs up (due to the loop in a
function, for example), the break key may be
used to return control to the evalquote listen
loop.

hyping done to the listen loop will terminate
LISP and return the user to system level. A
function called done will be impossible to call
from top level, and removing the atom done from
the object list will make it impossible to exit in a
normal manner.

LISP/66 is an interactive LISP interpreter
designed to run under TSS/GCOS on Honeywell
Series 60 Level 66 computers. LISP/66 requires a
Release E or later GCOS system. It will run under
older releases but does all its disk file input/
output in media 6 ASCII, which the old ASCASC
subsystem does not understand. In addition to
providing most of the standard functions of other
LISP systems, LISP/66 offers improved character
handling facilities and a file-oriented input/output
system.

This manual is intended to outline the
behavior of the LISP/66 system to programmers
already familiar with the LISP language. Readers
wishing to learn LISP should first read one of the
introductory texts.

GETTING ONLINE
LISP/66 is invoked by typing the LISP com­

mand at system level. LISP will respond by
prompting for user input with a question mark.
(In the following and all other examples, system
output is capitalized.)

SYSTEM ? lisp

LISP/66 is now in a listen loop — reading two
s-expressions, passing them to evalquote, and
printing the returned value.

?car((a b c))
A
?cdr((a,b.c))
(B C)
?cons
? (a
?b
?)
(A . B)

Note that all user input is mapped into
uppercase, and that tabs and carriage returns (as
well as the usual blanks and commas) may be
used to delimit atomic symbols.

COMMAND LINE OPTIONS
The preceding TSS dialog causes LISP/66 to

allocate default quantities of storage. Currently
these are set to 4K words free space (which can
dynamically grow) and no binary program space
(which cannot grow). In order to specify initial
storage allocations, command line options must
be specified.

SYSTEM’? lisp [-bv] [c=n] [b=n] [i~n|

-b

c=n

b=n

changes the default prompt (question
mark) to an ASCH Escape. This option
is useful to suppress the printing of the
control Q on LSI ADM series terminals,
displays the system version number on
entry.
specifies the initial size of free storage
in units of 1024 words, “n” is a
decimal integer.
specifies the initial size of the binary­
program space in units of 1024 words.
”n” is a decimal integer.
specifies the initial output line length.
MT’ is a decimal integer. The default
line length is 80 characters.

SYSTEM MESSAGES
PDS OVERFLOW — The internal stack has

overflowed. Functions recursing without end or
deeper than about 2000 levels will cause this
message.

COLLECTING — The garbage collector has
been invoked to create a new free storage list.

9+nnK CORE — LISP/66 has expanded its free
storage region; nn is the new size in kilowords.
Both this and the above message are controlled by
the verbose toggle function (see System Control
and Debugging Functions in Section 2).

SYNTAX ERROR — An s-expression given to
the LISP reader has faulty syntax.

BAD CHARACTER LN NUMBER - A non­
numeric character was encountered while building
a numeric atom. This message is also generated if
an 8 or a 9 is found in an octal number.

INTRODUCTION AW41

SYMBOL IOO LONG — The printname of an
atomic symbol was (and may not be) longer than
80 characters.

OVERFLO FAULT — An arithmetic oper­
ation has overflowed; it could be fixed-point
arithmetic overflow or an exponent overflow/
underflow.

FIXED OVERFLOW (TIMES)- A fixed-
point multiplication has produced a product
which will not fit in 36 bits. The product is
truncated.

DIVIDE CHECK — Division by zero has been
attempted.

RUNTIME ERROR MESSAGES
Whenever a runtime error occurs in a LISP/66

program an error message in the following form is
printed:

error message
FIRST 2 ARGS
s-expression 1
s-expression 2
TRACE BACK
trace back of stack
Most error messages are self-explanatory; how­

ever, some of them (such as CAN’T OPEN FILE)
represent a large variety of errors. Appendix B
lists the error messages, their meanings and the
significance of s-expressions 1 and 2.

INTRODUCTION 1-2 AW41

SECTION 2

BUILT-IN FUNCTIONS

ELEMENTARY FUNCTIONS
car(x) - SUBR

car returns the left half of its composite
argument. Passing an atomic argument to car is
usually an error (see caratom).
caratom(x) — SUBR — toggle

Some LISP programs (notably the LISP Com­
piler) need to be able to car through atomic
symbols. Executing caratom with a non-NIL
argument modifies car so that it returns a special
atom if it is passed an atomic argument. This
special atom prints as *FROG*, but it is not on
the object list so it cannot be eq to anything
except itself.
cdr(x) - SUBR

cdr returns the right half of its composite
argument. The cdr of an atomic symbol is the
atom’s property list.
caaar(x) to cdddr(x) - SUB RS

All composite functions of car and cdr with up
to three a’s and d’s are provided.
cons(x,y) SUBR

cons obtains a new word from free storage and
builds a dotted pair of its two arguments. If the
free list is exhausted, cons calls the garbage
collector.
atom(x) — SUBR — predicate

atom returns T if its argument is an atomic
symbol and NIL otherwise.
eq(x.y) — SUBR -■ predicate

eq returns T if its two arguments are identical
list structures, eq should not be used to compare
numbers or lists.
equal(x,y) — SUBR — predicate

equal returns T if its two arguments are the
same s-expression. They need not have identical
list structures. Fixed-point and octal numbers are
compared for equality, and floating-point num­
bers are compared with a tolerance of
3.0X10**(-6). Fixed- and floating-point numbers
may be compared with equal', the fixed-point
number is first converted to floating-point.

list(x 1 ,x2,...,xn) - FSUBR
The value of list is a list of its arguments.

null(x) — SUBR — predicate
null returns T if its argument is NIL.

rplaca(x,y) — SUBR — pseudo function
rplaca replaces the left (car) pointer of its first

argument with its second argument. The value of
rplaca is x, but x has a different value than it did
before the function was executed.
rplacd(x,y) — SUBR — pseudo function

rplacd is like rplaca, except that it alters the
right (cdr) pointer of its first argument.

LOGICAL CONNECTIVES
and(x 1 ,x2,...,xn) — FSUBR ■— predicate

The arguments of and are evaluated in sequence
from left to right, until a false one is found, or
the end of the list is reached. The value of and is
NIL or T, respectively.
or(x 1 ,x2,...,xn) — FSUBR — predicate

The arguments of or are evaluated in sequence
from left to right, until a true one is found, or the
end of the list is reached. The return value of or is
either T or NIL, respectively.
not(x) — SUBR — predicate

The value of not is T if its argument is NIL,
and NIL otherwise. It is the same function as null.

INTERPRETER FUNCTIONS
apply(x,y,z) - SUBR - functional

apply is an interpreter function which evalu­
ates the function x with arguments y using
association list z.
eval(x,y) -- SUBR — functional

eval is an interpreter function which evaluates
the form x using association list y.
evlis(x,y) - SUBR

evils is an interpreter function which evaluates
the elements of the list x using association list y.
evcon(x,y) - SUBR

evcon is an interpreter function which evalu­
ates the form (COND ...) The first argument is the
form to be evaluated and the second argument is
the association list.
function(x) — FSUBR

function is used to pass functional arguments.
The form (QUOTE ...) can be used instead of
function if there are no free variables present.

BUILT-IN FUNCTIONS 2-1 AW41

PROPERTY LIST FUNCTIONS
deline(x) — SUBR — pseudo function

I he argument of define is a list of pairs of the
form:

!(n 1 11)(n2 12,) ...(nn In))
where each n is the name of a function and each 1
is the lambda expression for the function. For
each pair, define attaches I to the property list of
n using an EXPR indicator. The value of define is
a list of the n’s.
detlist(x,y) - SUBR - pseudo function

deflist is a more general defining function. Its
first argument is a list of pairs identical to that
used by define; its second argument is the
indicator used to attach the lambda expression to
the function name, deflne(x) is the same as
deflisflx expr).
attribfx.y) - SUBR — pseudo function

attrib concatenates its two arguments by
changing the last element of the first argument to
point to the second argument. It is useful for
attaching something to the end of a property list.
The value ot attrib is the second argument.
get(x.y) - SUBR

get searches the list x for an element which is
eq to y. The value of get is the car of the rest of
the list if the element is found, and NIL
otherwise.
cset(x.y) - SUBR - pseudo function

cset is used to create a constant by attaching y
to the property list of x using an APVAL
indicator.
csetq(x,y) - SUBR - pseudo function

csetq is the cset except that it quotes its first
argument instead of evaluating it.
put(x,y,z) — SUBR pseudo function

put attaches z to the property list of x using
the indicator y and returns NIL.
remprop(x,y) - SUBR - pseudo function

remprop searches the list x, looking for all
occurrences of the indicatory. When such an
indicator is round, both it and the following
property are removed, remprop returns NIL.
newname(x,y) - SUBR - pseudo function

newname moves the property list of x to y,
replaces the property list of x with NIL, and
returns y.
flag(x.y) - SUBR ■ pseudo function

flag adds the flag y to the property list of
every atom in the list x. Flags are never dupli­
cated. The value of flag is NIL. In LISP/66, a flag
is a non-NIL property;//^ uses the value T,

reinflag(x.y) SUBR - pseudo function
remflag removes all occurrences of the indi­

cator y from the property lists of all atomic
symbols in the list x and returns NIL.
flagp(x.y) — SUBR — predicate

flagp returns T if x has a non-NIL property
with the indicator y; otherwise it returns NIL.

TABLE BUILDING FUNCTIONS
pair(x,y) - SUBR

pair builds a list of pairs of corresponding
elements of the lists x and y. 7he arguments
should not be atomic symbols and must be the
same length. I he value of pair is the list of dotted
pairs.
sassoct x,y.z) - SUBR - functional

sassoc searches y (a list of dotted pairs) for a
pail whose car is eq to x. If such a pair is found.
sassoc returns this pair. Otherwise the value of
sassoc is the value of function z of no arguments.
subst(x,y.z) - SUBR

subst replaces all occurrences of s-expression y
in s-expression z with s-expression x.

LIST HANDLING FUNCTIONS
appendix,y) SUBR

append concatenates its two arguments by
copying the top level of the first argument and
linking the second argument to the end of this
copy. 7 he value of append, is the resulting list.
append l(x,y) SUBR

append 1 is the same as
APPENDIX (CONS Y NIL)).

nconc(x.y) — SUBR — pseudo function
nconc concatenates its two arguments without

copying the first one. The action is identical to
that of attrib except that the value returned is the
eiiiiie list (rather than the second argument).
reverse!x) - SUBR

reverse reverses the top level of the list x.
Iength(x) - SUBR

The value ol length is the number of top level
elements in the list x. Atomic symbols and 0 have
length zero.
member(x,y) - SUBR - predicate

member returns T if s-expression x is equal to
any top level element in the list y; otherwise it
returns NIL.
memqtx.y) SUBR — predicate

memq is like member except that it uses eq
rather than equal.

BUILT-IN FUNCTIONS
AW4I

FUNCTIONALS
maplist(x,y) — SUBR — functional

maplist is a mapping of the list x onto a new
list y(x). It is defined in LISP as:

(maplist (lambda (x y)
(cond

((null x) nil)
(t (cons (y x)

(maplist (cdr x) y))))))
map(x,y) — SUBR — functional

map is like maplist except that the value of
map is NIL; map does not perform a cons of the
evaluated functions. It is used when only the
action of performing y is important.
mapcar(x,y) — SUBR — functional

mapcar is like maplist except that it evaluates
(Y (CAR X)) instead of (Y X).

VARIABLE SPECIFICATION FUNCTIONS
These pseudo functions are used to declare

variables for the LISP compiler and LAP. They
all return their argument.
special(x) — SUBR — pseudo function

The list x contains the names of variables that
are to be declared special. The value in the special
cell is set to NIL.
unspeciai(x) — SUBR — pseudo function

The list x contains the names of variables that
are no longer to be considered special.
common(x) — SUBR — pseudo function

The list x contains the names of variables that
are to be declared common.
uncommon(x) — SUBR — pseudo function

The list x contains the names of variables that
are no longer to be considered common.

COMP1LER/LAP SUPPORT FUNCTIONS
bpload(x,y) — SUBR — pseudo function

bpload is used to store code into the binary
program space, to link new SUB Rs and FSUBRs
into the system, and to make absolute patches,
the second argument of bpload is a list of the data
to be loaded; the first argument determines how
this data is to be loaded. If it is a numeric atom
then its lower 18 bits are used as the base address
of an absolute patch; if it is NIL then the data is
stored in the binary program space.

The first argument may also be a three
element list of the form (NAME IND COUNT). In
this case, the data is loaded into binary program
space and a standard SUBR/FSUBR link word is
constructed in free space. This link word is
attached to the property list of atom NAME using
the indicator IND. The argument count field of
the link word is set to COUNT. It is possible to
memory fault the LISP system when performing
absolute patches as no address checking is done.
gts(x) --- SUBR

gts gets the value of special variable x. It is an
error to gts a variable not previously declared
special.
pts(x,y) — SUBR — pseudo function

pts sets the value of special variable x to y and
returns y. If the variable was not previously
declared special then pts performs the
declaration.

SYSTEM CONTROL AND DEBUGGING
FUNCTIONS
error(x) — SUBR

error generates a CALL TO ERROR error
message and a trace back. Control is then
returned to the evalquote listen loop.
backupO - SUBR

backup is similar to error except that no error
message or trace back is printed.
errorset(x,y) — SUBR

errorset returns NIL if an error occurs during
the evaluation of x. The error message is printed
only if y is non-NIL. If no error occurs, errorset
returns LIST(EVAL X ALIST).
trace(x) — SUBR — pseudo function

trace attaches a TRACND flag to al! of the
function names in the list x. Whenever a function
with a TRACND flag is evaluated, the system
prints:

** TRACING
f u n c lion- n a m e a r g u m e n t s

When the function returns, the system prints:
** TRACE VALUE
fu n c t i o n -n a m e re t ur n-val u e

Tracing only works for EXPRs AND FEXPR;
it also can produce great volumes of worthless
output so it should be used with discretion.
untrace(x) — SUBR -- pseudo function

untrace removes the TRACND flags from all
of the atoms in the list x.

BUILT-IN FUNCTIONS 2-3 A W41

verbose(x) — SUBR — toggle
verbose controls the printing of system mes­

sages from the garbage collector. Executing ver­
bose with a non-NIL argument enables the
printing of the messages; executing it with a NIL
argument disables the printing.
listing(x) — SUBR — toggle

listing enables and disables the printing of the
value returned by evalquote in the listen loop.
LISTING(NIL) is useful for suppressing the
printing of the value of define when reading a
large number of functions from a disk file.

MISCELLANEOUS FUNCTIONS

save(x) - SUBR - pseudo function
save writes the current LISP interpreter, free

storage, and binary program space onto file x.
This is in standard H* format and may be system
edited in time sharing or loaded with the com­
mand loader. The function then returns T. When
the H* is executed, control is returned to the
LISP function which executed SAVE; at this
point the function returns NIL.
prog2(x,y) — SUBR

The value of prog2 is y. It is used to perform
two pseudo functions.
call(x) - SUBR - pseudo function

The printname of x is passed out to TSS via
PSEUDO and CALLSS. It is necessary to use the
SS construct if the command line contains blanks
(for example. CALL(SS"LIST FILE44")).

gensyml) - SUBR:
gensym creates a new atomic symbol of the

form GR0000. GR0001 to GR9999. Atomic
symbols created by gensym are not on the object
list and are, therefore, unique.
genset(x) — SUBR — pseudo function

genset causes the next symbol generated by
gensyni to be GRx. The argument of genset must
be between 0 and 9999 (inclusive).
reclaimf) — SUBR — pseudo function

reclaim causes a garbage collection and returns
NIL
peek(x) SUBR

peek is used to snap core storage. If x is a
number then its lower 18 bits are used as the
address to snap. If x is an alphabetic atom or a list
peek returns a pointer to the argument in the
upper half, peek cannot memory fault the LISP
system.
timet) SUB R

time returns the current time of day as a two
element list in hours and minutes.
prod) SUBR

proc returns the current accumulated proc­
essor time in seconds.
orderp(x.y) - SUBR - predicate

orderp establishes a canonical order among
atoms. It returns T if x is ordered ahead of, or is
equal to y; NIL otherwise.
SYSTEM CONSTANTS

Table 2-1 describes the constants provided for
in the LLSP/66 system:

TABLE 2-1. LISP/66 SYSTEM CONSTANTS

Name Property Value

OBLIST APVAL Object list

AUST APVAL Current association list

BPSIZE APVAL Number of free words of binary program space

BPSORG APVAL Base address of free binary program space

LLENGTH* APVAL Output line length
SPECIAL Output line length

DATE* APVAL Date when LISP was invoked
SPECIAL Date when LISP was invoked

BUILT-IN FUNCTIONS AW41

SECTION 3

ARITHMETIC

LISP/66 has provisions for manipulating
floating-point, fixed-point and octal numbers.

A number is an atomic symbol and may
appear in an s-expression anywhere an alphabetic
symbol is legal. However, numbers are stored
uniquely only on input (this is done to improve
storage utilization), so they may not work
properly if used as variables or function names.

READING AND PRINTING NUMBERS
Floating-point numbers are distinguished by

their decimal point. This decimal point cannot be
the first character of the number (the reader
would parse this as a LISP dot followed by a
fixed-point number), but it may be the last. A
plus or minus sign may precede the number, and
the number may be followed by an exponent,
which consists of an 'E' followed by a (signed)
integer.

Spaces may be used to avoid ambiguity
between a decimal point, and a LISP dot; spaces
are not required where no ambiguity exists.

Floating-point numbers are printed in the
general form sn.nnnnnnEsnn. Positive signs are
never printed and the exponent is not printed if it
is zero.

Fixed-point numbers appear in both input and
output as integers with an optional sign and
exponent.

Octal numbers consist of an optional sign, up
to 12 octal digits, a 'Q' and an optional octal
exponent. LISP/66 handles negative octal num­
bers in the same manner as GMAP; the sign bit is
or-ed on.

Octal numbers always print with 12 digits even
though only a few digits may be significant.

ARITHMETIC FUNCTIONS
Arithmetic functions must be given numbers

as arguments; otherwise a BAD NUMBER error is
generated.

Mixed mode is always permitted. Arithmetic
functions will return floating-point unless all of
the arguments are fixed-point or octal, in which
case they return fixed-point.

plus(x 1 ,x2,...,xn) - FSUBR
The value of plus is the sum of its arguments.

difference(x,y) — SUBR
difference returns x-y.

minus(x) — SUBR
The value of minus is -x.

times(xl ,x2,...,xn) - FSUBR
'Die value of times is the product of its

arguments. The value of times(') is 1 .
quotient(x,y) — SUBR

quotient returns x/y. If a divide check occurs
the return value is meaningless.
remainder(x,y) — SUBR

remainder computes the theoretic remainder
for fixed-point numbers and the floating-point
residue for floating-point numbers. The return
value is meaningless if a divide check occurs.
recip(x) - SUBR

The value of recip is 1/x. The reciprocal of any
fixed-point number is zero.
addl(x) - SUBR

addl returns x+1. The value is fixed- or
floating-point, depending on the argument.
subl (x) — SUBR

sqbl returns x-1. The value is fixed- or
floating-point, depending on the argument.
fix(x) SUBR

fix converts its argument to a fixed-point
number.
expt(x,y) - SUBR

expt evaluates x**y. If y is fixed-point then
repetitive multiplication is used; if it is floating­
point then logarithms are used and x cannot be
negative.
exp(x) - SUBR

The value of exp is e**x.
Iog(x) - SUBR

log computes the natural logarithm of x. The
argument must be positive or an error is
generated.

ARITHMETIC PREDICATES
AH arithmetic predicates return T or NIL.

lessp(x,y) SUBR - predicate
lessp returns T if x is less than y.

greaterp(x,y) - SUBR - predicate
greaterp returns T if x is greater than y.

ARITHMETIC 3-1 AW41

zerop(x) - SUBR - predicate
zerop returns T if x is zero (fixed-point or

octal argument) or if x < 3.0X10**(-6) (floating­
point argument).
minusp(x) - SUBR - predicate

miiuisp returns T if x is negative.
numberp(x) - SUBR - predicate

mtmberp returns T if x is any type of numeric
atom.
fixpt x). SUBR — predicate

fixp returns 1 if x is a fixed-point number.
tloatp(x) SUBR - predicate

floatp returns I if x is a floating-point
number.
evenp(x) — SUBR — predicate

evenp returns T if 2 divides into x with no
remainder or residue (2.0 is considered even. 2.2
is not).

LOGICAL OPERATORS
The logical operators perform bitwise oper­

ations on numeric atoms. They always return
octal numbers.
logorfx I ,x2,...,xn) FSUBR

The value of logor is the bitwise inclusive or of
its arguments. logorCi returns 000000000000Q.
logxorfx 1 ,x2,...,xn) FSUBR

logxor computes the bitwise exclusive or of its
arguments. logxorf) returns OOOOOOOOOOOOQ.
logandfxl ,x2 ,...,xn) - FSUBR

logand returns the bitwise logical and of its
arguments. logandf) returns 777777777777Q.
Ieftshift(x,y) — SUBR

The first argument of leftshift is shifted by y
bits. If y is positive then the shift is to the left: if

it is negative the shift is to the right. All shifts are
logical (zeros are shifted into unused bit
positions).

ARRAYS

LISP programs often require the ability to
manipulate indexable blocks of s-expressions. This
is provided in LISP/66 by arrays.

Array pointers and array access polynomials
are stored in binary program space. This space
must be allocated when the LISP system is
invoked (see Command Line Options in
Section 1).

array(x) — SUBR — pseudo function
array is a function of one argument , which is a

list of arrays to be allocated. For example, to
allocate an array A of size 7 and another array
BUN of size 60 by 50, execute:

ARRAY(((A (7)) (BUN (60 50))))
ARRAY presets all of the elements of a new array
to NIL. Indexes range from 0 to size-1.
setel(x.y) - SUBR — pseudo function

stores s-expressions into the elements of
arrays. I he first argument is a subscript list of the
form (array-name index I index 2 ... indexn). The
second argument is the new value for the array
element.

An error occurs if the specified element is
beyond the limits of the array. However, no
checks are made as to the number of subscripts.
The last subscript of an array varies most rapidly
in core. The value of setel is the second argument.
getel(x) SUBR

getel gets the values of array elements. The
same subscripting rules given for setel hold for
getel.

ARITHMETIC 3-2 AW41

SECTION 4

LISP PROGRAMS

The LISP/66 program feature allows the
writing of FORTRAN-Iike programs containing
LISP statements.

The PROG form has the following structure:
(PROG list-of-program-variables

program-statements
The first list after the PROG is a list of

program variables. This should be written as NIL
or () if there are no program variables. Variables
are preset to NIL when the PROG is executed.

Program variables are set by the functions SET
and SETQ. To set the program variable CRAY to
6600 execute either (SET (QUOTE CRAY) 6600)
or (SETQ CRAY 6600). SETQ is usually more
convenient than SET. Both SET and SETQ can
also change the value of variables bound on the
association list by higher level functions.

Program statements are normally executed in
sequence by evaluating each one with the current
association list and discarding the value. However,
the function GO may be used to transfer control.
Executing (GO LAB) transfers control to the
label LAB (program labels are simply atomic

symbols in the program body). GO can only be
used inside the top level of a PROG or immedi­
ately inside a COND which is at the top level of a
PROG.

Conditional expressions executed as program
statements are permitted to have no true proposi­
tions. Instead of generating an error, program
flow continues with the next statement.

I he function return(x) is used to terminate a
PROG. The value of the PROG is the value of x.
A PROG that runs out of statements returns NIL.

Example:
/•er(x) reverses a list and all of its sublists

(REV (LAMBDA (X)
(PROG (Y Z)

A (COND ((NULL X)(RETURN Y)))
(SETQ Z (CAR X))
(COND ((ATOM Z)(GO B)))
(SETQ Z (REV Z))

B (SETQ Y (CONDS Z Y))
(SETQ X (CDR X))
(GO A))))

LISP PROGRAMS 4-1 AW41

SECTION 5

INPUT/OUTPUT

All input/output in LISP/66 is done to logical
channels. There are nine disk channels (numbered
1 to 9) and one channel to the user terminal
(called NIL).

INITIALIZING CHANNELS
The NIL channel is always initialized to the

terminal. Disk channels must be initialized by the
user program, using the functions openr and
openw.
openr(x,y) — SUBR — pseudo function

openr initializes channel x for input and
attaches file y to it. The channel is closed if it was
previously open.

If the pathname contains a slash or a dollar
sign any file in the AFT with the same name is
first made inaccessible.
openw(x,y) — SUBR — pseudo function

openw initializes channel x for output and
attaches file y to it. The channel is closed if it was
previously open.

If the file does not exist it is created. A
temporary file is created unless the pathname
contains a slash or a dollar sign, in which case a
permanent file with general read permission is
created. If the pathname contains a slash or a
dollar sign any file in the AFT with the same
name is first made inaccessible.
close(x) — SUBR — pseudo function

close writes out end-of-file marks (output files
only), releases the logical channel, and makes
inaccessible the file (if permanent and if brought
into the AFT with openr or openw).

It is legal to close an inactive channel; close
performs no action in this case. An implicit close
is performed on all logical channels when the user
returns to the system level.

SELECTING INPUT/OUTPUT CHANNELS
The functions rds (read select) and wrs (write

select) are used to select logical channels for input
and output. Both functions return the channel
that was open before the input/output stream was
redirected.

rds(x) — SUBR — pseudo function
rds causes all input to be taken from logical

channel x until another rds is executed, or an
end-of-file is encountered on the channel (when
an implicit nZs(NIL) is performed, switching input
back to the terminal).
wrs(x) — SUBR — pseudo function

wrs causes all output to be directed to logical
channel x until another wrs is performed.

Disk files are automatically grown. If a request
to grow is refused (input/output status 17) an
end-of-file is inserted into the last good block
before the error message is generated.

LISP programs may be loaded from disk files
by opening the file for input and selecting it:

? openr(l /a/lisp/program)
1
? rds(1)
1
... program loads ...
?

LISP/66 switches both input and output to the
terminal on errors. (Programs which do disk file
input/output under an errorset may be affected
by this.)

INPUT/OUTPUT FUNCTIONS
read() — SUBR — pseudo function

read causes one s-expression to be read from
the current input channel. This expression will
always be read from a new line. The value of read
is the s-expression read.
print(x) — SUBR -- pseudo function

print writes s-expression x onto the current
output unit and returns x.
print(x) — SUBR — pseudo function

prinl writes an atomic symbol onto the
current output channel without terminating the
current output line. Passing a nonatomic argu­
ment to prinl is an error. The value ofprinl is x.
terpriQ — SUBR — pseudo function

terpri terminates the current output line.
xtab(x) - SUBR — pseudo function

xtab writes x blanks onto the current output
channel and terminates the output line if
necessary. xtab returns x.
ttab(x) — SUBR — pseudo function

ttab writes enough blanks to the current
output channel to make the next character print
in column x. ttab does nothing if the output line
is already past column x, and generates an error if
x is greater than the current line length, ttab
returns x.

INPUT/OUTPUT 5-1 AW41

otll(x) — SUBR — pseudo function
otll sets the current Jine length to x and

returns its argument. The new line length must be
between 40 and 120 inclusive. •
prompt(x) - SUBR - pseudo function

prompt changes the terminal input prompt to
the printname of X. The new prompt must be
four characters or less in length.

If x is NIL then the prompt is turned off
completely. (Changing the prompt to NIL is
impossible.)

INPUT/OUTPUT 5-2 AW4

SECTION 6

CHARA CTE R M AN IPU LA TIO N

Characters in LISP/66 are ordinary atomic
symbols with single-character printnames; the
alphabetic atom A and the character A are
identical.

Since characters are on the object list they
may be compared using eq. However, for com­
patibility with other LISP systems, using eq is not
recommended; using equal (LISP 1.6) or cclass
(LISP/360) is a better practice.

CHARACTER INPUT/OUTPUT
princ — SUBR — pseudo function

princ writes the character x onto the current
output channel and returns x. princ is the same
function as prinl.
readchO — SUBR — pseudo function

readch reads and returns the next character
from the current input channel. Lower-case char­
acters are mapped into uppercase.
endreadO - SUBR — pseudo function

endread forces the next readch to a new line.
It is commonly used to skip over the remainder of
an input line when an error is detected.
passer(x) — SUBR — pseudo function

passer, executed with a non-NIL argument,
causes readch to begin passing carriage returns to
the user program. This mode is disabled by
pu5ver(NIL). pavseHNIL) is the default.

CHARACTER FUNCTIONS
explode(x) — SUBR

explode takes its argument (which must be an
atomic symbol) and returns a list of its constit­
uent characters, explode works for all types of
atoms, including floating-point.
compress(x) — SUBR

compress takes a list of characters and com­
presses them into an atomic symbol.

In order to decide what type of atom to
construct, cornpress skips over leading plus and
minus signs and examines the next character. If
this character is a digit then compress builds a
number; otherwise it builds an alphabetic atom. It
is impossible to build an alphabetic atom with a
printname like 8888 using compress.

CHARACTER PREDICATES
liter!x) - SUBR — predicate

liter returns T if its argument is a letter
(between A and Z).
digit(x) — SUBR — predicate

digit returns T if its argument is a digit
(between 0 and 9).
cclass(x,y) — SUBR — predicate

cclass is a general character predicate. It
returns T if the character x is in the printname
of y.

CH A R ACTE R M AN1PULAT1 ON 6-1 AW41

SECTION 7

X INTERNAL FORMATS

LISP CELLS
A LISP cell occupies one 36-bit machine word

in the following format:
Bit 0 Must be zero
Bits 1 -1 7 Car pointer
Bit 18 Usually zero. Used by garbage

collector
Bits 19-35 Cdr pointer
Since 17-bit addresses are used, L1SP/66 can only
handle 128K of free storage. This should cause no
problems as TSS EXEC aborts programs larger
than 80K when it attempts to swap them.

ATOMIC SYMBOLS AND PROPERTY LISTS
An atomhead is a LISP cell with bit 0 equal to

1. The car pointer of the atomhead contains the
atom’s type: 0 for alphabetic atoms, 1 for octa!
numbers, 2 for fixed-point numbers and 3 for
floating-point numbers.

The cdr pointer points to a word that has a
pointer to the atom’s printname in bits 0-17 and a
pointer to the property list in bits 1 8-35.

Printnames are stored as forward-linked lists
with two characters in the upper half and a link
pointer or NIL in the lower half. Short print­
names are padded with nulls.

The value of a numeric atom is stored in two
halves (like an alphabetic printname) to simplify

garbage collection; the first word in the list
contains bits 0-1 7 of the number.

Property lists have the same structure as those
in LISP. 1.5.

SUBRS AND FSUBRS
The SUBR and FSUBR link word is attached

to the property list of the function name using a
SUBR or FSUBR indicator. The link word has the
number of arguments in the upper half (FSUBRs
have zeros in the upper half) and the pointer to
the routine in the lower half.

SUBRs and FSUBRs are called by a TSX1 and
return with a TRA 0,1.

SAMPLE ATOM
The atom BPSIZE
VFD
ZERO
VFD
VFD
VFD
ZERO
ZERO
ZERO
VFD
ZERO
ZERO

BPSIZE ZERO

018/400000,18/*+!
*4-] *4-4

018/102120,18/*+!
018/1231 11,18/*+!
018/132105.18/N1L
APVAL,*+1

*+l ,NIL
*+l,NIL

018/400001,18/*+!
*+l,NIL
0,*+l
0,NIL

INTERNAL FORMATS AW41

APPENDIX A

ERROR MESSAGES
♦

TOO FEW ARGS (SUBR)
TOO MANY ARGS (SUBR)
The wrong number of arguments has been passed
to a LISP function.
S-expression 1 is the function.
S-expression 2 is the list of arguments.
UNDEFINED FUNCTION (APPLY)
UNDEFINED FUNCTION (EVAL)
An atom have been used as a function but has
never been defined.
S-expression 1 is the function.
S-expression 2 is the association list.
UNBOUND VARIABLE
The variable is not defined as a function argument
on the association list and does not have an
assigned value.
S-expression 1 is the unbound variable.
S-expression 2 is the association list.
TOO MANY ARGS
LISP/66 cannot pass more than 20 arguments to a
function.
S-expression 1 is the list of arguments.
S-expression 2 is not valid information.
UNSATISFIED COND
No true propositions were found in a COND.
S-expressions 1 and 2 are the arguments to evcon.
CAR OF ATOM
An atomic symbol has been passed to car.
S-expressions 1 and 2 are the argument of car.
BAD ADDRESS
peek has been passed a list or an address beyond
LlSP/66’s address limits.
S-expression 1 is the argument of peek.
S-expression 2 is not valid information.
BAD ARGUMENT
A LISP function has been passed an argument
that is not compatible with the function.
S-expression 1 is the bad argument.
S-expression 2 is not valid information.
BAD NUMBER
An arithmetic function has been passed a non­
numeric argument.
S-expression 1 is the argument.
S-expression is not valid information.

SET VAR UNDEF
The function set or setq has been given an
undefined program variable.
S-expression 1 is the program variable.
S-expression 2 is the association list.

NON ATOMIC ARG (PRIN1)
The argument of prinl is a list.
S-expression 1 is the argument.
S-expression 2 is not valid information.
GO LABEL UNDEF
The label given as the argument of go has never
been defined.
S-expression 1 is the undefined label.
S-expression 2 is the golist (list of all labels).
TOO MANY ARGS (EXPR)
TOO FEW ARGS (EXPR)
The wrong number of arguments has been
passed to a defined function.
S-expression 1 is a list of the function variables.
S-expression 2 is the list of supplied arguments.
BAD CHARACTER
The argument passed to a character function or
predicate is not a valid character atom.
S-expression 1 is the character argument.
S-expression 2 is not valid information.
BAD COMPRESS
The list of characters passed to compress could
not be made into a legal atom.
S-expressions I and 2 are not valid information.
BAD SAVE
The LISP core image could not be written out
successfully.
S-expression 1 is the file name.
S-expression 2 is not valid information
OUT OF BINARY PROGRAM SPACE
There is not enough binary program space left to
execute a function. This message is generated by
bpload and array.
S-expressions 1 and 2 are not valid information.
NO MORE CORE
TSS has refused a request to obtain more free
space.
S-expressions 1 and 2 are not valid information.
CALL TO ERROR
The function error has been called.
S-expression 1 is the argument of error.
S-expression 2 is not valid information.
BAD MEDIA ON INPUT
The currently selected input file is not media 6
ASCH.
S-expressions 1 and 2 are not valid information.

ERROR MESSAGES A-l AW41

WRS ON INPUT FILE
The logical channel selected for output has been
opened for input.
S-expression 1 is the logical channel number.
S-expression 2 is not valid information.
FILE /XT EOF
The selected input channel is positioned at
end-of-file.
S-expression 1 is the logical channel number.
S-expression 2 is not valid information.
RDS ON OUTPUT FILE
The logical channel selected for input lias been
opened for output.
S-expression 1 is the logical channel number.
S-expression 2 is not valid information.
FILE NOTOPEN
The logical channel given as an argument to rds or
uo has never been opened.
S-expression 1 is the logical channel number.
S-expression 2 is not valid information.
BAD CALL (.LN)
The logarithm routine has been passed a negative
argument. This message is generated by log and
expt.
S-expression 1 is the argument.
S-expression 2 is not valid information.
BAD CALL (.EXP)
The exponentiation routine has been passed an
argument greater than 88.5. This message is
generated by exp and expt.
S-expression 1 is the argument.
S-expression 2 is not valid information.

GTS VAR UN DEF
The argument of gts was never declared special.
S-expression 1 is the argument of gts.
S-expression 2 is not valid information.

FATAL ERROR: PDS OVERFLOW IN GCL
The pushdown stack has overflowed during
garbage collection. LTSP/66 has terminated.

SUBSCRIPT ERROR
The subscript list specifies an array element
beyond the limits of the array. This message is
generated by setel and getel.
S-expression 1 is the subscript list.
S-expression 2 is the new value (setel).
S-expression 2 is not valid information (getel).

CANT CLOSE FILE
A disk file will not close properly (usually an IOS
status 1 7 on the last block).
S-expression 1 is the logical channel number.
S-expression 2 is not valid information.

CANT OPEN FILE
This message is generated for any openr/openw
file system error, such as syntax error in the
pathname, permissions denied, file does not exist
(openr) or AFT full.
S-expressions 1 and 2 are the arguments of the
openr or openw.

STATUS 17, CHANNEL x
The disk file on channel x will not grow.
S-expressions 1 and 2 are not valid information.

ERROR MESSAGES AW41

APPENDIX B

KNOWN PROBLEMS

RETURN and GO do not work as arguments of a PROG2.
(This is destined to stay around for a long time.)

The constructs eval(x,y) and apply{x,y,z), where x is not
bound on the property list and y is a non-NIL atom, cause the
system to memory fault.

KNOWN PROBLEMS B-l AW41

APPENDIX (

GLOSSARY FOR LISP/66

association list:
A list of pairs of terms, equivalent to a table

with two columns, used to pair bound variables
with their values.

atom
A synonym for atomic symbol.

atomic symbol
I he basic constituent of an s-expression.

bound variable
A variable included in the list of bound

variables alter a LAMBDA is bound within the
scope of the LAMBDA. Its value is the argument
corresponding in position to the occurrence of
the variable in the LAMBDA list.

free-storage list
The list of free words in the computer

memory. Each time a cons is performed the first
word of the free-storage list is removed. When the
free-storage list is exhausted, a new one is built by
the garbage collector.

free variable
A variable that is neither a program variable

nor a bound variable.

functional
A function that can have functions as

arguments (e.g., apply, eval, sasso c, and the
mapping functions).

functional argument
A function that is an argument for a

functional. Quoted by using the special form
(FUNCTION fn).

garbage collector
The routine which identifies all active list

structure by tracing it from fixed base cells and
marking it, and then collects all unneeded cells
(garbage) into a new free-storage list.

GMAP
General Macro Assembly Program, the

assembler for Series 6000.

indicator
An atomic symbol occurring on a property list

which specifies that the next item on the list is a
certain property (e.g., EXPR, SUBR, FEXPR
FSUBR and APVAL).

interpreter
Executes a source language program by

examining the source language and performing
the specified algorithms (in contrast to a compiler
which translates a source language program into
machine language for subsequent execution).
LISP/66 is an interpreter.

predicate
A function whose value is true or false. (False

is represented by NIL and true by anything that is
non-NIL.)

program variable
A variable that is declared in the list of

variables following the word PROG. Program
variables have initially the value NIL, but can be
assigned other values by set and setq.

property
An expression associated with an atomic

symbol.

property list
The list of an atom’s properties; the CDR of

an atom is the atom’s property list.

pseudo function
A function that has effects other than

delivering a value (e.g., read or rplaca).

recursion
The technique of defining a function in terms

of itself.

GLOSSARY FOR LISP/66 C-l AW41

Honeywell
Honeywell Information Systems -

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 021 54
In Canada: 2025 Sheppard Avenue East, Wiliowdale, Ontario M2J 1W5

in Mexico: Avenida Nuevo Leon 250. Mexico 11, D.F.
16122, 5C976, Printed in U.S.A. AW41 , Rev. 0

