
■__ _ A., g HHMPl 5

□ Version
«

F\etere,nce, M anukoA

n
This edition of the manual applies to B version 4.

The section on machine-level linkage conventions in
chapter 6 has been totally rewritten to reflect the change
in the run time stack format.

Parts of Chapter 7 have been changed to reflect the new
conventions for accessing files with OPEN.

I
I
I
R

Copyright (c) 1978» 1979 by the University of Waterloo

Table of Contents

1. Introduction « «••••••••••• 1
2. Basic symbols 2

2.1. Identifiers••• 2
2.2. Comments • •••••••••.••.••• 3
2.3. Keywords • .••....«•«••.••• 3
2.4. Constants • • • • . 3

2.4.1. Decimal constants . • • . • 3
2.4.2. Octal constants • •••••••••. 4
2.4.3. Floating point decimal constants . . 4
2.4.4. ASCII character constants 4
2.4.5. BCD character constants 4
2.4.6. String constants •••••••••• 5
2.4.7. Escape sequences • ••••..... 5

2.5. Source file inclusion... . . 6
2.6. Compiler directives 6

3. The building blocks of a B program ... 7
3.1. Manifest constants •••••••.••.. 8
3.2. External definitions ••••••.«••. 9
3.3. Function definition12

4. Statements .. • •••••••• ...14
4.1. Null statement • . • 14
4.2. Expression statement ••••••••.••15
4.3. Storage declaration ..15

4.3.1. Storage types •.•.••••••••15
4.3.2. Extrn . • . • . • • • • • • « « . • • 16
4.3.3. Auto • •••••••••.••.»• 16
4.3.4. Labels •••«•••17

4.4. Transfer of control ••••• 17
4.4.1. Goto 17
4.4.2. Return ••••••••..«.••• 18
4.4.3. Break ••.••••••••...•.18
4.4.4. Next • • • . . • • • . • • • • • • • 18

4.5. Conditional statement...19
4 . 5 . 1 . I f ... 1 9

4.6. Iterative statements •••••••.•••19
4.6.1. Repeat ••••••••.••••••20
4«6.2. While ••••••••••••••••20
4.6.3. Do* while • • • • • • • • 20
4.6.4. For........................... 20

4.7. Switch statement • . • • . • • • • • • • • 21
5. Expressions • •••.•••24

5.1. Primary expressions •••••••.••••24
5.1.1. Subscripting ..•..•••••••25
5.1.2. Function calls • . 26

5.2. Rvalues and lvalues ••...•••••••26
5.3. Unaryoperators...................................... 2 7
5.4. Binary operators 30
5.5. Shift operators ...30
5.6. Bitwise and30

5.7. Bitwise exclusive or,.30
5.8. Bitwise or ‘. 31
5.9. Multiplicative operators 31
5.10. Additive operators ...••«.••••. 32
5.11. Relational operators ••••••..••• 32
5.12. Logical and ... • • . 32
5.13. Logicalor 33
5.14. Query operator33
5.15. Assignment operators ••••.••••••33

6. Implementation-dependent information ...•••••35
6.1. Linkage conventions ••••... 35

6.1.1. Function call35
6.1.2. Entry35
6.1.3. Exit..... JT • . •........................... 37

6.2. Internal represent ation of objects 37
7. The B library..............................••............................... 38

7.1. .BSET - redirection of i/o 38
7.2. Introduction to input/output40

7.2.1. Units40
7.2.2. Unit opening ••..•••••••.41
7.2.3. Unit closing 44
7.2.4. Unit switching •••...••...44

7.3. Sequential stream i/o •••....•...45
7.3.1. Terminal vs file 46
7.3.2. Stream i/o functions47

7.4. Random file i/o •••••«•••••••• 50
7.5. String operations 50

7.5.1. Random string processing 51
7.5.2. Sequential string access 51
7.5.3. String utilities ,.52

7.6. Storage allocation53
7.7. Character code conversion ...54
7.8. Call FORTRAN ..54
7.9. DRLs and MMEs • ••••••.................................. 55

8. U s i n g B..56
8.1. Compi ling/running .. 56
8.2. Debugging.......................•••••.. 58
8.3. C om p i le r / I oa d e r interface................................ 62
8.4. Using tabs for readability 62
8.5. Some pitfalls... • • . 63

Appendix A * Escape sequences ••••.. 65
Appendix B - Binding strength of operators 66
Appendix C * B compiler error message .. 67
Appendix D - Index of B library routines72

1. iQirgdustjon.

This manual describes the programming language 0 ac­
cepted by the compiler written at the University of Waterloo
by R. Braga. It also introduces the runtime package written
at the University of Waterloo/ largely by T.J. Thompson.

A derivative of BCPL, B was designed and first imple-
mented by D.N. R i t <chi e and K.L. Thompson, of Bell Telephone
Laboratories, Inc. , Murray Hill, N.J. The ori ginal impiemen-
tation of the runtime package is due to S.C. Johnson, also
of Bell Labs.

The present version of the compiler differs from the
original by incorporating an expanded SWITCH statement, ad­
ding floating point operators, adding proper logical opera­
tors, and altering the order of evaluation of operators.

The runtime package works in both TSS and batch and
will read almost any "media code” found in the GCOS environ­
ment. It uses EIS instructions whenever it is appropriate.
Note that the language itself has no constructs for
input/output J all i/o is done by function calls.

B is a tygele^S language, in which the compiler always
assumes the type of a variable is suitable to the QQfiiatQf
acting upon it. B has a large set of operators, providing
integer? bitwise/> log i c a I and floating point operations.

The machine word i s the basic unit of computation. The
word size on the Honeywell Series 60 Level 66 or Series 6000
machines is 36 bi t s.

A B program consists of procedures called fynctipn^.
Any function may call another function or, since local vari­
ables are allocated on a stack, call itself recursively. All
functions may selectively access a global pool of gxlgrnal^.

A function is composed of a set of one or more
ffignis. A statement is composed of permissible combinations
of ke^wQEdS and £X££££S12DS.

Although this is a reference manual, and definitely not
a tutorial, it is organized such that you will often find
examples which involve material covered later on. This is
intentional. Such examples should be ignored at first read­
ing, but will hopefully be beneficial when you refer to the
manual again.

You should try to keep your first efforts at B program­
ming as simple as possible, in order to minimize the diffi­
culties you may encounter. If you are ever unsure of some
feature of the language or run-time package, try it out by
writing and running a simple little program which exercises
only that feature. The time you take to do so may save you a
lot of trouble in the long run.

Before starting on your first major 0 program, you

idea of exactly how things are done.

would be well advised t 0 have a c lose look at the source
code of a well-written 0 program or two in order to get some

March 1979 Waterloo

2. Sasic

B is very much oriented towards use of the ASCII char­
acter set in which each character occupies nine bits (four
characters per word). There is support for representing
character constants in the BCD character set/ in which one
character occupies six bits (six characters per word).

Certain characters/ such as •<* or •}•/ do not appear
on some terminal keyboards. Escape sequences for these are
defined in Appendix A. _

The compiler treats its input as an unbroken stream of
characters. Any form feed/ tab/ or newline character is con­
verted to the space character/ except when it occurs inside
a string or character constant. Newlines are counted/ so the
compiler can tell you on what line it detected an error.
Line length may be arbitrary. The compiler knows nothing a-
bout any ’’sequence field”/ such as is supported by certain
card-oriented compilers.

Line-numbered source files are permitted. If the first
character of the first file is a digit/ the compiler assumes
the program being compiled has line numbers. If so/ on each
line of the file/ it attemots to form a line number by col­
lecting numeric characters until a non-numeric character is
found. The number is used in error messages pertaining to
that line.

2.1. IdSQtll•
An identifier or name is formed from the characters a-

Z/ A-Z/ 0-9/ underscore (* 1) or dot (’.’)/ and must begin
with a non-digit. Since the run time package uses names con­
taining at least one dot/ you should avoid conflicts by not
using the dot character in names defined in your program.

Names may be arbitrarily long/ but only the first eight
characters are significant. For external names or external
references/ only the first six characters are significant/
due to the restriction imposed by the GCOS and TSS loaders.

Normally/ the compiler ignores case distinctions/ so
that the identifiers "SUM”/ ’’sum” and "Sum” would be con­
sidered to be the same thing. You may specify an option to
the compile command which forces the compiler to respect
case distinctions/ but then all keywords must appear in
I owe r case.

Waterloo March 1979

2.2. tawinsQXs.
The beginning of a comment is signalled by the appear­

ance of a *’/**• in the input stream. It is ended with the
first occurrence of a "*/" any number of characters or lines
later. For example/

/ *
* this is a comment
* /

Comments may not be nested.

2-
B uses 15 keywords# which may be categorized as fol­

lows:
1) identifier scope keywords:^ ,

AUTO EXTRN
2) execution flow control keywords:

IF ELSE FOR WHILE REPEAT SWITCH DO
3) transfer keywords:

RETURN BREAK GOTO NEXT
4) switch statement keywords: __

CASE DEFAULT

The compiler does not allow you to use any keyword as an
identifier. In particular/ beware of inadvertent ly using
NEXT as an identifier.

2.4. Lonstaots.
You may define octal/ decimal/ floating point/ ASCII

character/ BCD character/ or string constants in your pro­
gram. The form of a constant is we I I-defined/ in that it is
oossible to unambiguously differentiate between the various
types of constants.

2-4.1. £££101 £Qns£ants.

A decimal constant consists of an integer number/ which may
not contain leading zeroes. For example:

March 1979 - 3 - Waterloo

Z.ft.Z* QiXal iposianlx.

An octal constant consists of an integer number, preceded by
a zero and formed only from the digits zero through seven.
For examole:

01 077 026 0400000 0777777777777

2.4.3. Floating 22101. decimal CQnstants.

A fIoatinq-point constant is any number containing a decimal
point. It must not begin with a decimal point/ but may have
leading zeroes and may be followed by the letter ’e* and a
possibly signed integer exponent. Examples:

3.2 1. 0.5 1.e5 3.e5 4.987e-2

2.4.4. ASCH £Qn$ian£s.

An ASCII character constant consists of from one to four
characters inside single quotes. The result is a word which
contains the internal form of the ASCII characters/ right*
adjusted and left-padded with zero bits. Some examples:

•a* ’abc’ ’abed’

The compiler
and issues an

counts characters inside character constants
error message if there are more than four.

2-4.5. £h£ra£t£r £Qns£an£s.

A BCD constant consi sts o f from one to six characters en-
closed by grave accent characters. The result is a word con-
taininq the characters transIiterated to BCD# right justi­
fied# and left-oadded with zero bits. Characters which do
not have an exact equivalent in the BCD set are converted to
BCD blanks. Here are three examples of BCD constants:

a

like an AS-
a s

i n

$’123456’

providesNote

t i on

a •

have a g
y write a

Water loo -4- March 1979

2.4.6. Slrins

A string constant is any string of characters enclosed in
double quotes. For example:

’’this is a string”
tr »*

’’the above is the null string”

When processing a string# the compiler packs the characters
of the string four per word and always appends one extra
character# an ASCII null (000)# to mark the end of the
string.

The value of a string is quite different from the other
types of constants. The value of a f loating-point# octal#
decimal or character constant is a word containing the
internal representation of the given constant. The value of
a string constant is a word containing the of the
s t r i ng .

In constructing the string# the compiler gobbles all
characters it sees# translating escape sequences if neces­
sary# until it finds a closing# unescaped double quote. The
rule which says tabs and form feeds are ignored does not# of
course# apply in this case# but real newlines (as opposed to
escaped newlines) are treated specially. If a real newline
is preceded by a •*'# both and newline are thrown away#
so you can enter a very long line. If the newline is not
preceded by a ’*•# it is kept# but a warning message is is­
sued# on the grounds that you probably forgot the closing
string quote. To get a newline in a string without drawing a
warning# use the escape f*n’.

2-4-Z-

Escape sequences# beginning with the character ’*’# are de­
fined to allow you to use# in a string or character con­
stant# characters which would otherwise be inconvenient or
impossible to enter. For example# if you wanted to place a
double quote inside a string constant# you would use the es­
cape 1The special end-of-string character (ASCII null)
is escaped as ’*0’. The newline character is escaped as
•*n’. A newline is taken as a carriage return and a line
feed when output to a terminal. Arbitrary nine-bit charac­
ters can be generated with ,*#nnn’# where nnn is one to
three octal digits. The complete set of escape sequences is
given in Append i x A.

March 1979 Waterloo

2.5. SQU£££ ills inslusiQQ.
If the compiler encounters in the source program a

line of the form

% f ilename

it suspends processing of the current file and begins col­
lecting input from the specified file. When end-of-fi I e is
encountered in the included file, processing in the original
file resumes at the next line following the file inclusion
request. Such included files may themselves contain
’’^filename” requests pointing to other files.

The ’%* character must be the first character on the
line/ not just the firstnon-blank character. If the line
has a line number/ the must immediately follow the line
number. ■ _ _

The file name given may be in any of the forms accept­
able in the TSS environment/ such as

X t e m p
%/ma i n . b
% f bagg i n s/d i f.b
%fbaggins/s/dif.b
0102ofbaggins/s/di f.b

This allows you to keeo parts of a large module broken
up into easily manageable files/ while retaining the ability
to compile the files together. File inclusion is also often
used to bring in a file of manifest definitions/ such as TSS
Derail equivalences/ which a variety of possibly unrelated
programs might find useful.

Any line whose first character is a is assumed to
be one of the compiler directives shown below. In each case/
”<text>” denotes a string of characters which begins with
any non-blank character.

//title <text>

will place ”<text>” in the comments field of any $ OBJECT
card written from the time the directive is encountered.

I b I < t e xt >

will place "<text>"/ truncated to eight characters if neces­
sary/ in the ’’deck name” field of any $ OBJECT or $ DKEND
card written from the time the directive is encountered. If
this directive has not been encountered when it comes time
to generate an object deck/ then the current file name is
used instead.

1979Waterloo -S-S- TO*

#11 I da t <text>

After being truncated to six characters if necessary/
”<text>” is used to fill in the "ttl" date field of any $
OBJECT card written from the time the directive is encoun­
tered.

^copyright <text>

is taken as comments.
Here is an example of the use of all four directives:

fltitle tss login subsystem - .tslog
fllbl tiga
flttldat 771209
flcopyright (c) by the University of Waterloo/ 1977.

3. The buildincj bl££kj 2f a B 2122182!.

A complete B program consists of at least one/ but
usually many/ A module is any of the following:

1) a manifest constant identifier definition.

2) an external (global) variable definition.

3) a function body definition.

Modules may appear in anv order at all/ with the sole pro-
viso that the definition of a manifest identifier must ap­
pear before the identifier is first used.

Manifest definitions are used to associate a name with
a compile time constant.

External definitions are used to create a global pool
of possibly initialized identifiers. This pool might be used
to declare large blocks of memory/ or to declare identifiers
that must be accessible to more than one B function. Since
an external is global in scope/ any 9 function may use it/
but only after declaring its intention to do so in an EXTRN
statement.

A function definition is used to declare a component of
the executable code of the program. The definition includes
the name the function will be called by/ the arguments it
will be called with/ and the statements which define what it
will reference and what it will do.

March 1979 Waterloo

J.1. Manifest constants
•ww *■» <WB» -«■» «-S» -«» WW «S* WSB» —!» "«■» «M>> <MB» . «SB* «•»

A manifest constant has the general form

name text ;

where ’’name” is any valid identifier and ’’text" is the col­
lection of characters between the equals sign and the semi-
co Ion. ’._....

When a manifest is defined# the compiler enters the
identifier in the symbol table and associates it with the
"text”# which it keeps in an internal buffer. Absolutely no
processing of the "text" is done at the time of definition.

When the compiler reads an identifier# it first checks
to see if the identifier is a manifest. If so# the action
taken is to substitute the text of the manifest for the
identifier. For this reason# it is not possible to speak of
redefining a manifest and any inadvertent attempt to do so
will usually result in a syntax error. Substitution effec­
tively takes place before the syntax analyzer scans the
line. Manifests may be used anywhere# including inside later
m a n i ’fest definiti ons.

Because the c omp iIe r does not anal y ze the text of the
manifest until substitution takes place# it is possible for
the text to refer to a manifest which is defined after it#
as long as the definitions of both appear before the first
use.

The use of manifests has no effect on the order of ex­
pression evaluation. For example# look at the definitions

1 ;
a + a ;
B * B r

A
B
C

When "C" is used somewhere else in the program# the compiler
will actually get "1+1*1+1"# which will be evaluated as
three and not four# as one might mistakenly assume.

The compiler permits nesting up to 10 levels deep of
manifests inside other manifests.

Normally# however# you will find manifests quite natur­
al to use. Here are some examples of manifests:

VECSIZE =65;
vec C VECSIZE];

0; i <= VECSIZE; ++i) sum += vecCij;

The manifest "vecsize" is used to establish the size of the
vector "vec" at compile time# and later used to control
iteration in a FOR statement.

Waterloo March 1979

/★ binary list structure */
NULL = -1; EMPTY = 0;
CONTENTS = 0;
LEFT PTR = 1;
RIGHT PTR = ?;
• • •
printree(ptr)

i f (ptr != NULL)
{

printree(LEFT.PTR[ptrJ);
print„contents(CONTENTSCptr]) /’
printree(RIGHT_PTRCptrJ):

}
! * end pri ntree */

Here/ manifests are being used to make the code involved in
traversing a binary tree more meaningful. Manifests are
often used in this way to give names to the elements of a
s t ruc1Jure/ which may be an array of fixed size# or a dynami
c a I I y allocated block of storage.

A common convention/ used in this document/ is to dif­
ferentiate manifest identifiers from other identifiers by
always showing the manifest identifier in upper case/ and to
show all others in lower case. It is also considered good
practice to group all manifests for a program together at
the beginning of the source code.

3-2. External d£f2011120$.
We will first look at the possible forms of external

definitions# then look at several examples.
If an external is defined and possibly initialized in

more than one place# the first one encountered during load­
ing is the one which is used.

These are the possible forms of external definitions:

name/
A single word is allocated and initialized to zero.

name < i va I }/
’’Name” is defined as a single word and initialized with
the single value ivaI.

I^al rosy any legal constant expression# in
which case ’’name” has the value of its result. A constant
expression may be either a string constant or an expres­
sion formulated with any legal combination of numeric or
character constants# binary operators# unary operators
and parentheses# following the rules in the chapter on
expressions. Alternatively# ival may be a name# in which
case the value of the ival is a word containing the ad­
dress of the name given. A function name may be used.

March 19 7 9 oa» g Waterloo

name < ival# ival# ... };
Allocates space for as many words as there are ivals.
This is in effect a vector which does not have a word set
aside as a oointer to it; its address is ”&name”# rather
than just ’’name”# which in this case refers to the first
ival. This is the way a vector is set up in FORTRAN# but
is not the same as a 9 vector.

name £ const-ex or J#
This is the first of several forms of B vector declara­
tions. ’’Name” is defined as a pointer to a vector whose
length is a number of words which is the value of the
constant expression plus one (since all B vectors start
subscripting at zero). The zeroth element of the vector
is initialized to zero; the initial contents of the
remaining cells are undefined.^ __

The const-gx^r in brackets may be any expression
which is a legal combination of numeric or character con­
stants# unary operators# binary operators# and
parentheses. It is up to you to make sure the value of
the expression is reasonable# since the compiler’s gram­
mar lets it accept things like floating point constants
and negative numbers# which give absurd results. For all
practical purposes# ”const*expr” must be such that it
gives an integer result.

name £3 < ival# ival# ... };
’’Name” is defined as a pointer to a vector whose length
is the number of initial values.

name £ const-expr J < ival# ival# ... >;
’’Name” is defined as a pointer to a vector whose length
is the maximum of the result of the constant expression
plus one and the number of initial values. The contents
of those vector elements# which do not have corresponding
initial values# are undefined.

For compatibility with a previous version of the com­
piler# B also accepts an ival or ival list which is not sur­
rounded by braces. In this case# the compiler does not per­
mit a constant expression to appear. Only a numeric# char­
acter or string constant is acceptable# although a numeric
constant may be prefixed by an integer unary minus sign.

Waterloo -10- March 1979

Here are some examples of external definitions:

a < 10 >;
One word of storage is allocated/ initialized to the de­
cimal constant 10 and associated with the name ”a”.

b E J < 'ab’z ’cde’z ’fqhi’ >;
One word is associated with the name ”b” and initialized
with a pointer to a vector of three words. The first ele­
ment of the vector/ referred to as ”bE0J”z is initialized
with the character constant ’ab*. The other two elements/
”b£1J” and ”bE23”/ are initialized with *cde* and ’fghi’z
respecti ve I y.

c { ’ab */ ’ abc ’ } #
”c” is defined and associated with a word containing
’ab’. The word immediately following is initialized to
the constant ’abc1/ but is not associated with any name.
This is in effect a vector which does not have a word set
aside as a pointer to it.

dE63J;
Defines ”d” and associates it with a word containing a
pointer to a vector of 64 words/ whose initial contents
are undefined.

e C10 J < a/ b/ c/ d
Declares "e" and associates it with a vector of 11 words.
Words zero/ one/ two and three are initialized with the
addresses of the externals ”a”z ”b”z ”c” and ”dM/ respec­
tively. The contents of the remaining elements are unde­
fined.

f < ” a string” >J
This is the usual way of defining an external string with
an initial value. "f” is defined and initialized with a
pointer to the storage occupied by the string constant ”a
string”.

gE] { ”pascal/library”z ”pascal/compi ler”/ -1
This sets up a vector of strings with an end marker. It
defines ”g” and associates it with a word containing a
pointer to a vector of three words. The cell ”gEOJ” is
initialized with a pointer to the storage occupied by the
string constant ”pasca I/Iibrary” . The cell ”gE1]” is ini­
tialized in a similar manner/ while ”gE2]”z the last ele­
ment of the three-word vector/ is initialized to the de­
cimal constant -1•

B does not allow you to explicitly declare arrays with
more then one dimension. Usually if you need more than one
dimension/ you build it at run time by calling the library

Ma rch 1979 -11- Waterloo

function GETMATRIX/ which will obtain storage/ construct the
necessary edge vectors and return a pointer to the array.
However/ in spite of the fact that you cannot declare such
an array/ it is possible to construct one as an initialized
external! The secret is that any ival (inside braces) may be
replaced by an ival or ival list surrounded by braces. The
compiler then constructs the ival list and places a pointer
to it in the original ival list. The maximum nesting depth
is seven. For example/

xC K
< 00/-01 / 02 >/
{ 10/ 11/ 12 }/
< 20/ 21/ 22 }

In this case/ ends up being initialized as a pointer to
a vector containing three pointers. Each pointer points to a
vector of three words. In an expression/ the value of ”x[0]”
is a pointer to the first vector of three words/ while the
value of ” x C 1 J C 2] " is 12.

3.2. fuDiXiDD delioiXlDD.
B functions serve a purpose similar to the subroutine

in FORTRAN or the procedure in ALGOL. The mechanism of the
function call involves very little cost in overhead and per-
mi ts recurs ion.

A working B program always contains at least one func­
tion/ called MAIN/ and usually others/ since the language is
designed to encourage modular or structured programming.

The general form of a function definition is

n a m e(a r g 1 / ar g 2/ ...) statement

The name must be a valid identifier and is automatically de­
fined as an external by the compiler.

The formal arguments consist of a possibly empty list
of identifers separated by commas. Each argument is impli­
citly declared as an automatic (local) variable and storage
for it is allocated on the runtime stack frame. Note that/
although you may not declare a vector as a formal argument/
you can always use an argument in a subscripting operation/
as if it were a vector pointer.

"Statement” defines what actions the function will
take. Most often/ it is a compound statement/ consisting of
a set of statements enclosed by braces. The rules for formu­
lating statements are presented in the next chapter.

When writing the code for a function/ there are a few
things you should keep in mind.

The caller will always pass its arguments strictly by
yalug. This means that altering an argument has no effect on
the state of the caller. However/ if an argument is a

Water loo March 1979

SQlntgr/ you can change the state of the caller by
indirecting through the pointer using either the unary in­
direction operator or subscripting.

The function may at any time return a one word value
using the RETURN statement. The caller and the callee do not
have to aaree on whether or not a value is returned. If a
value is returned/ but not expected/ the value is ignored.
If a value is expected/ but not returned/ the value is unde­
fined.

A function can determine the actual number of arguments
it is called with by invoking the library function NARGS.
For instance/ the statement

x = n a r q s () /'

would assign to the variable "x" the number of arguments
supplied to the current invocation of the function.

The availability of NARGS lets you write functions
which may take a variable number of arguments. Most of the
time/ this means that such a function is called with fewer
arguments than are defined for it/ in which case one of the
first things such a function does is to establish default
values for the arguments it does not have.

The other c a s e/ in which a function is called with more
arguments than are defined for it/ is somewhat trickier/ and
should be avoided/ unless you know precisely what you are
doing.

The function called MAIN is the entry point to your
program from the 3 runtime initialization routine. If not
present/ the TSS loader prints the message:

< w > main unde fi ned

For details on how your main function is invoked/ see
the chapter on the run time library.

March 1979 -13- Waterloo

Statements are used to define the actions taken by a B
function. They may apoear only in the body of a function de­
finition. In certain cases/ the definition of a statement is
recursive/ in that a statement may apoear inside a state­
ment. In this chapter/ you will see that in many cases/ one
may use an expression in a statement. Since the rules for
formulating expressions are discussed in the next chapter,
we merely note here that an expression may be a statement/
but a statement may not appear in an expression.

In every case where a statement is permitted/ it may be
replaced by a £QmQQjjnd Statement# consisting of one or more
statements enclosed in curly braces/ as in

<
statement!
statement?

The compiler does not permit a null compound statement like

< }

All statements/ except compound -statements/ must end with a
semicolon.

In the formal definitions which follow/ reserved words
are underlined and parentheses/ where shown/ are required.
Also/ "statement” implies either a statement ended by a sem-
icolon or else a compound statement surrounded by braces.

£.1. Uull SX31£W£ni.

The null statement does absolutely nothing. It is typically
used to supaly a null body to a WHILE statement/ as in

while(putchart getcharO));

or to provide a convenient place on which to hang a label.

Water loo - 1 4 - March 1979

£.2. ExQ££SSiQQ £iat£2£Qt

expression }

Any valid 9 expression followed by a semicolon is acceptable
as a statement. To be meaningful, the expression will usual­
ly involve an assignment operation or function call, as in

x = mi n (a,b) + x ;
open("/myfile", "r");
+ + i;

but the compiler will happily accept statements which do ab­
solutely nothing, such as

a < b,
open;

Remember that, in 8, assignment is an operator in an expres­
sion, not a statement. •

4.3.1. Storage tyres.
«!w» **•* w* «K»

Before discussing the statements pertaining to storage de­
claration or reference, we will briefly look at how storage
is allocated in a B program.

External storage consists of the global pool of exter­
nals declared in the manner described previously. For a
function to use one of these externals, the name must be
referenced in an E X T R N statement.

Automatic storage consists of local variables which are
created anew on the runtime stack each time the function is
called and which disappear when the function returns. Au­
tomatic storage is unique to each invocation of a function.

Internal (local static) storage is allocated within a
function body and is common to all invocations of a func-

Constants used inside functions are allocated as inter­
nal storage, but the compiler will not accent constructs
that would result in directly changing a constant’s value.

t i on . The label , which is never explicitly declared. is the
only permitted instance of i nterna I storage.

Finally, there is a pool of free storage which can be
dynamically allocated by the library function GETVEC and
dynamically released by the library function RLSEVEC. This
free area is automatically grown as required up to the lim­
its imposed by the operating system.

March 1979 Waterloo

Any identifier used in a function body must be a formal
argument# a label/ or previously referenced in an EXTRN or
AUTO statement. The only exception is a function name used
in a function call/ since the compiler automatically types
as external any name immediately followed by a left
parenthesis.

AUTO and EXTRN statements may appear anywhere in a
function body/ but you should group them at the beginning of
the function.

4.3.2 ® mSp* ® Eitc

£xt£D name!/ name?/ ... ,

This statement allows the function to begin using the names
previously defined as externals (see chapter 2). Although an
identifier may be externally declared as a vector/ you
should not indicate this in the EXTRN statement/ since B
lets you use any cell in a subscripting operation.

4.3.3. AliXs.

^yX2 namel/ name2Cconst-expr] / ... ;

The AUTO statement is used to declare local storage/ which
is unique to each invocation of the function. For example/

auto x/
auto i/ j/ xC13];

A vector declaration is legal in an AUTO statement/ but the
size of the vector must be a constant expression/ since it
is established at compile time.

£.20 $ X~is any legal combination of numeric or char­
acter constants/ unary operators/ binary operators and
parentheses. Make sure what you use is sensible/ because the
compiler accepts constructs like ’’auto x E -1 J” which lead to
undefined results. Normally/ one would expect a constant ex­
pression which is not a simple numeric constant to involve a
manifest constant/ as in

MAX — 10*

auto x[MAX*21z y C M A X + 7] t

If you need dynamic vector allocation/ you must use the li-
brary function GETVEC to obtain it from the free storage
area.

An AUTO statement which declares a vector is executable
in the sense that/ when it is encountered/ it initializes

Waterloo -16- March 1979

the pointer to ”n + 1” words. The initial contents of an AUTO
vector or other AUTO’variables are always undefined.

Because AUTO variables are allocated on the stack/ and
because the stack size is finite/ you should be cautious a~
bout declaring vectors/ whose size is greater than 64 words/
as auto variables. Although the compiler command will let
you change the default stack size of 500 words/ it may be
preferable to either use an external/ or else allocate it
from free storage.

4.^.4. Labels*

Any unique identifier followed by a colon and preceding a
statement is defined as a label. For example:

again: #
nxt: x = getchar () ;

A statement may be preceded by as many labels as appear
to be necessary/ as in

I a b 1 : I a b 2 : I a b 3 : printf(”hi there”);

4.4. Ir^QSfgE 21 £2D1£Q1*
The GOTO statement does the obvious thing. The RETURN

statement is used to exit from a function. The NEXT and
BREAK statements greatly simplify loop control.

4 . 4 • 1 • £ Q X Q •

2212 identifier ;

will cause a function to transfer control to the statement
which has the label ’’identifier”.

If ” label” has not already appeared/ it is defined as
one. It is a fatal error if it is not used as a label in the
funct ion body.

It is legal to transfer to any location inside a func­
tion body# including into or out of a compound statement. It
is almost never a good idea to transfer into a compound
statement# because the action is difficult to follow and be­
cause it can lead to unpleasant surprises.

Because Bis a typeless language/ the compiler has no
way of knowing whether the identifier you supply in a GOTO
statement really turns out to be a valid label at runtime#
so it is perfectly legal# but probably erroneous# to say

e x t r n b /'

goto b;

March 1979 Waterloo

Never try to pass a label as an argument to a function
and use it to transfer to another function. The program will
end up in one function/ but with a different function’s
stack pointer/ resulting in immediate or eventual disaster.

4.4.£.

fetyrn ;

££iW£3 (expression) ,

The RETURN statement ends the execution of a function and
results in return to the caller. Upon return# all temporary
storage in use by the particular invocation of the function
di sappears.

The first form of the RETURN statement merely returns
control. The second form causes a one word value to be re­
turned also.

Note that the construct

returnC) J

is not permitted by the compiler (it gives a syntax error).
A simple RETURN statement is supplied implicitly at the

end of a B function body.
The library function EXIT is also available/ should

your program wish to terminate execution at a point other
than after the last statement of MAIN.

4-4-3- Brsah.

The effect of BREAK is to drop out of the most recent inner­
most enclosing WHILE/ FOR/ SWITCH/ REPEAT/ or DO-WHILE
statement. The compiler generates a fatal error if a BREAK
statement is not inside one of these.

4.4.4. N££t•

next #
NEXT is a directive to skip all further statements in the
most recent enclosing WHILE/ FOR/ REPEAT/ or DO-WHILE loop/
and transfer to the test which determines whether looping
should continue. Note that NEXT is only legal in a SWITCH
statement if the SWITCH is itself inside one of these loop­
ing s t a t emen t s.

Waterloo -1 8 - March 1979

4-5- iQQiitiQnal

4.5.1. If.

11 (expression) statement

If the result of the expression is non-zero/ then the state­
ment is executed. The parentheses around the expression are
manda t or y.

IF (expression) statement ELSE statement

If the result of the expression is non-zero# the first
statement executes# otherwise the second statement executes.

In the case of nested IF statements where there are
fewer ELSE s than IF s# the compiler associates the ELSE
with the closest IF at the same level of nesting.

i f (. . .) i f (. . .) s 1 e I s e s 2

resolves to

i f (...)

Think of IF s and ELSE s being placed on a pushdown stack as
they aopear. An ELSE which you pull off the stack always
goes with the next IF pulled off.

Here are some examples of IF statements:

i f (a) y = x;

i f (a < 2) y - a i else y= 07

i f(a !=b)z = g(y);
else

a + = x ;

ixeraxi^e sxaxeasnxs.
A REPEAT iterates a statement until a BREAK statement

is encountered or a GOTO causes control to pass outside the
loop. WHILE iterates a statement as long as an expression is
non-zero# testing at the top of the loop. DO-WHILE iterates
a statement until an expression is non-zero# testing at the
bottom of the loop. A FOR uses three expressions to initial­
ize# test and modify in controlling a loop.

March 1979 Wat er Ioo

i • 6 • 1 • E £ Q £ $11

r eggJX statement

The REPEAT merely executes the statement forever. The state­
ment is almost invariably compound. NEXT and BREAK state­
ments are legal inside a REPEAT.

If the result of the evaluation of the expression is non­
zero# the statement associated with the WHILE is executed.
After execution of the statement# the expression is re­
evaluated again and# if the result is again non-zero# the
statement is executed again. In other words# while the
result of the expression is non-zero# the statement is exe­
cuted. When the result of the expression is zero# control

ment

passes to the next statement fol.lowing the WHILE stat ement.
BREAK and NEXT statements are legal in a WHILE state

The DO-WHILE provides a loop with a test at the bottom of
the loop. It is equivalent to:

repeat
<

s t a tenant
if(’expression) break/

BREAK and NEXT statements are legal in a DO-WHILE
statement.

The FOR statement may be used to set# test and increment a
variable in order to control a loop. The FOR statement is e-
quivalent to

Waterloo -20- March 1979

f
while (exp r2

st atement
e x p r 3 f

The first expression/ which might initialize a controlling
variable/ is evaluated. Then# if and while the result of
second expression (usually a test) is non-zero# the state­
ment is executed. Before returning to re-evaluate the second
expression/ the third expression# which might increment a
controlling variable# is evaluated.

Both BREAK and NEXT are legal in a FOR statement. The
effect of NEXT is to pass control to the evaluation of the
third expre ss i on.

Any or all of the expressions may be null# and they
need not necessarily involve the same controlling variable#
if any. Note that the second expression is always treated as
a logical expression. Some examples:

for(i = 0 ; i < 10; + + i) x L i] = j[i J ,

for(i = 10/ i <= xJ i += 2)
f o r(j = 1; j < y; + + j)

g C i J C j] = f (i ♦ j) ;

for(; i < nJ + + i) yCi 3 = zCn - i]#

NULL = 0;
NEXT = 1 ;
DATA = 0 ;
• • •
fort p = startlist/’ p != NULL; p = pCNEXT];)

i f (pC DATA 1 >= x) break;

The SWITCH provides a conditional branch depending on
the one word result of an expression. The SWITCH has the
following formal syntax:

switch (expression) statement

March 1979 Waterloo

The statement is always compound and special Labels are
allowed inside the statement to point to where to start pro­
cessing for a given case# as in

(expression)
<

const-expr: statement
„. ££££ const-expr :: const-expr: statement

break '
<rel op> const-expr: statement _

/* rel op. is one of </ < = # > = # > */
: statement

}

The SWITCH evaluates the expression and compares the result
with the constant or cons t ant bounds i n each CASE label. It
selects a case/ if there is one/ and begins executing the
compound statement at the statement immediately following
the appropriate CASE label. If the exoression result fits no
case# execution continues at the label DEFAULT (if supplied)
or at the next statement following the SWITCH# if DEFAULT is
not supplied.

Once a case is selected/ execution always falls through
into the next case# unless a statement which alters the cen­
t r o I flow is encountered.

Usually# a BREAK is used. It causes control to go to
the stat ement following the SWITCH.

A stat ement may have more than one label or CASE label#
JUS t as a label o r CASE label may be followed by more than
one statement.

As shown above/ a CASE may be satisfied by 1) a single
value/ 2) a range of values which include the endpoints/ or
3) an upper or lower bound. Overlapping bounds draw a fatal
diagnostic from the compiler.

By we mean as usual any legal combination of
numeric or character constants# unary operators# binary
operators and parentheses which can be evaluated at compile
time as some constant value. String constants are not per­
mitted in this context.

Any attempt to SWITCH on floating-point values will not
work# since the generated code performs integer comparisons.

The compiler will construct a jump table for the SWITCH
statement if the ratio of 1) the maximum case value minus
the minimum to 2) the number of case labels is between one
and two.

Wa t e rIoo -22- March 1979

As an example/ here is a function which uses a SWITCH to
determine if a character is legal for a B identifier.

alphnumC c)
s w i t c h (c)

<
case • A• :: • Z * :

/* converts upper case to lower */
/* and falls through to return */
r I - • • •Cl— /

case ’a’ :: ’ z ’ :
case ’O’ :: ’9’:
case ’. ’ :
case ’ _’:

return(c)J
/* would use break if return not used */

default:
return(0) /

/* end of alphnum */

March 1979 ~ 2 3 - Waterloo

s. EiQieSSiQns

Expressions in B are constructed according to rules
which govern combinations of operators, identifiers, square
brackets, and parentheses. B has a large set of operators,
which are described in this section.

Because B is typeless, the compiler always assumes a
given operation on a word is appropriate. Although this
tends to force you to do more checking yourself, it also
gives you the scope to do almost anything you want. This
typeless characteristic often causes trouble for beginning
users of 0, because the compiler happily accepts possibly
erroneous operations, such as adding one to a function name,
or using a pointer as a function call. Such is the price of
f r eedom.

The compiler takes no responsibility for the validity
of expressions. There is no runtime monitoring of possible
arithmetic overflows or faults. In the B run time environ­
ment, overflow faults are masked out, but, in the Pascal run
time environment, they are not. A divide error (like divid­
ing by zero) will result in a fault.

Expressions are evaluated according to an Qf
bjn^iQg which includes both the hierarchy of evaluation,
which determines the order of evaluating different types of
operators, and which determines the order in which
operators of the same type are evaluated. Me will discuss
the hierarchy from highest (evaluated first) to lowest and
mention the grouping rule for each type. The results are
summarized in Appendix A and the explain file ’’explain b
binding”.

5.1. Primary expressions.
The primary expression is the basic building block

used to construct expressions. It is defined recursively as
follows:

name
A legal identifier is a primary expression,

constant
Any legal constant constitutes a primary expression.

primaryC expr]
A subscripting operation, which is a primary expres­
sion followed by an expression in square brackets, is
a primary expression.

primary(arglist)
A function call operation, which consists of a pri­
mary expression followed by an open parenthesis, is a
primary expression. The open parenthesis must be fol-
lowed by a possibly empty set of arguments, consist­
ing of comma-separated expressions, followed by a
close parenthesis.

Water loo March 1979

(e x p r)
Any expression enclosed by parentheses which is not a
•function argument list is a primary expression. This
lets you use parentheses to alter the order of bind­
ing.

Here are some examples of simple primary expressions:

x get char() (a + b) 6 x C i J 6 [x J

In cases where a primary expression is composed itself of
another primary expression/ grouping occurs from left to
right. For example/ look at

xti JIj] x C i ()

In the first case/ "x" is treated as a pointer to a vector
of vectors. In the second case/ " x " is treated as a pointer
to a vector of functions/ one of which is to be called. In
both cases/ "xEiH" is evaluated first/ placed in a tem­
porary/ call it ”y”/ and then the remainder of the expres­
sion is evaluated as " y C j 3” or "y()"z respectively.

5.1.1. iQt 1 ng.

Subscripting is not restricted to use with variables origi­
nally declared as vectors. It is a completely general opera­
tion which may be applied using any two arbitrary expres­
sions.

To help you understand how subscripting works in 8/
take a look at the primary expression

aC i 3

One of the variables is supposed to be a pointer/ while the
other is supposed to be an offset/ but it does not matter
which! The reason for this is that 8 gets a pointer to the
cell "a[i3" simply by adding "a” and ” i " together. If the
value of the cell is required/ the compiler gets it by using
the pointer. Therefore it is perfectly legal to alternative­
ly say:

anywhere you could have said "aFi]'’.

March 1979 -25- Waterloo

5.1.2. EuosUqd calls.

As you can see above/ the general form of a function call
is:

primary e x p r1/ e x p r 2 / . . . / exprn)

Most commonly/ ’’primary” is just the name of the function to
call/ but the generality of expression is there to permit
you construct and use vectors or lists which contain func­
tions to be called.

A function call primary may always be assumed to return
a value. It is up to the programmer to make sure that a
value is returned when one is wanted or that a value is only
wanted when one is returned.

It is also up to the programmer to make sure that a
function is called with as many arguments as it needs. It is
safe to call a function with more or fewer arguments than
are defined for it/ assuming the called function is prepared
for such contingencies.

Note that it is the parentheses surrounding the argu­
ment list which tell the compiler the operation is a func­
tion call/ so they must always be present. For instance/ say
you have a function called PROC which requires no arguments.
To call it/ you s ay

p roc ()

But if you say only

proc

no function call will take place/ because none is implied.

5-2- Rvalues aod Lvalues-
When we come to the assignment statement/ or to opera­

tors which perform implicit assignment/ it becomes necessary
to distinguish between the address of a thing and its con­
tents.

An ryalge is the contents of a word. Any expression in
B may be evaluated for an rvalue. For example/ the rvalue of
a subscripting operation is the word addressed by the sum of
pointer and offset.

Everywhere in this manual where we say ’’expression”/ we
mean an expression whose result is some rvalue.

An ly^lus is the address of a word. Only a name/ a sub­
scripting operation/ or a primary expression prefixed by the
unary indirection operator may be evaluated for an
lvalue. The lvalue of a subscripting operation is the ad­
dress formed by the adding pointer and offset.

Waterloo -26- March 1979

It is convenient to think of an lvalue as an expression
which is legal to the left of an assignment operator and of
an rvalue as an expression which is legal to the right, as
long as you remember that both may also appear in other cir­
cumstances.

Context determines whether an expression is evaluated
for its rvalue or its lvalue. For example, look at the as*
s i gnment

a C 3] " 2 + x

The expression on the right yields an rvalue which is the
sum of the contents of ”x” and the constant ”2”. ”aC3J” must
be able to, and does, yield an lvalue which is the address
of the place to put t ne sum.

Conversely, it is illegal to say either of

6 = x
(a + b) = x

because the expressions which are on the left of the assign­
ment operator are not permitted to have an lvalue. If they
could have an lvalue, you could then in the first case
change the value of the constant, or in the second case make
a meaningless assignment.

5.3- UOary opfir^lQrs.
A unary operator acts upon a unary expression to

transform it in some manner. A ’’unary expression” is either
a primary expression or a primary expression already modi­
fied by one or more unary operators. In the definitions
below, ’’rvalue” or ’’lvalue” must be a unary expression.
Unary operators are applied from left to right. Except for
the unary indirection operator# the result of applying a
unary operator is always an rvalue.

The following unary operators are defined:
^rvalue •

Assumes the value of the expression to be integer and
converts it to single precision floating point.

it r v a I u e
Converts single precision floating point to integer,

’rvalue
One’s complement. Converts all zero bits of its
operand to ones and all one bits to zeros.

-rvalue
Results in the arithmetic negation (two’s complement)
of the op er and.

March 1979 -27- Waterloo

- r v a I u e
Results in the floating point negation of the operand
word.

!r vaIue
Logical not. The result
non-zero; otherwise/ the

is zero
result is

if the operand is
one .

★rvalue
The indirection operator. Takes the rvalue but uses
it as an lvalue. This is the only case in which a
unary operation returns an lvalue. Thus any primary
expression prefixed by a may appear on the left
hand side of an assignment. "★6 = x” stores the con­
tents of x in location six. ”y = ★x" stores the con­
tents of the word pointed at by x into y.

& IvaIue

rvalue. For instance/ ”&x" is an rvalue which con­
tains the address of x in the lower 18 bits/ while

The address operator. Forces the program to generate
the lvalue of the expression/ then use it as an

"&6" is illegal/ because ”6” may not have an lvalue*.
★★lvalue

Adds one to the rvalue/ before using it. Each of the
auto increment/decrement operators require an lvalue
as its operand. An lvalue is required/ because of the
implicit action of assignment/ but the result is al­
ways an rvalue.

I value + +
Adds one to the rvalue/ after using it.

-lvalue
Subtracts one from the rvalue/ then uses it.

Iva Iue--
Subtracts one from the rvalue/ after using it.

9primary
The at-sign operator is used to force the use of
Honeywell hardware indirection. Its effect is to OR
the indirect bit into the last generated instruction
for an expression (rvalue or lvalue). The instruction
affected is usually a load or store. It was most com­
monly used to access characters using tallies/ by in­
directing to a word with tally modification and the
address of a tally word. Normally/ you should not use
i t .

Waterloo -28- March 1979

There is a fundamental relationship between the
operator and subscripting which should help you understand
how addressing works in B. The following are exactly e-
quivalent everywhere:

a C b J bta J

To be able to write or understand B programs/ it is vital
that you understand the validity of this relationship.

Here are some examples involving unary expressions:

Adds one to the value of "i". Frequently used short­
hand for "i = i + 1”.

a[b][c]+t
Forms an address by adding together "a" and ”b”/
picking up the word pointed at and then adding ”c” to
the contents. It is equivalent to "*(*(a + b) + c)H.
If this were part of a larger expression# the word
pointed at would be loaded into a temporary. Then the
contents of the addressed matrix element is incre­
mented by one.

SaCil
Forms the address of the cell "a£ij" by adding the
values of "a" and "i". That is/ it is evaluated as "a
+ 1 «

y = *(&x)
The verbose way of saying ”y = x”.

x = *p++
The word which word pointer "p" points at is copied
into "x", then ”p” is incremented by one to point at
the next word. That is/ "n" is used/ then increment­
ed.

The word pointed at by ”p” is incremented by one and
then copied into "x”.

* + p •- x
The contents of ”x” are copied into the word pointed
at by ”p”/ but only after ”p” has been incremented by
one to point to the next word. That i s/ Mp” is first
incremented/ then used.

*6 = 2
Places the value two in location six. ”*6” is the
same as "0E6J" or M6C0]M. This kind of construct is
used to access locations in the slave program prefix.

xCatbl + 1 J
Gets the contents of ”aCb]” into a temporary and adds
one to the temporary to get the subscript. The con­
tents of ”x" and the subscript are added together/
yielding the address of the element of "x" to be
used.

March 1979 -29- Waterloo

5.A. Binary: fifig r .
All other operators are binary operators# which means

they require both a left and a right operand. Each operand
must be an r v a I u e d expression.

With one exception# the order in which the two operands
are evaluated is undefined/ so don’t have the evaluation of
one side depend on a side effect generated by the other side
(in a function call/ forinstance). Logicaloperators are
the only exception. Their operands are always taken strictly
■from left to right . ___________

The code generated for floating point operations is
correct/ but not blindingly efficient/ since the compiler
generates a separate load and store for each use of a
floating-point operand. However/ it is there if you need it.
For non-casual use of these operators/ it is probably better
idea to either call a Fortran or Pascal routine to do the
job/ or else program in some other language.

5.5. Shift QpgratPXS.

The left operand is taken as the one word bit pattern
to be logically left shifted. The right operand sup­
plies the number of bits to shift. If negative/ or
greater than 127/ the result is undefined,

expr >> expr
Logical right shift according to the same rules. No
arithmetic right shift is defined in the language/
but you may use the library function ARS.

Shift operators group from left to right.

expr & expr
The operator takes the bitwise "and” of its two
36 bit operands. If bit i of both operands is one/
then bit i of the result is one. Otherwise bit i of
the result is zero.

5.7. Bitwise exclusive gr.
f

expr expr
Takes the bitwise ’’exclusive or” of its two 36 bit
operands. If bit i is on in one/ but not in the oth­
er/ then bit i of the result is on.

Waterloo -30- March 1979

5.2. Bitwise q£

expr I expr
This take the bitwise "or" of its two operands? such
that if bit i is on in either of the two operands or
bothz bit i in the result is on also.

The following is a summary chart of the results of bit­
wise operations. The table shows the effect of each opera­
tion on one bit.

operands results
a b andorexor
0 0 0 0 0
0 1 0 11
10 0 11
11 110

The three bitwise operators group from left to right.

5.9. Myltjgli£itjye operators.

expr / expr
Integer division of the first integer operand by the
second. Will result in a divide check abort if the
right operand is zero. The result is zero if the left
operand is less than the right. The result is trun­
cated towards zero if the right operand does not
divide evenly into the left. The result is positive
if the operands are both positive or both negatived
otherwise? it is negative.

expr X expr ~
Results in the integer remainder of the integer divi­
sion of the first operand by the second. If the
remainder is non-zero? it has the same sign as the
left operand. ‘

expr * expr
Integer multiplication.

expr # / expr
Single precision floating point divide,

exor # * expr
Single precision floating point multiply. All float­
ing point operators assume floating-point operands.

Multiplicative operators group from left to right.

March 1979 -31 - Waterloo

5.10. A^jtjvs op^r^t^rs.
These provide integer or floating point addition and

subtraction.

expr + expr
Integeradd.

expr - expr
Integer subtract.

expr #+ expr
Single precision floating point add.

e xpr # - expr
Single precision floating point subtract.

Additive operators group left to right.

EelatiQDaL 2 us 22121:5.

expr = = expr
Equal.

expr != expr
Not equal.

expr < expr
Less t han.

expr <= expr
Less than or equal.

expr > expr
Greater th an.

expr >= expr
Greater than or equal.

The result is one if the given relation between two integer
operands is true/ and zero otherwise.

The following operators perform the same function for
floating point operands:

= = #!= #< #< = #> #> =

5.12- 1.221221 221-

expr & & expr
The result is an integer one if the result of both
expressions is non-zero# and zero otherwise.

The left-hand expression is always evaluated first. If its
result is zero/ the result of the expression is zero and the
right-hand expression is not evaluated.

Waterloo -32- March 1979

5.13. Laaiial 2£.

expr II expr
The result is an integer one if the result of either
expression or both is non-zero# and zero otherwise.

The left-hand expression is always evaluated first. If the
result is non-zero? then the result of the expression is
non-zero and the right-hand expression is not evaluated.

5-14. "Query"

exprl ? expr? : expr3
The first expression is evaluated. If the result is
non-zero# the second expression is evaluated and re­
turned# while the third expression is ignored. If the
result of the first expression is zero# the third is
evaluated and returned# while the second is ignored.

This is analagous to "if(exprl) expr?; else expr?”#
but has the advantage that it may be used in an expression.
For example# a function to calculate the maximum of two
numbers might be coded as:

max(a# b.) return(a > b ? a : b);

Grouping is left to right# so that
—........... r"""-------- --- ------------- ------------------ -------------------- --- -------------------

a?b:c?d:e

is equivalent to

a ? b : (c?d:e)

5-15. Alignment OQ^tors.

lvalue = expr
Takes the one word result of the evaluation of "expr”
and stores it in the word addressed by the lvalue.

lvalue <op>= expr
Is equivalent to the assignment

lvalue = rvalue <op> (expr)
where <op> can be any one of

* / % + -<< >> & I
Note that neither floating point nor relational
operators are included.

March 19 79 -33- Waterloo

For example/

x *= a + b f

is the same as

x = x * (a + b) #

In all cases, the expression is evaluated first/ even though
the operator in the assignment may have higher binding
strength than an operator in the expression.

Assignments group right to left:

is taken as

x = (y = 0) ;

Remember that assignment is an operation, not a state­
ment/ and so is legal almost anywhere/ including conditional
expressions/ such as

if((x = y[i + +]) == z).••

Note that parentheses are used in this case to alter the
order of precedence. These are required in this case because
the assignment operators have the lowest precedence/ which
means that they are evaluated last.

Waterloo March 1979

6. DX lol D£OXl^D.

The information in this chapter is subject to change.

6.1. Linkage soQ^snliQ,ns.
The B compiler’s mechanism of performing a function

call is rather different from the standard Honeywell calling
sequence. In this chapter# we will describe the calling con­
ventions in detail# so you can attempt to write or under­
stand functions written in GMAP for the B environment.

The stack format described here is also used by PAS-
CAL/66.

6.1.1. function £jli.

The standard B function call looks like

t s x1 sub
zero s # n

where "s’’ i s amount by wh i (: h the stack pointer should be
bumped and ”nH is the number of words of arguments supplied.
The compiler generates these numbers for B functions.

When a B function is running# its stack pointer points
to a word of return information. Just below the stack
pointer are two words# which are used by any function which
is called from the current function. Above that point is a
fixed size area for arguments and for AUTO variables# all
addressed relative to the stack pointer. Stack space above
the AUTO variables is used to hold temporaries created dur­
ing expression evaluation. When one function calls another#
the stack pointer is moved so the callee does not affect the
state of the caller.

Before executing the TSX1 instruction to transfer to
the function# the caller must first set up the argument
values. The fi^st and second arguments are loaded into the A
and 0 registers# respectively. Other arguments# if present#
must be placed in the stack in such a way that they are
available to the caller once the stack gets bumped. This is
shown in the next section.

6-1.2. £dxxy.

The general convention for a subroutine entry looks like
this:

Mar ch 19?9 -35- Waterloo

symdef sub
sy mr e f .entry
tra *+1 value of function name
tsxO .entry adjust stack/ save linkage
zero frm/dbg frame size/ debug table
staq 1/7 first two args passed in the AQ

”Frm” indicates the maximum number of words of stack that
will be used by the function. A pointer to this word is
saved in the stack/ so that/ if there occurs an asynchronous
event (such as a fault)/ it will be possible to locate the
top of the stack. "Frm" is also used in the check for stack
overflow. "Dbg” is a pointer to the local debug symbol
table/ if present/ or else zero/ if not. It is used by the
debugger and by the profiler/ .PROFILE.

The code executed by .ENTRY (without the stack overflow
check) looks like this:

return for traceback stx1 -1//7
stx1 — 2 z z7
s x I 0 -1 z z7
ldx2 Oz 1
s 8 r 7 0/ 2z7
a w d Oz 2z7
tra 1 z 0

actual return address
save pointer to frame size
get "s" from function call
save old stack pointer
bump stack
r e t u r n

There are two things to notice about this sequence of code.
First/ note that the return address is stored twice. This
allows the actual return address to be modified if it is
necessary to intercept a function return/ while still allow­
ing the debugger to print a correct traceback. SETEXIT and
ALLOCATE are examples of library functions which set up in­
terceptions of function returns. Second/ note that return
information is saved in the caller's stack frame. This means
that certain library routines can avoid the overhead of a
call to .ENTRY but still get access to two words of stack
space "for free".

Register usage conventions are as follows. Address re­
gister seven is reserved for the stack pointer. Index regis­
ter six is reserved for the coroutine package. Address re­
gisters four and five are reserved for use by the i/o pack­
age. Index register five may be used/ as long as its value
on entry is restored on return. The remaining registers
(ar0-ar3/ x0-x4) may be used freely/ but note that a func­
tion which does not invoke .ENTRY is responsible for
preserving the return address in index register one. You can
use index register seven freely/ except in the Pascal run
time environment/ in which you may use it freely only after
copying over the display it points to.

By convention/ the first two arguments are passed in
the A and Q register. It is the responsibility of the called
function to store them if necessary.

Waterloo -36- M a r c h 19 79

The hardware will only allow a STAG instruction to work
correctly if the address of the store is at an even word
boundary. To ensure that the STAQ will work/ the stack
pointer is always initially set to an odd address/ and must
always be incremented by an even amount.

Once the STAQ is done/ the stack is organized as fol-

27 -> used in next call
-1//7 -> used in next call
0 / / 7 - > previous stack pointer
1//7 -> first argument (initially in A register)
2zz7 -> second argument (initially in Q register)
n//7 -> nth argument (placed in stack by caller)
n+1//7 -> start of auto variables and temporaries

6.1.3. Exit.

When a B function has done its job# it returns using the se
quenc e:

symre f .r e t rn
tsxO .retrn (lar7 0//7 - restore stack pointer)
rem (ldx1 -2/,7 - get return address)
rem (tra 1/1 • return)

Prior to this/ the function may load a one word value into
the Q register/ which becomes the value of the function
call.

A TSXO instruction is used so that the interactive de­
bugger, if in use# can determine the address at which the
function returned/ in order to find out the name of the
function returning.

6-2. Internal re^resentatiqq 2f QbjecXs.

The material in this section is intended to help you
understand how the code generated by B works internally.

The value of a function name is an external word con­
taining a transfer instruction with the address of the first
word of the function body in the upper 18 bits. Transfer of
control to a function body always occurs by transferring to
a word, which is expected to contain a transfer to the start
of the actual function body.

The value of a label is a word containing/ in the upper
18 bits/ the address of the place to go to in the function
body and zeros in the lower 18 bits. The transfer involved
in a GOTO occurs indirectly through the label word.

The value of a pointer or address is a word, whose bot­
tom 18 bits are taken as an address.

The value of string constant is a pointer to the text

March 1979 -37- Waterloo

of the string

7. Ih$ 2 Library.

One of the big advantages in using B is the availabil­
ity of a large library of useful functions which simplify
your programming problems and also supply a reasonable in­
terface to the GCOS/TSS environment.

Every B library function you could reasonably expect to
use has an explain file under ’’explain b lib”. There is also
an index of all documented routines.

Only the routines you need to get started using B will
be discussed here and even then not all options may be
treated.

Some functions may return a value; this is indicated in
this section by shewing an assignment to indicate a value is
returned. Also/ some functions are called with a variable
number of arguments. If you want to use an optional argu­
ment/ you must usually also specify any preceding optional
arguments also. Optional arguments are shown enclosed in
square brackets. For example# if a function is shown as

return = f u n c(a r g 1 E # a r g 2 # a r g 3]) ;

and you want to use ”arg3”# then you must also use ”arg2”.
Sometimes# as you will see# the first argument# usually a
’’unit”# may be optional. In this case# the called function
craftily examines the first argument to see if it is a
number valid for ’’unit”; if it is not# it adjusts its argu­
ment references accordingly.

7.1. .gS£T - redirection of i/o.
Before your main program is entered# the run time ini­

tialization routine calls a function named .BSET which
’’predigests” the command line for the user program and also
sets up any ’’redirection of i/o” requested on the command
line.

In batch/ .BSET looks for the command line on filecode
CZ. In your jcl# you might have something like

$ data cz
command arg1 arg2 ...

BSET breaks the command line up into ’’arguments”. An
argument is either a string of non-blank characters# a quot­
ed string# or a redirect request.

Waterloo -38- March 19 7 9

A redirect request has three forms

<fi lename
.BSET will open the file for reading on B unit 0. In­
put for unit 0 will come from this file/ rather than
the terminal.

>filename
The filename is opened for writing. Output to B unit
1 will go to this file/ rather than the terminal.

>>filename
Same as above? except that if the file already ex­
ists/ output is appended to the file.

A quoted string is delimited by either single or double
quotes. To qet a quote inside a quot ed string/ either use
the quote which i s not the delimiter or else put in two of
the delimiter characters.

.BSET collects the arguments which are not redirect re­
quests and builds a vector of pointers to those strings.
MAIN is later called by

main(a r qc / argv)7

where "argc” is the number of arguments collected and "arqv”
is a pointer to the vector of strings. "argvlargcJ” always
contains the constant -1.

In addition/ .BSET builds an external vector called
.ARGTYPE/ each cell of which contains a character giving
some indication of the type of argument in the corresponding
ARGV string:

type character
string ’ ’
string in single quotes •
string in double quotes
-option * - *
^option 1 + ’
possibly siqned number ’0’
string with = in it

For example/ look at the command line

go -r /myfile "a string” >b^out

MAIN will be called with ARGC set to four/ since ”>b.out” is
not inc luded. All writes on unit 1 will go to 1:he file
b. out / which i s created if necessary. The ARGV and .ARGTYPE
vectors are set up as follows:

argvCO] - = "go” -argtypCOl = ’ ’
a r g v C 1] = ”-r ” . a rq typC1] = 1-1
a r g v C 2] = ’’/myfile” .argtypCZ] = ' ’
a rgvC 3 1 = ”a string” .argtypCSJ = ””

March19?9 -39- Waterloo

and the contents of the remaining elements of the ARGV vec­
tor are undefined.

If you do not want to have .BSETz simply supply your
own function definition of ”.bset();” which will replace the
libraryversion.

Normally/ however/ you will want .BSETz because it
greatly simplifies the task of handling command lines. In
factz there are even more powerful facilities built into
.8SET for scanning command lines with arguments of specified
types. As well/ you may call .BSET to scan an arbitrary
string. For full detailsz see the explain file ’’explain b
lib .bset”.

7.?. Introduction to input/output.
■W.. Art. 'VVQg, ASH* ***• -i1®* Wff. ffW WE®

The largest class of functions in the B library are
those concerned with input and output. Sequential input
routines will readz and convert to ASCII if necessaryz any
sequential file in standard system formatz including media
Oz 2 or 3 BCDz media 5z 6 or 7 ASCII and media 1 compressed
source decks (comdks). Output is ASCII (media 6) unless spe­
cial precautions are taken.

The i/o package will create output files if necessary
and ”grow” them as required up to their maximum size or to
the limit of the file space quota for a userid.

Z.2.1. UQils.

A B program may have several files open for reading or writ­
ing at the same time. Each file is associated with a number
called a ’’unit”/ to which every i/o call implicitly or ex­
plicitly refers.

There are five units whose function is predefined and
may not be altered by the user.

-5
This is an input unit whose origin is always the ter­
minal in TSS or file code I* in batch. It may be used
to force reading from the terminal or file code I * /
even though the standard input may have been
redirected to come from a file. Normallyz you should
use unit zero instead.

-4
This is an output unit whose destination is always
the terminal in TSS or file code P* in batch. It is
most often used to avoid possible redirection of i/o
by forcing error messages to appear on a hard copy
device. Normally you should use unit one instead.

Water loo - 40 - March 1979

-3
Used for console input in batch only.

-2
Used for console output in batch only.

-1
In TSS/ all outout directed at this unit behaves as
if it were typed at command level. In batch/ output
to unit -1 goes to the execution report.

redirection of i/o is used. In batch/ reads on unit zero
come from file code I*/ if it is defined and if input was

Uni t zero is initialized as the standard iDQUi uni t. In
TSS/ this is the terminal but inout may come from a file i f

t i on .
Similarly/ unit one is initialized as the standard out-

pyX unit. In TSS/ this is again the terminal and is subject
to redirection of i/o. In batch/ outout to unit one goes to

not redi rected. If I ★ is not present and there i s no input
redi r e c t i on z unit zero is placed in the e nd-o1f-f i Ie condi -

the usual practice is to leave them alone/ so they may be
redi rected.

the printer# unless redirected.
Units two through 44 may be assigned by or to you/ us-

i ng the file ooening call/ usually to permanent or temporary
disk files. It is permissible to open units zero or one/ but

Z-2-2. Unix QPSQing.

Before any i/o may be performed on a unit/ it must be ini
tialized by a call to OPEN/ which is of the following form:

ret = open(Eunit/1 filename/ action)#’

Normally/ "unit” is not supplied/ and OPEN finds a free
unit/ which it returns. If you do specify a unit/ and that
unit is already open/ The state of the previous unit is
saved on a stack# when the current use of the unit is
closed/ the previous state is restored and i/o may continue
on that unit as if there had been no interruption,

"filename” is a pointer to a string containing the usu­
al catalog/file string (e.g. ”fbaggins/s/test.b"). An alt-
name in quotes is used/ if present. Permissions are effec­
tively ignored.

'’action” is also a pointer to a string containing char­
acters which specify the access permissions required and the
type of i/o to be done on the unit.

"ret” is the value returned by OPEN. If non-negative/
the open succeeded and "ret” contains the number of the unit
just opened. "ret” is negative and no unit is opened if
there was a file access error or if there was an OPEN error.

Although not oui te all of the various things accepted
by OPEN are dealt with in this chapter/ they are treated

March 1979 -41- Waterloo

fully in the explain file for OPEN.

Access actions: Most of the time# the only thing you
need to specify to OPEN is how you want to access the unit.
Here are the alternatives:

r
The ’r’/ for read/ means you want to read on the un­
it. . ,......

w
The *w*# for write# means you want to write on the
unit.

a
The ’a’# for append# means you want to write on the
unit# but by appending to what is already there. If
there is nothing already there# or if appending is
inappropriate# the result is the same as if you had
used the ’ w * action.

For ordinary sequential file processing# one of the above is
the only action you need usually specify.

Mode actions: OPEN offers three ways to specify the
mode of the unit being opened. They are as follows:

b
The ’b’# for block i/o# requires that the unit being
opened be a random access file.

s
This is used for so-called "string i/o". The
"filename" argument is taken as a pointer to the
start of a block or words in memory. The stream i/o
functions will place characters into this block of
memory# rather then transmitting them to a file.

i
Open the file according to its mode. It is then up to
the program to determine# with the help of the func­
tion FILDES# whether the file is random or sequential

'and then make whatever i/o calls seem aopropriate.

If none of these is supplied# the assumption is that a file
is wanted and that it should be sequential# as is usually
the case.

Error actions: Normally# OPEN never returns an error
status# since the default action is to abort the program
with a reasonably understandabIe error message.

The OPEN function lets you specify options which allow
you to handle either file opening errors or file i/o errors
or both. These options are in the form of characters which
may appear in the action string:

Water loo -42- March 1979

e
Arranges things so that a negative status is returned
on an i/o error.

Sets things up so a negative status is returned on an
OPEN or file access error.

m
Normally, when an error status is returned, no error
message is printed. The inclusion of the fm* option
in the action string will cause the appropriate
routine to display an error message before returning
bad status to the caller. It has no effect if neither
the 9e ’ or • f * action is used.

For instance, if you said

open(’’/myfile”, ”rfm”);

and ’’/myfile” could not be opened with read permission, OPEN
would print an error message, then return bad status to the
caller.

In the case of OPEN errors, you will most likely get
back a number with is the negative of the file system error
status. For example, OPEN would return -5 for ’’permissions
denied”. In addition, OPEN itself is liable to return any of
the following special error statuses:

-64 - too few arguments
”65 - no free unit
-66 - open append error

File access conventions: There are a number of file
access / create conventions for TSS which you should be aware

1. Search rule: A gyj^k access name is one which con­
tains no slashes or dollar signs and does not have an alt”
name. It must also be less than nine characters long; if
not, it is considered to be in error. If you are opening a
file and the name is a quick access name (e.g. ”b.out”), the
file accessor first searches the AFT for a file of that
name. If not found, the file accessor searches for a file of
that name in the U se ra s t er - C a t a I oa of the current userid.
If the file name is not of the quick-access form, it is as­
sumed to be the name of a permanent file.

2. Create rule: If the search fails and the request is
to write or append, OPEN will attempt to create the file. If
the file name is of the quick access form, OPEN will try to
create it as temporary; otherwise it tries to create a per­
manent file.

3. AFT rule: If the file was already in the AFT when

March 1979 Waterloo

accessed/ or if the file is a temporary file created during
the access/ it is left there when the unit is closed. If the
file was not in the AFT initially/ and the file is per­
manent/ it is removed from the AFT when the unit is closed.
You may override this by including in the action string
either the character ’t’ (for transient) to force deaccess/
or the character ’ k’ (for keep) to force the file to be kept
in the AFT.

7.2.3. Unix xlnsing.

When you are through with a unit/ you may want to close it
explicitly by calling CLOSE:

closel unit) ;

For sequential stream output units/ CLOSE flushes the output
buffer if necessary/ with an end-of-file mark written if ap­
propriate. A unit associated with a disk file has the file
deaccessed/ if required. CLOSE releases the i/o vector after
checking to see if there was a prior use of the unit which
had been interrupted and saved. If there was/ it is restored
and i/o may then proceed on that unit as if there had been
no interruption; otherwise/ the unit is free for further al­
lo cat ion.

When your MAIN function terminates/ or when you call
EXIT directly/ all open units are closed automatically. Note
that if you hit break/ things are set up to call EXIT/ un­
less your program has established its own break handling
procedure.

Any attempt to read data from a unit which is not open
results in the library routine called returning a value
which indicates nothing happened. Similarly/ output to a un­
it which is not open tends to vanish.

7.2.4. Unjt switching.
I

Since some input/output calls may not specify a unit direct*
ly/ the i/o package maintains a default input unit and a de*
fault output unit to which these calls implicitly refer.

Initially/ the i/o oackaqe is set to read from the
standard input (unit zero) and write on the standard output
(unit one) .

Any successful call to OPEN changes the default input
or output unit.

A library function which takes a unit as one of its ar*
guments will change the reading/writing unit for the dura*
tion of the call and restore the previous value before re*
turning to the caller.

Waterloo — 44* March1979

User control over unit switching is supplied by

old.unit = .read([new.unit])/
If ’’new.unit” is given/ it becomes the current read
unit. The number of the old read unit is returned.

old.unit = .write([new.unit])/
Works the same way as .READ/ except that it applies
to the default write unit.

7.3. Ssausolial sXisjid j/p.

This section describes the body of routines oriented towards
handling input/output on terminals or standard system format
sequent i a I files.

The i/o package reads almost any media and arranges
things so that the using program sees only a stream of ASCII
characters. For instance/ BCD printer slews and strange es­
capes in media 3 files are correctly detected and converted
on input/ as are ASCII slews in media 7 print image files.
Compressed source decks are handled correctly/ but the way
it handles object decks is probably not very useful. Media 0
is always taken as variabIe-Iength BCD.

On output/ the i/o package writes media 6 ASCII unless
special action is taken as described in the explain file for
OPEN. If writing to SYSO'JT in batch/ output is media three
(BCD printer format).

You have the option of opening a unit to read/ to write
or to append as follows:

unit = open(filename/ "r");
open a unit for reading/ requesting read/concurrent
permission.

unit = open(filename/ ”w")2
will open a unit for writing/ requesting
write/concurrent permission.

unit = open(filename/ "a"
will open a unit for writing so that data written by
the program is appended to the end of the file. If
the file is null to start with/ OPEN treats the si­
tuation just like a regular open for writing.

March 1979 -45- Waterloo

Z.2.1. Ifirwlnjl ills.

There are a few special features of and differences between
file and terminal i/o of which you should be aware.

A logical record consists of a string of characters
followed by a ’’record terminator’1/ which is one of **n’#
•*r’# or ’*f’. Of these# ’*n’ is never present on an input
file; instead/ the ’*n’ is automatically supplied by the i/o
package to indicate the end of a record. On input from a
terminal/ you separate logical records (lines) by using
either the "return” or ’’line-feed" key.

End of file on a file is signalled by the presence of a
special record at the end of the file. End of file on a ter­
minal is signalled by a line whose first (and usually only)
character is an ASCII file separator (FS - octal 034) char­
acter# the same as is used by TSS GFRC. On most ASCII termi­
nals# including the Teleray and Vo I ker-Craig# a FS character
is transmitted by typing the ’cntl* and 1\’ (backslash) keys
simu ItaneusIy# followed by a carriage return. On certain
others# you get an FS by typing ’cntl’# ’shift’# and ’L’.
You can’t signal end of file on a 2741.

Sequential file output is written in GFRC standard sys­
tem format with 320 word blocks. An end of line (’*n’) char­
acter written to a sequential disk file signals the end of a
record but is not itself placed in the record; all other
record terminators do get written out. A new logical record
is started following the receipt of any record terminator.
If more than 1272 characters are written in a logical
record# the i/o package will generate partitioned records to
permit the logical record to span more than one physical
block. A 320 word buffer is written out only when it is
necessary to start a new buffer or when CLOSE is called.

Terminal output is buffered by TSS. However# if your
program issues a read from a terminal# the i/o package ar­
ranges that all output sent appears on the terminal before
it is "unlocked" for input.

When writing to the batch console# a ’*v’ is translated
to a ’*n’# but does not cause the current line to be
flushed# in order to let you either write a couple of lines
or else write a line and then read a line# without having to
worry about some other process affecting the console between
writes or between read and write.

Waterloo Li i > March 1979

Z.3.2. SllfiJffl j/2 iUD£ii2DS

char qo t = get char()
Returns the next character from the current read un­
it. Returns the character ’*0’ if the current reading
unit is closed or at end-of-file. Most of the input
routines described here behave as if they make re­
petitive calls to GETCHAR.

char = ungetcl char);
Sends a character back to the current read unit/ so
that the next call to GETCHAR will return the last
character out back.

char = getc(unit) ;
Same as GETCHAR/ except the reading unit is switched
to "unit” for the duration of the call/ then re-
s t o r e d.

char^out = outcharf char);
Sends the character supplied as its argument to the
current writing unit. PUTCHAR also returns its argu­
ment word as its value. The argument word may actual­
ly contain up to four non*zero characters. PUTCHAR
will output as many characters as there are in the

char = putc(unit/ char) ;
Same as PUTCHAR/ except PUTC switches writing units
for the duration of the call.

remainder of the current line of input if GETCHAR has
already been called. The newline at the end of the
line is not returned/ instead it is replaced by a
1 * 0 * to mark the end of the string, "string” is taken

string = getstringl Cun i t.r J string Cjrfnaxl]) ;
GETSTRING gets the next line of input/ or the

as a pointer to a vector long enough to hold the
string. "unit" i s used i f supplied; o t h e r wi se the
current read unit is used. If "maxi" is g i ven/ only
the first "maxi" characters are returned/ with a ’*0’
tacked on to the end. If the unit is closed or at
end-of-file/ GETSTRING returns zero; otherwise it re­
turns "string". The string is the nullstring if a
line contains only a newline. If GETCHAR was not
called/ GETSTRING has the effect of returning the
next line of input from the terminal or the next log­
ical record from a file.

March 1 979 Waterloo

string = getlineC CunitzJ string Cz maxlen]);
Same as GETSTRINGz except the line terminating **n*
is included in the string z just before the string
ending 1 * 0 * .

PRINTF is the most frequently used means of doing
output in the B library. If '’unit” is not suppliedz
the default writing unit is used. If ’’unit” is givenz
PRINTF temporarily switches writing unitsz but re­
stores the original state upon return, ’’format” is a
string describing how the arguments are to be output.
It may contain any combination of literal characters
and formats. A format is of the form ”Xnnx”z where
"nn" is an optional countz and ”x” is one of the fol­
lowing characters:

b - The cor responding argument is taken as a
UQi.Ql££ to a string of BCD charactersz which is
to be translated to ASCII and printed. Since BCD
strings do not have a string terminatorz a count
of six is assumed if not supplied. Trailing
blanks are stripped.

c - The corresponding argument is printed as an AS­
CII character. The count option is not applica­
ble. The argument word may actually contain up
to four non-zero ASCII charactersz which will be
printed.

d - The corresoonding argument is taken as a de­
cimal integer which is converted to a string and
cutout .

f - The argument is taken as a floating-point
number to be converted and output. If your pro­
gram does not use at least one floating-point
ope r a t or z you must include an "extrn .floats" to
force the loading of the floating-point output
rout i n e.

o - The contents of the argument word are output in
octal.

s - The cor responding argument is taken as a
pointer to an ASCII stringz which is transmitted
to the output unit stripped of its trailing
• *0’ .

If a character in the format string is not part of a
formatz it is printed as it appears. If a format does
not have a cor responding argumentz it is printed as a
literal string. To print out ’%’z you must use
There is more to PRINTF than is given here,’ for full
detailsz see the explain file ’’explain b lib printf" •

Water loo -48- March 1979

string = putstringC [unit/] string E/niaxU);
Works in much the same way as GETSTRING. The ’*0'
which marks the end of the string is not output. If
you want to write out a logical record and the string
to be output does not end with a ,*n*, you should
usually follow a call to PUTSTRING by a
’’put char (' *n’) ;" .

number = getnumO;
GETNUM returns the next/ possibly signed integer
number from the input stream. It calls GETCHAR until
it has skipped over all blanks, tabs or newlines. If
the character is not a digit or a sign, zero is re­
turned/ indicating no number was found. If a sign was
found, and the next character is not a digit, zero is
returned again. Otherwise it collects numeric charac­
ters until a non-digit is found, then converts the
numeric string it has collected to binary and returns
that number as its value. The external GETN.A has the
value 1 if a valid number was found. The external
GETN.L contains the last character read.

putnumC number);
PUTNUM converts the assumed binary integer which is
its argument to a character string and directs the
string to the c u r r e n t output unit.

status = eof(Cun it]);
Returns a non-zero value if ’’unit” is at end of file.
If ’’unit” is not given, the current reading unit is
used. Once a unit is open, end of file is set only
after an attempted read results in the detection of
that condition. If ’’unit” is given, and the unit is
an output disk file, a logical end of file is written
and a new block begun.

There are a few other routines which must be mentioned, but
which will not be described in detail here. READF does for-
matted input. some what like PRINTF in reverse. It also sup-
plies the on I y convenient means of re ad i ng i n a floating
point number. GETNUM and PUTOCT can read or write octal
numbe r s .

GETREC and PUTREC allow you to obtain/transmit a logi­
cal record, including record control word, without any in­
tervening processing by the i/o package. You must understand
standard system format before you attempt to use GETREC or
PUTREC .

March 1979 — 4 9 — Waterloo

Z-£- Eandcm like 1/q.
When using ran dom-access files# your program is

responsible for all input or output done on the file. The
basic unit of i/o is the sector of 64 words. Any number of
sectors may be read or written at one time.

To open a random file for reading# use the call

unit = open(filename# ”rb”)#

The rules are the same as for the regular OPEN call# except
that the character ’bs in the action string indicates that
the file is to be accessed as random. The action ’b’ stands
for ’’block” - we would have used ’r’ for ’’random”# but it is
already taken for ’’read”.

To open a file for writing or reading and writing# use

unit = open(filename# ”wb”);

Reading is accomplished by

status =

’’buffer” is a pointer to a vector into which the data will
be read# ’’sector” indicates at what sector in the file the
read will start# and ”nwds” indicates how many words will be
transferred. The first sector number in the file is zero. If
the status returned is non-negative it is a count of the
number of words transmitted; otherwise it is the negative
major (bad) status from the i/o.

Writing is accomplished by

status = write(unit# buffer# sector# nwds);

The arguments have the same meaning as those for READ. The
GCOS disk i/o system always writes a multiple of 64 words.
If the number of words you transmit is not a multiple of 64#
the unused fraction will be filled with zeros on writing.

Z-5- String 2D£J:aii205.
The B compiler recognizes the existence of strings on­

ly in that it handles string constants. All operations on
strings are handled by function calls. Recall that a string
is a sequence of characters packed four to a word in a vec­
tor and terminated by the ASCII ’*0’.

Functions are available to permit processing characters
in a string in a ’’random” manner or character by character.
We will also mention several useful string utilities.

Waterloo

Z.5.1. "RaQ^QS" String Qr2£g£Sing.

ch ~ char (st r i nq? i) J
Returns the ith character in a string pointed to by
"string”. The count always starts at zero.

ch = lchar(string# i# char);
Replaces the ith character in the string pointed at
by "string” with the character ’’char” and returns as
its value the character supplied.

Where characters are in BCD format (6 characters per
word)# you should use the function CHARB instead of CHAR and
LCHARB instead of LCHAR. The calling sequences are the same#
but remember that they take and return BCD characters# not
ASCII .

Z.5.2. Sfifluentjal Siring ggggss.

By using one of the following calls# it is possible to
’’open” a string in such a manner that calls to regular
sequential i/o routines olace characters in or return char­
acters from a string. This method is faster than using
CHAR/LCHAR# because the implementation uses hardware ’’tal­
lies”. The action ’s’ stands for ’’string”.

unit = open(string# ”rs” C#pos3)7
Opens a string so that calls to GETCHAR will return
characters in the string. A call to GETSTRTNG returns
all characters up to but not including the next ,*n*
or else up to the terminating ’*0’. When the string
is exhausted# the unit is in EOF status. If you want
to start getting characters at some point other than
the first character position# use the optional start­
ing character position ”pos”. Any library function
which obtains characters from an i/o unit will also
work even if the unit is a string.

unit = open(string# ”ws” C#posJ
Opens a string so that calls to PUTCHAR place charac­
ters in the string. PRINTF# PUTSTRING# PUTNUM and
other functions will also send characters to the
string. The function of ”pos” is the same as
described a bove.

unit = open(string# "as”)✓’
Locates the terminating ’*0’ of ’’string” and sets
things up so you start writing into the string at
that point. It is up to you to make sure that the
vector pointed at by ’’string” is large enough to hold
whatever your program puts into it.

March 1979 -51 Waterloo

print(string# format# arg1# arg?# ...);
Same as PRINTF# except it directs its output to a
string# instead of an open output unit.

When you call CLOSE on a unit open for output to a string# a
terminating ’*0’ is olaced in the string.

Z.5.3. Slides uljJLiiiss.

string = concatf string# s1# s?# ...);
Concatenates the strings ”s1” through ”sn” together
and places them in string ’’string”. The output string
may be used as input# providing it appears first in
the list of strings to be concatenated. When called
with only two arguments# CONCAT efficiently copies
one string into another. CONCAT returns its first ar­
gument as its value.

vaI = nullstringC string);
Returns a non-zero value if the string contains only
the end-of-string character ’*0’ and zero otherwise.

val = e q u a I (s t r i n g1# string?) ;
Returns a non-zero value if the two strings supplied
are identical# and zero otherwise.

count = lengthC string);
Returns the number of characters in the string point­
ed at by ’’string”# not including the terminating
•★O’.

result = compare(string4!# string?)
This compares two strings. If they are equal# COMPARE
returns zero. Otherwise# it returns a value one
greater than the position in ’’stringl” where they
differed. The returned value is positive if ’’stringl”
is greater than ’’string?”# or negative if ’’stringl”
is less than ’’string?”.

’’string”# with scanning starting at character posi­
tion ”i” (which defaults to zero if not supplied)#
then the position of the character in the string is
returned. If the character is not found# then the
value is returned.

pos = any(c# string C#i]);
If the character ”c” appears anywhere in the string

Waterloo March 1979

newpos = getarg(arq, string# pos C#delimJ).;
Starting at position ”pos" in "string”# GETARG ob­
tains the next group of characters ending with a
blank and places it in the string pointed to by
"arg". It returns the position in the string where
the scan stopped# so that it can be called repeatedly
to obtain successive ’’arguments” from the string. If
"delim” is supplied# it is taken as a pointer to a
string containing the delimiters which will cause the
scan to stop# the string must include a blank if you
want the scan to stop on a blank. Leading blanks are
ignored. GETARG is useful for scanning a command
line.

There are a number of other functions which perform
string operations# including NUMARG# which scans off numbers
instead of character strings#’ ADDCHA# which appends a char™
acter to the end of a string; and READF# which can do for­
matted input from a string. All of these have explain files.

Z-&. allPUilpn.
Library functions are supplied which allow you to

dynamically obtain or release
pool.

addr = getvecC n) J
Obtains from free memory
one words and returns a
acquired in this manner#
ing subscripting# as in

memory in the free storage

a vector of length "n” plus
pointer to the vector. Once
the block may referenced us-

x » getvec(63) /
x[1] = aC3j;

rlsevecC addr# n)#*
Undoes a GETVEC by releasing the ”n” plus one words
pointed to by "addr" back to the free memory area.

All memory allocation is done by manipulating a free
list. The free list initially includes the so-called "core
hole". You can return via RLSEVEC any space which is not on
the free list# as long as the address of the space is
greater than the load address of RLSEVEC. If you attempt to
release memory which is already on the free list# in whole
or in part# RLSEVEC will immediately abort.

GETVEC obtains more storage from the operating system
as required. In TSS# a subsystem is aborted with the message
"not enough core to run job" if a request for memory cannot
be satisfied. In batch# GETVEC aborts with a "OK" abort code
if a request for memory is denied.

Finally# we will mention three useful routines# each

March 1979 -53- Waterloo

described fully by an explain file/ which use these calls:
GETMATRIX will construct and return a pointer to a multidi­
mensional matrix; ALLOCATE can be used to obtain a dynamic
array which will automatically disappear when a function re­
turns; and RELMEM will release any free memory back to the
operating system/ in order to reduce program size.

Z-Z- Ibarasiei
Two functions are supplied to let you transliterate

BCD into ASCII and vice versa. A BCD string consists of a
vector of words containing the characters packed six to a
word/ Ieft-adjusted and padded with blanks. There is no e-
quivalent to the ,*0f in a BCD string.

ptr = ascbcdt output/ count/ input);
Takes "count” characters from the ASCII string "in­
put”/ transIiter ates them to BCD and places them in
"output”. If a ’*0’ is encountered before "count” is
exhausted/ blanks are supplied and also used to pad
the 9CD string to a word boundary, "input" and "out­
put" must be oointers. "output" is returned.

Takes "count” BCD characters from "input"/ transli­
terates them to ASCII and places them in the ASCII
string "output". Any trailing blanks are deleted and
the end of string delimiter • *01 is placed at the end
of the ASCII string. "input" and "output” must be
pointers, "output" is returned.

Z.8. Sail IQEIBAn.
The function CALLF provides the ability to call FOR

TRAN subroutines/ or any routine which uses the GCOS CALL
conventions. However/ routines so called must not be called
recursively.

Converts its arguments to the form of a standard GCOS
CALL macro and calls the named "routine", "routine"
must be referenced in an EXTRN statement and must be
passed add££S£ shown. The arguments must be
passed by address also. That is/ if an argument is
not a vector pointer/ you must say "&arg". Constant
values must be assigned to a temporary before being

value returned/ if the routine called is a function
subrout i ne .

given to CALLF/ since you can't say someth i ng like
”S2". The value of a CALLF is the logical or integer

Waterloo -54- March 1979

floatval = cat Iff(Sroutine# &arg1# &arg2# ...)7
Works exactly the same way as CALLFz except that it
must be used for function subroutines which return a
floating point result. _

As usual/ you are responsible for ensuring the correct
number and tyoe of arguments are passed.

Z-9.
For those (hopefully rare) occasions when you need to

perform system calls directly# here are the functions pro”
vided to let your B program execute DRL or MME system calls
in a reasonable manner:

dr l.drKnumber C#arg1# arg2# ...J)
Allows direct access to the DRL functions. ’’Number”
is the DRL number to be executed# and any following
arguments are the words to follow the DRL. The A and
Q registers are set to the values of the externals
DRL.A and DRL.Q respectively. After the DRL has been
executed# these externals are set to the contents of
the A and the Q. It is possible to use a DRL which
requires an error exit or a place to go to# since the
DRL is executed in the stack# using the stack pointer
of the caller. For example:

%b/man i f /dr Is

auto buf# v ec C 2];

buf = getvec(600),
open(9z ”gcos3/qcos-hi-use”# "r")7
aft.name(9# vec) 7
vecC2] = ’.mb r t 3‘J
drI.dr I (res tor_# buf<<18 I 1# buf<<18 !• 1#

(tra&O777777000000)I(buf+512))7
t r a :
printf(”%24b*n"# buf+4+status*4)7

rIs eve c(buf #600) /

This code sequence# which obtains a batch error mes­
sage by locating it in the batch error message
module# uses the value of a label to supply a return
address to DRL RESTOR. Note that# in this particular
case# you could have called the library function
.RESTR# replacing the call to AFT.NAME and DRL.DRL
with ",restr(9# . mb r 1 1# but);".

March 1979 -55- Wat er Ioo

mme.mme(number Izargb arg?z ...])7
Functions in exactly the same manner as DRL.DRLz ex­
cept that it uses externals called MME.A and MME.Q.

5- Using B.

2.1. iamaiijofl/ruomoa.

read the source and generate a set of object modules. It may
call the random library editor RANEDIT to place or replace
modules in a library. Unless there are fatal compilation er­
rors# it always calls the TSS loader to prepare a load

The B comm and is the main tool for p repa r i ng B pro-
grams. If given a sou r c e file z i t will cal. 1 the compiler to

plain b command”.
To compile and load a source file# just type

module. Only the most common use of the B command is d i s-
cussed here. For full det a i I si» see the TSS explain f i I e "ex-

b s r c f i I e

where ’’srcfile” is the name of a sequential file containing
B source statements. If there were no fatal errors# the load
module is left in a random file called ”.h”z which is creat­
ed as temporary if necessary. If you have a quick-access
permanent file called ”.h”z it is used instead, This file is
’•grown” automatically by the TSS loader as required.

You could have forced the B command to initiate execu­
tion by entering

b -go sour ce-f i I e

butz if your program plans to interpret a command linez it
is preferable to use the command GO# like

go a rg1 arg?

which will run the load module in ”.h” with the given com­
mand line.

There are a few other options in the 3 command which
you may find useful. If you find you are allocating too many
AUTO variablesz so that your program violates the stack lim­
it and overwrites your own code# you can specify a larger
stack by using the ”Stack=nnn” optionz as in

b src.b sta c k =700

Wat er Ioo -56- March 1979

Fully debugged production programs need
tables with them when running. Use the
turn off the loading of debug tables.

not carry the debug
”-NodebugM option to

b -nodebug src.b

If you change one routine in a program/ you usually
have to recompile the whole program. It is sometimes more
convenient to store routines in a random library. That way#
you need only recompile one routine or one group of routines
to make a change. The 3 command provides an interface with
the RANEDIT subroutine library editor. To start with/ if you

b src.b ranelib=/lib -clear

the routine or routines in src.b will be edited into the li­
brary ”lib”# which will be created if necessary according to
the usual 9 file accessing conventions and initialized
(cleared) by RANEDIT. To add new routines or replace old
ones/ you simply enter

b srcl.b ranelib=/lib

Your program can load from a user library by specifying the
"Library^" option/ as in

b src.b library=/lib

When the loader is called# the library specified by the ”r = "
option is searched along with any other libraries given us­
ing the "l=" option. Libraries are always searched in the
order given on the command line. To delete routines from a
library# it is necessary to use the TSS command RANEDIT (see
the TSS explain file).

The options to the B command are of the forms

key word = str ing
-keyword

In both cases# the keyword may be abbreviated using the fol-
lowing rule: In the explain file# a keyword is shown with
upper and lower case letters. A valid abbreviation must in­
clude those letters which are in upper case# along with any
other letters in the order in which they appear. For exam­
ple# valid abbreviations of the ”Ranelib=filename” option
inc I ud e

rane = f i I ena me
rIi b= f i Iena me
r = f ilename

March 1979 -57- Waterloo

Various options may/ of course/ be combined onto one
command Line and abbreviated/ as in the following example:

b cmdIib/s/roff h = cmd I ib/roff l=b/xlib -n -d

This command line uses the option ”Hstar=filename”/ which
allows you to designate the file into which the generated
load module will be placed.

8.2. fiftusgiDs.
Rarely will you find that a newly-written B program

works the first time you try to run it. Typically/ it may do
nothing/ it may go into an infinite loop/ or it may abort
with memory fault or some such hardware-detected error.

The most useful tool for debugging programs is BOFF/
which stands for ”B Obscure Feature Finder”. You can use
BOFF in three modes: to inspect and/or patch the core image
file prepared by the loader/ to monitor the progress of your
program as it is running/ or to inspect a TSS dump file/
called ”abrt”/ after your program has died.

In this section/ we will look at some of the basic pro­
cedures to follow when debugging a program/ using BOFF. For
full details on BOFF, see the explain files.

Usually/ the first thing that happens is that you try
to run your program and it aborts/ leaving an abort file
containing the dump in the AFT. To look at the dump/ type

boff •’abort

BOFF will display the fault type/ the value of the instruc­
tion counter at the time of the fault/ and/ if debug tables
are available/ the abort location expressed as an offset
from the load table name whose address- if closest to and
less than the abort location. For a batch abort file/ the
fault type is always ’’incorrect primitive”; however/ you can
determine the actual fault by looking at the execution re­
po r t .

In BOFF, displayed numbers are shown in octal/ but when
snapping memory locations you have the option of changing
the form of the display. A number which ROFF reads from the
terminal may only be an integer/ which is taken as octal if
it has a leading zero/ and decimal otherwise. In other
words/ every time you tyoe in an octal number, you have to
stick a zero in front of it.

The first thing you will want to do with an abort dump
is to try to get a traceback of calls in reverse order. Type

: t

For each call/ the traceback
during the call/ the function
symbolic address from which it

shows the stack pointer used
name/ the arguments/ and the
was called.

Water loo -53- March 1979

There are a couple of things you should keep in mind
when looking at a traceback . You may see function names in
the upper part which are not part of your program^ this me­
ans your program died in a library function. The arguments
displayed for a library routine may not look like what you
expect/’ this may be due to your program passing bad argu­
ments# but it is also quite common for a library routine to
modify an argument or use it for a different purpose.

If you are lucky# your problem will be a bad argument
and a solution will suggest itself. More likely# you will
want to inspect the state of the various variables in the
program. You can look at any external value at any time# but
you can only look at the arguments and AUTO variables of the
current function# which is initially the topmost function in
the traceback. BOFF provides two commands which let you move
the current function context either up or down in the trace-
ba c k list.

For example# suppose you have the following traceback:

00221 open (0150) rets to 003306 (readf >0410)
00151 readf (01 1 6 2#0 77 77 7 77 7 77 66) rets to 001160 (func+010)
00147 func (0777777777766) rets to 001140 (main >06)
001 45 main (0561 500001 32) rets to 001 321 (>0114)

The program has died in the library routine OPEN# which was
called from another library function# READF. In fact# the
cause of this particular abort was a bad argument to READF.
The initial context is that of OPEN# which# being a library
routine# probably has no debug tables. To switch the context
to MAIN# tell BOFF to move down the stack three functions by
giving the command

From there# to get to FUNC*s context# you would tell BOFF to
move up one function by typing

As you can see# context positioning on the stack is
specified by giving the number to move# followed by a colon#
followed by the direction# which is either ’u* or *d’.

Suppose you tell BOFF to move up or down too far ? BOFF
will leave you in a reasonable place. To find out where#
type

: v a

which will show the name of the function whose context is
current# and# if there is a debug table for the function#
the names and values of the arguments# automatic variables#
and labels of the function. Remember that ”va” means ’’View

March 1979 Waterloo

Autos".
To snap memory in BOFF# use a command formed as fol­

lows:

[a dd r J C,nwdslC\m od e j

where the square brackets indicate an option.
The "addr” must be an lvalue/ which means that it must

be in either the form "name" or the form ,r*nnnw/ where ”nnn”
is a number. If you do not supply an ”addr”/ BOFF uses the
last address displayed plus one.

The ”nwds” is usually a number. If not given# it de­
faults to one.

The "mode" is a possibly null string of characters#
which can include:

a - address format
b - BCD con s t an t
c - ASCII character constant
d * de c i ma I
f * floating point
i - interpret as machine instruction
o - octal
s - display B string

If the string is null# the mode is octal. If • \ • is not
available# you can use instead. If "mode" is not
present# the last mode is used. The initial mode is octal.

To snap a variable called "x"# you might type

x

To snap it in octal# BCD# and ASCII# you would say

x \ obc

To snap the contents of the ten word vector "yC1OJ"#
you would ent er

* y # 11

To snap the vector in octal and address format# you would

* y # 11\o a

To snap the first 20 words of the function MAIN# you
would say

m a i n # 2 0 \ i

The lvalue of the expression '’main’’ is the address of the

Waterloo - 60 - March 1979

routine ’’main”/ which is where BOFF starts snapping. To snap
the next 20 words/ enter one of the following two alterna­
tives:

*(8main+20)/20
/20

Since no ’’mode” is given/ the last mode is used.
To snap 20 words/ starting from location 110 (octal)/

you would type

*0110/20

When you go on to read the full BOFF documentation/ you
will find that you can construct arbitrary expressions com­
posed of names# integer numbers/ and a subset of the B
language operators.

At this point/ we have covered the basic information
you need to know to use BOFF an abort file. It is more like­
ly that you will want to use BOFF on your program as it is
running. In this mode/ not only can you use everything men­
tioned so far/ but you can also set breakpoints and execute
function calls from BOFF.

To run your program with BOFF/ give the command

bof f:.h arg arg ..

BOFF will set a breakpoint at MAIN/ so you will get control
in BOFF just before MAIN is executed.

When you get control/ the current context for the ”:va”
command will be MAIN/ the function at which the breakpoint
is placed. The commands for moving up or down the stack/ for
snapping memory/ and for printing a traceback will otherwise
work as described above.

BOFF makes it very convenient to put a breakpoint on a
function. If your program consists of a number of small
functions/ rather than one monolithic MAIN function/ it will
probably be easier to debug.

To put a breakpoint on a function/ use the ”:bf” com­
mand as follows:

n a me:b f

where ’’name” is the name of the function. To delete such’ a
breakpoint/ use the command:

name:bd

You may also want to know about what value a function
returns. You can set a function return breakpoint/ but only
at the function entry breakpoint for that function/ by typ­
ing the command

March 1979 - 61 - Waterloo

Finally/ you can call/ from BOFF/ any function defined in
the program/ with arguments. For instance/ you might say

printf(”°/c %c*n"/ abed1/ c)

This example shows that not only can BOFF read numbers and
variable names/ but it can also read B string and character
constants. BOFF will always print out the value returned by
the called function. If the callee does not deliberately re­
turn a value/ the displayed value can be disregarded.

8.3. CQmpH er/leader interface.
When processing a source program/ the compiler gen­

erates not one but a set of object decks and places them on­
to a temporary file called "b*” - the input file for the
loader. This file is also used as input to the random li­
brary editor RANEDIT/ if it is called.

The compiler always generates an object deck containing
the B stack area/ which is either 500 words or the size
specified in the ”Stack=nnn” option. This object deck also
contains the externals defined before the first function de­
finition/ if any.

A separate object deck is generated for each function.
The deck includes a SYMDEF for the function and a SYMREF for
each name mentioned in an EXTRN statement or used in a func­
tion call.

An object deck is also generated for each group of
externals between function bodies and one for the group of
externals after the last function body/ if any. The deck in­
cludes a SYMDEF for each defined external and a SYMREF for
any external name referenced in an initializer list.

2.^. Using tabs fgr readability.
When you type in a B program/ you will probably want

to leave indentations in order to make clear the order of
nesting of your source statements.

Spaces are the logical thing to use/ but they are tedi­
ous to type and it is difficult to be consistent. At Water­
loo/ we usually suggest you use an ASCII tab character as
one unit of indentation. This has the advantage that/ when
you use TLIST to get a listing of the source/ the TLIST com­
mand automatically expands tabs into the right number of
blanks/ so your program comes out indented the way you want.
Also/ you can use the "OTD" directive inside the QED text
editor so that it/ too/ expands tabs when displaying a line.

It is not possible to use a ”tab character” which is
not an ASCII tab.

Waterloo March 1979

S.5. Dixfjlls.
If you have a floating ooint value/ it is not a good'

idea to say

if(floatvaI) ...

because the code generated checks to see if "floatval" is
logically non-zero/ rather than to see if it is equal to a
floating-point zero. Since a floating point zero may not in
fact be a word containing all zero bits (since the exponent
may be non-zero and is part of the word) it is better to try

if(floatval #!= 0.0) ...

In general/ floating point is tricky to use in B# since
there can be no type checking. You must constantly watch out
for erroneous constructs such as using ”-3.0” instead of
3.0”.

Also# he^e is a common pitfall in the use of string con­
st ants. If you say

auto x C 20];
x = ”a string”;

The cell x is changed to ooint to the storage occupied by
the string and you lose the ability to address the 21 words
originally reserved for the vector. What you really want to
say i s

auto x;
x = ”a string”;

Alternative ly# if you had wanted to initialize the vector
with the string# you should have used the library function
CONCAT to copy in the string:

auto x E 20J;
concatl x# ”a string”);

or else you could have defined ”x” as an initialized exter
na I .

Finally# something should be said about the size of a vector
and the length of a string.

When you declare a vector of size ”n”# you know that it
will actually occupy ”n + 1” words# because the vector is
indexed starting at zero. Every library routine to which you
must pass the size of a vector observes exactly the same
c onve n t i on.

March 1979 - 6 3 • Waterloo

In practice# if one needs a vector of size "n"/ then one
declares it to be of size ”n”/ and then ignores the zeroth
or the nth word. Thus a FOR loop indexing through the vector
might run in either of two ways:

f or(i = 0; i < n; * + i) . . .

for(i = 1 J i < = n / + + i) ...

Strings also can be indexed into/ using library func^
tions/ using a zero origin/ but at first it might appear to
you that a string with ”n” characters in it has length "n”/
rather than *’n + 1”. For example/ the string "abcdef" has
six characters and its length is six. But recall that/ by
definition/ a string is terminated by a ’*0’ character/
which you do not see. If you include the trailing •★O’ in
the count/ then a string of length "n" actually contains "n
+ 1” characters.

All library functions which require the length of a
string need the number of characters/ not including the
’*0*. The library function LENGTH returns just that number.

Waterloo - 6 4 - March 1979

—-------—

APPENDIX A

Escape sequences

There are two sets of escape sequences/ one for use in­
side string or character constants# and the other for use
outside.

1. Escape sequences are used in character constants and
strings to obtain characters which for one reason or another
are hard to represent directly. Here are the escapes:

*0 end of string (ASCII NUL = 000)
*e end of string (ASCII NUL = 000)

* n new line
★r carriage return (no line feed)
*f ASCII formfeed
* b bac kspace
* v vertical tab
*x rubout (octal 177)
*#nnn nnn is 1-3 character octal number

2. The following are escapes used outside character and
string constants on terminals (such as the 2741) which do
not have on their keyboards some of the characters used by
B. If you use QED< it is nicer to use the QED escapes for
these characters# so that when you shift to an ASCII termi­
nal you can see the characters the way they ought to appear.

$({ - left curly brace
$) } - right curly brace
$< C - left square bracket

J - right square bracket
$ + or-bar
(S’ «•» A up-arrow (or cent-sign)
$ a 2 - a t - s i g n
$ ’ •

•9S9 grave accent

March 1979 — 6 5 —* Waterloo

APPENDIX 8

B i ndi ng strength o f operators

Operators
strength; there

are listed from highest to lowest binding
is no order within groups. Operators of

equal strength bind left to right or right to left as indi­
cated.

name const primaryCexprJ p r i m a r y (a r g I i s t) (expr) CLRJ
+ + „ * & - i - #_ # ## (unary) CRLJ
>> << CLRJ
& CLRJ

CLRJ
I CLRJ
* / % #★ UI (binary) CLRJ
+ - # - # + CLRJ
= = ! = > < <= >= # = = #!= #> #< #<= #= = = #> =
&&

?: CRLJ
+= -x etc. (all assignment operators) CRLJ

Water loo -66- March 1979

APPENDIX C

0 compiler error message

This is a list of diagnostics known to be generated by
the 8 compiler. There may be others.

In each description, "nn" means a line number, while
’’name” is some identifier name. The name of the source file
is usually also given.

Any message not preceded by "warning: ” is a fatal er­
ror. If there is a fatal error, neither the loader nor the
random library editor will be called.

D i agno sties:
syntax error at line nn Cin file <name>]

This is the most common diagnostic and it could mean
almost any kind of error. Most often, it means a sem­
icolon is missing or the number of open curly braces

does not match the number of close curly braces
in which case the line number will be the number

of the last line in the last file being processed
plus one. This may be due to neglecting to end a
string constant, character constant or comment. You
also get this message if you use a keyword in an
inappropriate context, such as an AUTO statement, if
you neglect to define a manifest/ or if you attempt
to redefine a manifest.

<identifier> undefined in function <name>
An identifier in the named function has not been
referenced by an EXTRN or AUTO statement and has not
been used as a label. The line number given is the
last line of the function being compiled.

warning: /* inside comment ...
This is a warning only# but there will probably be a
syntax error later on, since comments may not be
nested. After reading a "/*"# the compiler skips all
text until a "*/" is encountered; if there is a com­
ment inside a comment, then the compiler will attempt
to compile the remainder of the outside comment,

end of file in comment
This usually indicates that you forgot to end a com­
ment with the terminating

warning: newline in constant not preceded by *
The most probable cause is that you forgot to ter­
minate a string or character constant with the ap­
propriate delimiter. If this is the case, you will
surely get a syntax error later. If you want a "real"
newline inside the constant, but no warning, use the
escape sequence ’*n’. If the constant is a string
constant which is too long to fit on one line, pre­
cede the newline with a ,*,J the newline will be dis­
carded. When the warning is issued, the newline is

March 19?9 — 6 7 — Waterloo

An integer beginning with the digit zero/’ which is
thus assumed to be an octal constant/ contains a
character other than the digits zero through seven.

character constant too long

kept.
invalid octal constant

bed constant too long
A BCD constant contains more than six characters.

exponent too large in constant

A character constant may not contain more than four
characters# although each character may be a two
character escape sequence.

The exoonent of a floating point constant is too
large or too small to represent in the hardware.

attempt zero division
In evaluating the constant part of an expression# the
right operand of a division or remainder operator was
found to be the constant zero.

invalid & prefix
The operator has been used in an invalid context/
such as "&x = y".

warning: found ++r-value
warning: found --r-value

You get this if you say something like "++x++”.
invalid $ escape sequence

An escape sequence beginning with is not known to
the compiler.

invalid unary operator

The expression on the left hand side of an assignment
operator does not have an lvalue.

The compiler discovered you trying to use a binary
operator in a unary manner.

The expression operated upon by the ’++• or
operator does not have an lvalue.

i nvaIi d I abe I
A name used as a label has previously been declared
as EXTRN or AUTO in the current function.

The compiler found a NEXT statement which was not in
side a FOR# WHILE# DO-WHILE or REPEAT statement.

The compiler found a BREAK statement which was not
inside a FOR# WHILE# DO-WHILE# REPEAT or SWITCH
statement•

invalid constant expression
Will happen if you try to use a string constant in a
constant expression.

—

invalid operator
This is one of those "cannot happen” messages. If it
does happen? please submit an error report.

You attempted to declare an auto vector with a dimen­
sion greater than 1000 words. It is better to use an
external vector or else GETVEC the space? since AUTO
variables are allocated on the stack and stack space
is limited.

extrn array too large
This will happen if you declare an external vector
like ”xC3.0i;”.

invalid case
A CASE label is not inside a SWITCH statement,

invalid default
A DEFAULT label is not inside a SWITCH statement,

default already supplied
More than one DEFAULT label in a SWITCH statement,

invalid case operator
The only bound operators permitted in a CASE are
>z >=z and <=.

^filename ignored- too many open files
This usually happens when you include a file which
incl udes i t seIf.

bad input character: <ddd> (octal)
A character encountered in the input stream outside
of a string or character constant has no meaning for
the compiler. This might be a backspace or some con­
trol character tyoed in by mistake. Since it may be *
non-orinting? the value of the offending character is
displayed in octal.

rewrite this expression
A subscripting expression is too involved for the
code generator to handle. Try breaking up the expres­
sion into more than one statement.

manifest nesting too deep
This will occur when you have manifest constants
whose evaluation involves other manifest constants.
This will occur if you have a series of manifest de­
finitions, each of which is defined in terms of the
previous manifest. This is ok in GMAP, but not in B.

warning: program size > 3 2 k
One of the object decks generated will require more
than 32K wo rds t o load. You may get this warning if
you declare several very large external vectors. How­
ever? it might also mean the loader will be aborted
by TSS due to "not enough core to run job”.

expression too complex
notreespace
no stack space -

An expression is too complex for the compiler to
evaluate. Try simplifying it by breaking it up into

M a r c h 19 7 9 -69- Waterloo

two or nore expressions.
The constant <ddd> occurs in two case labels

The same constant appears in more than one CASE label
in a SWITCH statement. The value of the offending
constant is printed in decimal.

the upper range <ddd> overlaps the lower range <ddd>
The compiler has detected overlapping bounds inside a
SWITCH statement. The values of the bounds are
displayed in decimal.

The constant <ddd> is in the range <ddd>::<ddd>
The compiler has detected a CASE constant which is in
the range of a range case or relational case/ in a
SWITCH statement. The numbers are given in decimal.
If something conflicts with a relational case/ then
the bounds generated for the relation are shown. For
example/ the bounds for ’’case > 0:” would be
”1 : : 34 35 9 7 3836 7".

Initializers nested too deeply
An external declaration has initializers in braces
nested to a depth greater than seven.

external redefined
auto variable redefined
label redef i ned
auto array name redefined

The compiler has detected an attempt to redefine a
symbol which has already been defined to the current
func t i on body.

no space for symdef
There are too many external definitions; try dividing
them into two groups by either compiling them
seperately or placing a function in between. This er­
ror is almost never encountered.

no space for symref
There are too many external references in a function
definition; try simplification. This error is almost
never encountered.

warning: #<text> ignored
A line beginning with a ’#*# which is taken to be a
compiler directive/ does not contain a recognizable
directive. The line is ignored.

I TSS loader warning messages:
<w> name undefined

This is a loader message# which indicates that an
external variable referenced by one of your func­
tions# or a library function# remains undefined after
all libraries have been searched. If your program
references the named external it will abort with a
MME fault in TSS# or with a USER’S L1 MME GEBORT in
batch.

<w> name loaded previously
The loader has discovered a function or external with

Waterloo -70- March 19Z9

the same name as one already loaded. The most
probable reason is that you have two or more dif­
ferent names which, when truncated to six characters
end up being the same. The loader ignores all but the
first. Make sure all your externals and function
names are unique in their first six characters.

Waterloo
A

APPENDIX D

Index of B library routines

.ABBRV check for valid abbreviations
• BOFF ... define a debugger breakpoint
.BSET parse string into arguments
.FEDIT edit a filename for printing
•GROW • • • • ••••••••••• grow a file
•GSNMB • ••••..•..••• generate a snumb
•IDENT write an ident image for a backdoor file
. I 0 S T A find 10 status for aunit
.LEAVE leave file accessed on close
.PROFILE generate profile of a B program
.READ reference or change the current read unit
.REMOV force deaccess of file on close
. RESTR Load an element from an hstar or system
.TABS set tabs for the current output unit
.TRACE set trace output unit
•WRAP user specified termination actions
.WRITE reference or change the current write unit
ABORT . . . abort job, producing dump and returning status
ABSabsolute value of an integer
ACC.FILE ... access file
ACCLIB access the system libraries
ADDCHAR adds a character to the end of a B string
ADDVEC replace a vector by a new/ larger one
AFT.NAME return aftname/fiIecode
ALLOCATE . A simple garbage collecting storage allocator
ANY check if a character appears in a string
APPLY . . call arbitrary function with arbitrary arguments
ARS arithmetic right shift
ASCBCD convert an ASCII string to a BCD vector
ATTACH . attach file to task file list
BACKSPACE back up output unit by one character
BACK.DOOR ... submit a file to the sysout backdoor queue
BCDASC convert characters from BCD to ASCII
BCDADD add two bed numbers
BCDSUB •••••••• subtract two BCD numbers
BINBCD . . convert a binary number to bed
C.RFAD . force unit to be read unit
C.WRITE force unit to be write unit
CALLF call FORTRAN program from B routine
CALLFF call FORTRAN function returning floating-point value
CATSCAF turn pathname into Filsys format
CHAR ... extract ASCII character from string
CHARB extract BCD character from string
CHARP set up a character pointer into a string
CHCKSM ...compute a checksum
CLOSE close currently open unit
CM PC EIS string compare
CMPLOG ... compare two values logically

Water loo -72- March 1979

CMPVEC . . . compare one B vector to another
COLUMN find current output column
COMPARE compare two B strings
CONCAT concatenate a series of strings
COPY copy contents of one vector into another
COPYCH character copy and substring function
DATEreturn current date in ASCII
DATEJUL • conversion from normal date form to Julian form
DATESI • convert date in ASCII string to a standard form
DATEV . . return current date 8 time as vector of integers
DAYMON convert date to dd/mmm/yy format
DIV . integer divide with uniform direction of truncation
DRL.DRL execute a given TSS Derail (system call)
DRLJSTS get status of batch job
DTOA decimal (integers) to ASCII
DUMP dumpvector
DU MP A .. dumpanarray
EBCASC convert string from EBCDIC to ASCII
EOF . test input end of file# or write outout end of file
EQUAL compare two strings for equality
ERROR •••.. type an error message# then exit
EXIT•••••. end job and return status
EXTERNALS useful externals in the B library
FILDES ..get file descriptor word
FLUSH ...force i/o to end of line
FPINPUT ASCII to floating point binary
FPO floating point output
FSFILE . space input file forward one file
GETARG extract (command) arguments from a string
GETBIN . read vector of binary data from sequential file
GETCHAR/GETC read a character
GETDATE turn ASCII date into the form mm/dd/yy
GETLINE . read a line from an input unit
GETMATRIX dynamically allocate a matrix
GETMEDIA . find media code of file
GETNUMB read a number from the current input unit
GETREC . . get next logical record# with rcw# from a file
GETRCP Get record pointer
GETSTRread a string from an incut unit
GETTAPE ask for a tape from GCOS
GETUMC get userid of current user
GETVEC dynamically allocate a vector
GNUMBER extract number from string
GOTOSS execute a TSS command# never to return
GTB convert gray code to binary (execute a gtb instruction)
HIST The B histogram package
HISTDESTROY . Free space used by a histogram
HISTINIT Allocate and initialize a histogram
HISTOGRAM Add a point to a histogram
HISTPRINT , . Print accumulated histogram
ID.DRUN find ID of executing DRUN
INCRUN determine if a user is in a crun

March 1979 -7?>- Waterloo

INTREQUEST handle interrupt (break) requests
I N T S S tell whether running batch or TSS
IOERRORS . change default handling of file access errors
JULDATE • . • • conversion from Julian to normal date form
LCHAR , replace ASCII character in string
LCHARB replace BCD character in string
LENGTH return the length of a string
LINUMB • • • • • return the current line number of a file
LOWERCASE . . . turn alphabetics in a string to lower case
LSTAR stuff the byte addressed by a charp pointer
MAIN entry to your program from b setup
MAX maximum value of list of integers
MIN minimum of a list of integers
MME.MME execute a given batch MME (system call)
MOVELR • . move characters left to right using an EIS MLR
MOVERL . . move characters right to left using an EIS MRL
NARGS return number of arguments to a function
NOBRKS count number of times break key was hit
NULLSTRING . check for null string
NUMARG . . extract numeric argument from character string
OPEN open a file or string for i/o
OVERFLOW test and reset overflow indicator
PASUST execute a TSS DRL PASUST
PEEK . copy memory into your address space
PNMATCH perform simple pattern match
PRINT .••.••••..••• do a PRINTF into a string
PRINTF ... formatted print
PROMPT prompt for input at terminal
PUTASC .. dump bytes in ASCII
PUTBCD output the contents of a BCD string
PUTBIN . . write vector of binary data to sequential file
PUTCHAR/PUTC . •.... output a character
PUTNUMB outout a decimal number
PUTOCT output octal numbers
PUTREC . . output unprocessed record to a sequential file
PUTSTR write a string to current output unit
QSORT ..quicksort
RAN.RD . do disc i/o
RAND generate pseudo-random numbers
RD.LNK/WR.LNK Low level sequential disk I/O
RD . RAN/WR.RAN Low level random disk I/O
RFAD/WRITE unit oriented binary i/o
READF ... formatted character stream input
RELMEM release unused memory from the core hole
REM please see explain
REMOV remove file from AFT given pathname
REREAD •••• back up input to beginning of line
RESET non-local goto
RETFIL . . • . • remove a file from theaft
REWIND rewind an open file

ROTATE rotate word N bits to left or right

Marc h 19 7 9

RSCR read system controller clock
RSTPSW turn off switch word bits
SBAR find size of allocated memory
SCAF convert ASCII pathname to BCD catfile stack
SCAN extract delimited substring of a string
S C M scan characters under mask
SETMEDIA change media code of output file
SETPSW set switch word by bitwise OR
SHELLSORT a Shell sort
SIDATE convert standard date to ASCII string
SLEEP wait for specified interval
SMC.HASH . . . compute smc hash bucket for a given userid
STAR get the byte addressed by a charp pointer
STRING •••••••••.•• string i/o support
STRIP cause line numbers to be stripped on input
SWAPDESCR change program descriptors
SYSTEM execute a TSS command
T2 74 1 check if terminal is a 2741
TABSET . . specify tab stops for the current output unit

TASK

create tally to BCD string
create tally to ASCII string

• • . . • • tape I/O in B

TIME ... get time in
TR9T09 translate to any 9
TRACE

submit a task job via Derail TASK
return cou time for current user

pulses/ or convert it to a string
bit character code from any other
. B function call-return tracer

TRIM trim trailing blanks off a string
TRTEST translate and test characters (fast character scan)
TTYN . determine if I/O is to terminal
UNGETC place character in input stream
UPPERCASE . • . turn alphabetics in a string to upper case
VECTOR create a B vector and initialize contents
WDLENG return word length in bits
XLATE translate one character code to another
ZERO . initialise a B vector to some value

