
TINY PASCAL

USERS MANUAL
VER 1.0

(0 1979 COPYRIGHT
. MARTIN TRACY

AUGUST 1979

COPYRIGHT (0 1979 ALL RIGHTS RESERVED.
Reproduction in part or form of the contents of this document or its
accompanying cassette tape or disk, except for the personal use of the
original purchaser, is strictly forbidden without the expressed written
consent and permission of PROGRAMMA International, Inc.

PROGRAMMA
INTERNATIONAL, INC.
3400 Wilshire Blvd.
Los Angeles, CA 90010
(213) 384-0579 • 384-1116 • 384-1117

PREFACE

This reference publication is intended for programmers using the
PROGRAMMA TINY PASCAL System. This publication describes how to
write Tiny Pascal source statements, system start-iip, alteration
of system parameters, and error handling.

The original specifications and description of the implementation
of the Tiny Pascal System can be obtained from the September,
October, and November 1978 issues of BYTE Magazine. The article
"A Tiny Pascal Compiler" by Kin-Man Chung and Herbert Yuen may
be purchased as a reprint directly from BYTE. Their address is:

BYTE MAGAZINE
70 Main Street
Peterborough, NH 03458

An excellent book to introduce the reader to the PASCAL language
is "Programming in PASCAL" by Peter Grogono. The book is
available directly from PROGRAMMA International, Inc. or the
publisher: Addison-Wesley Publishing Company, Inc.

The reader should be familiar with the hardware manuals and
operational procedures of the devices attached to his particular
computer configuration.

9

INTRODUCTION
WHAT TINY PASCALIS

WHAT IS A COMPILER

WHAT IS P-CODE

WHAT DO I GET WHEN I PURCHASE TINY PASCAL

HOW IS THE TINY PASCAL SYSTEM USED

OPERATION
WHAT DO ALL THESE COMMANDS MEAN

WHAT DOES TINY PASCAL LOOK LIKE

SYNTAX

8THE ASSIGNMENT STATEMENT

ARITHMETIC OPERATORS

THE MEM ARRAY

HEXADECIMAL CONSTANTS

10HANDLING CHARACTER AND STRINGS

10READ AND WRITE

11USING APPLE DOS FROM TINY PASCAL

THE IF-THEN-ELSE STATEMENT

RELATIONAL OPERATORS

THE WHILE LOOP

THE REPEAT-UNTIL LOOP a

14ATHE FOR LOOP

1AATHE CASE STATEMENT

COMPOUND STATEMENTS

PROCEDURE AND FUNCTIONS

CALL.. ... 18

THE PASCAL EDITOR
USING THE PASCAL EDITOR. 18

ADVANCED TOPICS
ERROR MESSAGES. 20

MAXIMUM NUMBER OF VARIABLES. 20

RUN TIME ERRORS... 20

SYSTEM FLAGS. 20

PASSING PARAMETERS VIA CALL.......... 21

MINIMAL RUN TIME SYSTEM...................... 22

EXTERNAL PROCEDURES AND OVERLAYS.................. 22

VERY HARD TO FIND BUGS... 22

LIBRARY.......... 23

PROGRAMMA PASCAL VS SUPERSOFT PASCAL.... 23

DETOKEN. 23

LIBRARY.S.2...................... 23

CANNIBALS. 23

THE P-CODES. 24

THE INTERPRETER.... 24

MEMORY REQUIREMENTS.......... 25

CHANGING MEMORY LIMITS.............................. 26

PROPRIETARY NOTICE................................ 26

Aug 1979 Programme Pascal Version 1.0

! ' 'i
I

What is "Tiny Pascal"?
r

Tiny Pascal is a modified subset of the Pascal programming language
as defined by Kin-Man Chung and Herbert Yuen in BYTE magazine September,
October, and November 1978.

Tiny Pascal is an integer only language, similar to Integer BASIC
in the Apple II. The comparison between Tiny Pascal and a full Pascal is
analagous to the comparison between Integer BASIC and Applesoft.

Tiny Pascal is very well suited for writing games and systems
software for the Apple II. Programs created using the Tiny Pascal
compiler are compatible with existing Apple Hardware/Software products
(i.e., the DOS, printer interfaces, modems, etc.).

Databases created by Tiny Pascal can be manipulated by Applesoft or
Integer BASIC. Likewise, data created by Applesoft or Integer BASIC can
be read in, manipulated, and written out using Apple's DOS. There are
no new DOS commands to learn. You create and maintain disk files from
Tiny Pascal in the same manner that you would from BASIC.

What is a "Compiler"?
Both Integer BASIC and Applesoft are interpreters. An interpreter

reads one line of text at a time and executes the statement.
Interpreters are very effective for interactive program development,
unfortunately they are very slow. Compilers, on the other hand, take the
textfile created by the user and generate machine code for the specific
processor. Compiled programs run very fast (often 10-20 times faster)
than an interpreted program. The drawbacks to a compiled program
include: (1) Program development is no longer interactive, increasing
the difficulties associated with debugging your programs. (2) Machine
code versions of a program often require more memory space than
interpreted versions. (This is especially true if a good interpreter,
such as Integer BASIC, is being used.)

Despite these drawbacks often speed is very important so a compiler
must be used.

What is "P-code"?
The Tiny Pascal compiler does not generate 6502 machine code. It

generates machine code for an imaginary machine called a "P-machine".
Since this P-machine does not exist the P-machine has to be emulated by
the 6502 microprocessor. In effect the P-machine code gets interpreted
by a 6502 program - the P-code interpreter.

Since the P-code is being interpreted it will run much slower than
if 6502 machine code were produced. However, the interpretation of
P-code is much faster than the interpretation of BASIC so Tiny Pascal
programs will run 2-4 times faster than an equivalent BASIC program.
P-code has two other advantages. First, P-code is very compact. A

-1-

Aug 1979 Programma Pascal Version 1.0

program written and compiled in Tiny Pascal will only require 1/2 to 3/4
the space required by an equivalent Integer BASIC program. By
comparison/ a Tiny Pascal program compiled directly to machine language
would probably require 2-3 times the memory (of the Integer BASIC
example) just to hold the program.

The second advantage
Pascal compiler easier to

to P-code is the fact that it makes the Tiny
write, thereby freeing up even more memory.

So Tiny Pascal
interpreter. P-code is
slower than the actual

is a compromise between a true compiler and an
very compact, like an interpreter, but runs
6502 code.

What do I get when I purchase "Tiny Pascal?"

The Tiny Pascal system includes the P-code interpreter, a Pascal
monitor/ command interpreter, the Pascal compiler, an editor, source
listings of the editor and monitor, a set of library subroutines which
allow you to perform graphics manipulations, read the paddles, switches,
etc. (source listing is provided), several Tiny Pascal programming
examples including Cannibals (a game) and Detoken (a program which
detokenizes Integer BASIC programs).

How is the Tiny Pascal system used?

That's easy! Boot the disk provided. The Apple will clear the
screen, print a "coldstart" message and prompt you for a command.

To get a menu describing each of the commands press return. The
Pascal monitor will print onto the video screen E(ditor), C(ompiler),
U(ser), B(ASIC), ~D(OS), L(OAD), S(AVE), F(ENCES).

The parentheses around all the first characters simply means you
only need to press the first character of each command to invoke the
desired function. All commands must be terminated by a Return. (This
prevents you from automatically executing a function when you
accidentlly hit a key.) Note that the Pascal monitor only looks at the
first key pressed. EAT <cr>, Elephant <cr>, Egads <cr> (where <cr> is
return) all put you into the editor.

-2-

Aug 1979 Programma Pascal Version 1.0

What do all these commands mean?

B-B(ASIC):Returns you to BASIC (A/S or Integer, depending). To
prevent possible damage to the Tiny Pascal system you
should immediately set LOMEM:20480. This will prevent
damage to the Pascal system, however any source file or
user program may be destroyed. If you wish to prevent
possible damage to a textfile you should set LOMEM even
higher. (e.g, 32767) To return to the Pascal system type
Call 2048.

RESET:Actual system reset. On an Apple II system (without the
auto start ROM) RESET will deactivate the DOS and jump to
the Apple monitor. If you have an Apple II plus or the
auto start ROM, the Reset key is undefined. Sometimes it
will boot the disk, other times it will ' return you to
BASIC.

D-D(OS);,'D means control D. This allows you to execute a disk
command directly from the Pascal monitor. Simply type
control D and then the DOS command followed by <cr>.
Note: You do not need to hit return after the control D.
Example: command: 'D catalog <cr>

L-L(OAD):Loads a file into memory, beginning at the fence. You can
specify a filename in one of two manners. (1) Hit return
immediately after the L. The Pascal monitor will prompt
you for a filename. (2) Type L (plus any number of
non-blank, non- carriage return characters) followed by
at least one blank. After the blank specify the filename
followed by <cr>.

Examples:
Command: L <cr>
File: Test

Command: L Test
Command: LOAD Test
etc.

S-S(AVE):SAVES the last file edited or the last program compiled
onto the disk. Syntax is similar to the L(OAD) command.
Warning: You cannot L(OAD) and then immediately S(AVE) a

E-E(ditor):Involves the Pascal system editor. The editor will be
described in more detail later.

Aug 1979 Programma Pascal Version 1.0

source file. If you do not look at the source file with
the editor, the Pascal monitor does not know how long the
file is and will try to S(AVE) it with a length of zero.
The resulting syntax error returns you to BASIC.

C-CCompile):Compiles the Tiny Pascal program currently at the FENCE
(the fence will be described later, don't worry!). The
COMPILE/SYNTAX (S): message indicates that the compiler
has two options and that the default option is (s)yntax.
The syntax option tells the compiler to go ahead and
compile the program but don't generate any P-code. This
allows you to make sure that errors do not exist in your
program before the actual compilation takes place. To
select the default option type "S" or simply hit return.
The compiler will begin compiling your program, printing
the current line number to the left of the line. When an
error is detected the appropriate message will be
displayed and you will be returned to the Pascal monitor.
You may now enter the editor, correct the problem, then
recompile the program using the syntax option once again.
When the program compiles successfully you can compile
the program using the (C)ompile option. At the command
level type C <cr> when the Apple displays "Compile/
SYNTAX(S):" Type "C". This will instruct the compiler to
generate P-code for your Tiny Pascal program. Upon
pressing "C" the Pascal compiler will ask you where you
want the P-code to be stored during compilation. It will
suggest the current fence value. Since your textfile is
currently sitting at the fence the P-code will wipe out
part of your program should you desire to select the
default value. Since the program is usually shorter than
the source it is possible for the two to co-exist in
memory at the same time. When compilation of the program
is complete the source file is considered DESTROYED. (So
make sure you've saved it to disk beforehand.) When you
press "C" for compile the compiler will respond with

P-code ADDR (5000):

where 5000 is the current (HEX) fence value. If you do
not want to wipe out the textfile in memory or you would
prefer to have the P-code stored in memory somewhere
besides the fence you can specify this location by typing
a four digit HEX number after the colon. If the fence is
okay with you simply type <cr>. Should you type an.
illegal hex digit, or more than four hex digits, the
Apple will keep at you and make you type the address back
in. Note: Backspace is an illegal HEX digit!

Warning: If you specify that the P-code be stored in
memory beginning somewhere in the middle of the source
file you will destroy the textfile before the compiler
gets a chance to compile it. Result: Error 104,
undeclared identifier. If you change the P-code ADDRESS

Aug 1979 Programma Pascal Version 1.0

make sure that you specify an address beyond the last
character in your textfile (the editor provides you with
the required information). Once you've informed the
compiler where the P-code is to be stored during
compilation, you must tell the compiler where the P-code
will be stored WHEN THE PROGRAM IS RUN.

When the compiler asks you for
P-CODE ORIG (5000):

you can specify this information. The default value will
be whatever value you decided on for the P-CODE ADDR
previously.

If you override the default with, let's say P-CODE
ORIG (5000):3000, then you have made a promise to the
compiler that you will load the program to that location
before trying to run it. You can move the program by
using the Apple II system monitor move command or by
specifying the address in the DOS BLOAD instruction. Or
you can write a Pascal program to move it for you.

Example: let’s compile CANNIBAL.S into a useable program.
1) L(OAD) Cannibal.S (i.e, L CANNIBAL.S)
2) Compile (i.e, command:C)
3) Select compile mode (i.e, Compile/ SYNTAX(S).-C)
4) Use default values for P-CODE Address and P-code orig.
(i.e, P-CODE ADDR (5000):<cr>
P-code orig (5000): <cr>)

The compiler finishes with the status message describing the size
and location of the program then returns to the Pascal monitor.
You may now save the compiled program onto disk by using the S(AVE)
command. Be careful not to name the program after the source file
(i.e, Cannibal.S) or you will replace the source file with the code
file. By convention source files should have ".S" suffixed to the
program name and code files should suffixed with ".C"

Warning: You must compile a program with the (C)ompile option
before you can use the S(AVE) command. The S(yntax) option does not
produce a program file. Let's name the program "Cannibal.C" and
save it onto disk.

Command: SAVE Cannibal.C <cr>

-5-

Aug 1979 Programme Pascal Version 1.0

U-U(ser): is used to run a program.
Command:U <cr>
Run ADDR (5000):

The Run ADDR (5000): informs you that, unless
otherwise specified, the current Pascal program at
location 5000 will be executed. Once again you can
override the default by specifying a four digit Run
address. For example, if we specify Run ADDR
(5000):3000 we will end up in the editor (which
begins at location 3000 - better make sure a
textfile is loaded first however!).

Since we just compiled Caniabal.S at 5000 all
we need to do is hit return to begin execution. To
return from Cannibal to the Pascal monitor first
play Cannibal. If you get impatient (or
frustrated!), use the RESET sequence.

F-F(ENCE): sets the lower and upper bounds of the Pascal STACK
as well as the fence. The FENCE is described in more
detail in the section on more advanced topics.

What does "Tiny Pascal" look like?
Tiny Pascal uses the same program structure as regular

Pascal. A Tiny Pascal program begins with a "PROGRAM" statement.
The program statement is of the form "PROGRAM progname"; where
progname is the program name which is chosen by the programmer. It
can be any length but only the first eight characters are
significant. Beyond the eighth character all further characters are
ignored.

Examples:
Program Test;
Program Hires;
Program Thisisalongname;
Program Thisisalongername;

Note: As far as the compiler is concerned "Thisisalongname"
and "Thisisalongername" are one and the same since the first eight
characters match.

Following the program statement comes the constant
declarations. Constants are simply handy abbreviations. They do
not exist at program run time, and take up no memory space. They
are used to increase program readability.

For Example: The constant declaration BS=08; simply says
whenever I say "BS" I really mean to use decimal 08. To declare
some constants type "CONST" after the "Program" statement. After
the "CONST" you can declare as many constants as you desire,

-6-

Aug 1979 Programma Pascal Version 1.0

separated by semicolons.

Example:
CONST BS=08; CR=13;
TRUE=1; FALSE=0;
LF=10;

Do not confuse constants with variable names. You cannot assign a
value to a constant anymore than you can assign a value to 8. The
constant section is optional, if you don't have any constants you
do not put a "Const" in your program.

Following the constant declarations comes the variable
declarations. Variable declarations begin with the word "VAR".
Following the "VAR" come the individual variable declarations. ALL
VARIABLES IN A TINY PASCAL PROGRAM MUST BE DECLARED BEFORE THEY ARE
USED. The only data type currently supported by Tiny Pascal is
Integer. Arrays of integer are also allowed. To define an integer
variable use the following form.

VAR Variablename:Integer;

As with the "CONST" declarations many variables can be
declared by separating the variable declarations by a semicolon.

EG;
VAR I:Integer; J:Integer;
K:Integer; Lzlnteger;

Alternately, you can declare many variables at the same time
as follows.

Var I ,J,K,L:Integer;

-7-

Aug 1979 Programme Pascal Version 1.0

Arrays are specified by declaring a variable to be "ARRAY [n] of
Integer" where n+1 is the number of elements you wish in the array.
Array subscripts begin at 0 (not one!) and go through n. Only single
dimension arrays are supported and range checking is not performed at
runtime. If your subscript exceeds the maximum size declared you will
probably mess up the Pascal stack. No error message will be printed.

Examples:
Var I:Array [6] of Integer
J,K:Array [4] of Integer;
L:Integer;

I is an integer array of size 7, J and K are integer arrays of size
5, and L is a simple integer. Your array subscript must be either a
numeric constant or a symbolic constant declared in the "Const"
declarations. Another variable name is not allowed (as in BASIC). To
get the square brackets, "[" and "]" use control T and control Y in the
Pascal editor. As with the "Const" declarations, the "Var" declarations
are optional.

Following the "Var" declarations come the PROC and FUNC
declarations. These will be discussed in greater detail later on.

After the FUNC and PROC declarations comes the Main Program. The
main program consists of the reserved word BEGIN followed by Pascal
statements which are separated by semicolons. After the last statement
in the program comes the reserved word END followed by a period.

What statements are available in "Tiny Pascal?"
The Assignment statement:

The assignment statement ("LET" in BASIC) is of the form:
Varname:=<express ion>

Note the use of for the assignment statement. No type checking
is done so all of the following are valid:

Examples:
I: =10;
I:=1+1;
I:=I+'C';
I:=Num-'0 ' ;
J[1]:=1*2+'I'+1;

whenever an Ascii character is encountered, the ASCII code for that
character will be used. This is somewhat like the "CHR$" and "ASC"
functions in BASIC. The Arithemetic operations are as follows. (Listed
from Low precedence to High precedence.)

-8-

9

Aug 1979 Programme Pascal Version 1.0

Low Precedence +, AND, OR
Medium Precedence *, DIV, MOD, SHL, SHR
High Precedence Not, - (unary)

A few notes are in order. The assignment I:=J AND K; performs a
bitwise AND on all 16 bits of J and K. The result is stored in I.
Likewise I:=J OR K; performs a bitwise OR of J and K.

*" is used for multiply, as you would expect. But you must use
"DIV" for division. In Pascal "/" is used only for REAL divisions and
"DIV" is used only for Integer divisions. Since Tiny Pascal does not
support floating point "/" is not used. "MOD", of course, performs the
module function. "SHL" and "SHR" provide bit shifting facilities. "SHL"
performs a "shift left" and "SHR" performs a "shift right".

Example:
I:=J SHL 2;

shifts J two bits to the left and places result in I. NOT inverts all
the bits, and (-) takes the 2's compliment. Parentheses may be used to
provide a change in precedence when required.

The MEM Array.
Often, in a microcomputer environment, it is necessary to access

absolute locations in the memory space. In BASIC Peek and Poke provide
this facility. In Tiny Pascal a phathom array "MEM" is used. Basically
the array "mem" is an array of bytes 64K long. MEM [0] corresponds to
location zero in memory, MEM [1] corresponds to location one, etc.

To simulate a Peek simply use the MEM array within the expression
on the right side of an assignment statement. For example, I:=MEM[33];
is the same as I=Peek(33) in BASIC. To simulate a POKE statement use
the MEM on the left side of the assignment statement. Example,
MEM[33]:=33; is the same as Poke 33,33 in BASIC.

-9-

Aug 1979 Programma Pascal Version 1.0

Hexadecimal Constants

Sometimes it is much more convenient to use a hexadecimal constant
than a decimal constant. This is particularly true when accessing
absolute addresses in the computer memory.

A 16-bit hexadecimal constant is specified by proceeding a
four-digit hexadecimal number with a percent sign (%).

Examples:
I:=%FDED; CR:=%000D;
I:=%0020;
J:=%000A;

Note that hexadecimal constants must be exactly four characters
long, so leading zeros must be typed in.

Handling Characters and Strings
Since Tiny Pascal is integer only you might get the impression that

no string handling facilities are provided. Fortunately this is not the
case, characters can be handled by Tiny Pascal.

The assignment
I:='A';

where I is an integer, places the character 'A' in the low order
byte of I and zero's the high order byte. Arrays of integer may be used
to hold character strings.

Read and Write
I/O is facilitated by the Pascal Read and Write statements. Tiny

Pascal write statements come in four flavors: write character, write
decimal value, write string, and write hexadecimal value.

Write (I): will print
character.
Write (I#): will print I
Write (1%): will print I
Write ('string'): writes

the low order byte of I as an ASCII
as a decimal integer.
as a hexadecimal value.
the desired string out to the CRT.

Naturally you can specify more than one element in the list by
separating the variables/strings with commas. Tiny Pascal does not
divide the screen up into "fields" as do the BASIC interpreters. Each
element will be printed with no interleaving blanks.

Example: Write ('!=', I#); prints "I=nnnnn" where "nnnnn" is the
current value for I.

-10-

Aug 1979 Programma Pascal Version 1.0

Note: Write (33); does not display "33" onto the CRT as you might
expect. Rather it displays the character "!". Remember, unless you
suffix the list element with a "#" or "%" it will be printed as an Ascii
character. Also: Write does not automatically eject a return after the
last element has been printed. You have to specifically provide the
return. This can be done in several ways. For instance, WRITE (1,13);
will print the current character in the lower order byte of I and then a
carriage return (13 is the decimal value for a carriage return).
Possibly a better way to print a return is to define a constant, CR,
equal to 13 (CR=13) and now simply use WRITE(I, CR). This will improve
the readability of your program considerably.

Using Apple DOS from Tiny Pascal.
You use the Apple DOS in Tiny Pascal in the same manner that you

use it in Integer BASIC. To execute a DOS command you simply "write"
control-D, followed by a DOS command, followed by a return. The. last
character printed prior to the control-D must be a return.

Define a constant "CTLD" equal to 4 (the decimal value for
control-D). Now you can execute DOS commands as follows:

Write (CTLD, 'Catalog', CR): Prints a catalog.
Write (CTLD, 'OPEN Test', CR): Opens a file call test.
Etc.

To turn on printers and other I/O devices you can use the DOS
command IN# and PR#.

Example:
Write (CTLD, 'PR#2', CR): turns on output device in slot 2.
Write (CTLD, 'IN#',I, CR): turns on the input device whose slot

number is contained in the variable "I".
The Read statement is used in a manner similar to the write

statement, except you cannot read a string of characters with a single
read statement. You must read a single character, pack it into an
integer array, and read the next character, etc. This will give the
appearance to the user that he is entering a string of characters.
Library.S.2, provided, contains several string input/output routines.

The automatic conversion routines "#" and may be used in READ
statements. READ(A#) will read a decimal number into the variable A.
The user should respond by entering a string of decimal digits followed
by a blank, comma, or carriage return. If the input string is empty,
that is, if only a blank, comma, or carriage return was entered then A
will be set to 0. If the number is invalid it must be re-entered.

-11-

Aug 1979 Programma Pascal Version 1 0

The IF-THEN-ELSE Statement
The IF-THEN-ELSE Statement in Tiny Pascal has the. form:
If <condition> Then statement (Else statement).
The ELSE portion is optional. Statement may be either a simple

statement (a single Pascal statement) or a compound statement (to be
described later).

Examples:
If A=B then write (A#) ELSE write ('A=', A#,
If I<=J then if K=J then write (K#)
ELSE write (J) ELSE write (I);

B=' , B#);

In the second example some ambiguity might arise due to the use of
the nested If's and Else's. The simple rule of thumb in this situation
is: Each ELSE goes with the last "UN-ELSED" If. In the previous example
the "ELSE write (J)" goes with the "If K=J" and the "ELSE write (I)"
goes with the "If I<=J".

Relational operators are as follows:
< : Less Than

<= : Less Than or Equals
= : Equals

<> : Does Not Equal
>= : Greater Than or Equals
> : Greater Than

In addition, TRUE is any value other than zero and FALSE is zero
(you may want to define two constants "TRUE" and "FALSE" with these
values). So now...

I:=l;
IF 1-1 THEN WRITE(I#)
ELSE WRITE(I+1);

will write "1+1" to the CRT< since 1-1=0 (which is false). In the same
manner the relational values may be used in assignment statements.

I:=2;
I:=I=2; sets I to 1;
I:=I=10; sets I to 0;
etc.

In addition the operators "AND", OR", and "NOT" may also be used
in "If" statements.

Example:
If ((A=B) AND (K=L)) OR (M=N) then write (N#)

-12-

Aug 1979 Programma Pascal Version 1.0

Up till now very little mention has been made of semicolons other than
the fact that they are used to separate statements. Please note that "If
<cond> Then <statement 1> Else <statement 2>" itself constitutes ONE
statement. You cannot place a semicolon after statement 1 or the Tiny
Pascal compiler will think the end of the If statement has been reached.
As a result the Else <statement 2> will no longer be connected to the If
statement and an error will result.

The While Loop
Pascal supports a looping construct known as the While Loop. It has

the form:
While <cond> DO <statement>;

where statement is a simple statement or a
<Cond> is any expression returning a TRUE or FALSE
condition is true the statement is executed. When
false the loop will be exited.

compound statement,
value. As long as the
the condition becomes

Example:
I:=0
While (I<=10) DO I:=I+1; (* Delay loop. *)

The syntax and use of <cond> is the same for the while loop as it
is for the If statement. The while loop tests the condition at the
beginning of the loop and then executes the statement if and only if the
condition proved to be true. The looping continues until the condition
becomes false. If the condition is falsewhen the while is first
executed the statement after the DO will not be executed at all.

The Repeat...Until Loop
Unlike the While Loop, statements within a Repeat until loop always

get executed at least once. This is because the condition gets tested at
the bottom of the loop rather than at the beginning of the loop. There
are two other major differences. First, the loop is repeated only if the
condition turns out to be false (opposite of the while loop) and second,
you are not limited to one simple or compound statement but you can have
as many statements as you desire (separated by semicolons). The
Repeat...Until Loop has the following form:

Repeat
<statement 1>;
<statement 2>;

<statement n>
UNTIL <cond>

You may have none, one, or as many statements as you desire between
-13-

Aug 1979 Programma Pascal Version 1.0

the Repeat and Until as long as they are separated by semicolons.
Example:

Repeat
Write ('Enter Answer (Y/N)’);
Read (Answer);

Until (Answer = ' Y') OR (Answer = 'N');

-14-

Aug 1979 PROGRAMMA PASCAL Version 1.0

THE FOR LOOP
The FOR loop in tiny Pascal is very similar to the

BASIC. It is of the form:
FOR <varname> := <initialvalue> TO <finalvalue> DO

-OR-
FOR <varname> := <initialvalue> DOWNTO <finval> DO

FOR/NEXT loop in
<statement>;
<statement>;

As with the WHILE loop only one statement (simple or compound) may
follow the DO. There is no stepsize allowed other than 1 or -1. (for a
stepsize of one use "TO", for a stepsize of minus one use "DOWNTO").

EXAMPLES:
FOR I:= 1 TO 10 DO WRITE('1=',I#);
FOR I:='A' TO ' Z' DO WRITE(I);
FOR I: = 10 DOWNTO 1 DO WRITE(I#);

THE CASE STATEMENT
The CASE statement is a much more powerful version of the ON...GOTO

in BASIC. It has the form:
CASE <varname> OF

<constl>:<statementl>;
<const2>:<statement2>;
<const3>:<statement3>;

<constn>:<statementn>
ELSE <statementn+l>

END;
The ELSE <statementn+l> is optional. Please note that a semicolon

is NOT ALLOWED after <statmentn> and <statementn+l>. These statements
can be either simple statements or compound statements.

At execution time the Apple II will take the value contained in
<varname> and compare it with <constl>. If a match is made <statementl>
is executed. Otherwise <varname> gets compared with <const2>, then
<const3> etc. until a match is made. If a match is not made amongst all
the available constants the ELSE statement (if present) will be
executed. If the ELSE statement is not present none of the statements in
the CASE statement will be executed, and program execution will continue
with the next statment after the CASE statement. EXAMPLES:

I:=0;
CASE I OF

1:WRITE('!=',1#);
2:WRITE(’J=',1+2#);
3:WRITE('K=',K%)
ELSE WRITE('NOT THERE!')

END;
This will write "NOT THERE!" on the terminal.

-14A-

Aug 1979 PROGRAMMA PASCAL Version 1.0

I:=0;
CASE I OF

1:WRITE(I#);
2:WRITE(2*1#)

END ;
This will do nothing since a match will not be made and there is no

"ELSE" clause.
I:=0; CASE I OF

0:WRITE('ZERO');
1:WRITE('ONE') ;
2:WRITE('TWO')

END;
This example prints “ZERO" on the crt.

<constl>, <const2>, ... , <constn> must be constants, they cannot
be variables. Should you try and use a variable name you will surely be
rewarded with an error message-.
If the CASE statement is of the form:

CASE I OF
<constl> , <const2> ,. . . , <constn> : < statements ;
<constn+l>,<constn+2>,...,<constm>:<statement2>;
ETC.

then <statementl> will be executed if a match is made between I and any
of <constl> ... <constn>. Likewise <statement2> gets executed if any of
<constn+l> ... <constm> match up with I.

COMPOUND STATEMENTS

Up till now we've been limited to
examples except the REPEAT...UNTIL. In many
than one statement is required.

one statement is all of our
(most!) applications more

Compound statements may
allowed are are of the form:

be used anywhere single statements are

BEGIN
<statementl>;
<statement2>;

<statementn>
END;

-15-

Aug 1979 PROGRAMMA PASCAL Version 1.0

Examples:
FOR I:= 1 TO 10 DO BEGIN

IF (I< = 9) THENWRITEp ');
WRITE(11=1,I#);

END;
IF I=J THEN BEGIN

IF K=L THEN WRITE(L#); END ELSE WRITE(I#);
Note in particular the use of the BEGIN ... END to force the ELSE

to be associated with the first IF statement.

- COMMENTS -
Comments in Pascal are delimited by "(*“ and "*)". Comments are

allowed any where a space is allowed and the compiler ignors them.
Unlike BASIC, comments in Pascal do not exist at run time, and as such
do not require any memory in your program. Nor do they degradate
program performance. Comments do improve the readability of your
program so they should be used generously.

Examples:
(* THIS IS A COMMENT *)
FOR (* COMMENTS ARE ALLOWED HERE! *) I:= 1 TO 10 DO WRITEfl#);

PROCEDURES AND FUNCTIONS
Tiny Pascal supports the use of procedures and integer functions.

A procedure (or function) definition is very similar to a program
definition. The first line of a procedure definition is
PROC <procname> (Coptional parameter list>);
This defines a procedure by the name <procname>.

Following the PROC statement come the CONST declarations.
Constants declared within a procedure cannot be referenced by the
external program. These constants are "local" to the current
procedure. A procedure, however, is allowed to use constants and
variables declared in the main routine. Such constants (and variables)
are considered "global". For a complete description of global and local
constants, variables, procedures, and functions check out the section on
"scope" in any textbook on Pascal. The concept of "scope" is beyond the
scope of this paper!

-16-

Aug 1979 Programma Pascal Version 1.0

Following the CONST declarations come the variable declarations.
' once again, any variables defined wil be local and inaccessable by the

main procedure.
After the variable declarations come the internal procedure and

function declarations. (Yes, you can have a procedure inside a
procedure). After the procedure and function declarations (if any)
there is a BEGIN, followed by the statements in the procedure,
terminated by an "END;".

Procedures are "invoked' or "called" simply by using the procedure
name as a statement in the program.

EXAMPLE:
PROGRAM TEST;

VAR I:INTEGER;
PROC CRLF;
CONST CR=13;
BEGIN
WRITE(CR);

END;
BEGIN
WRITE(’HELLO THERE*); CRLF;
WRITE(*HOW ARE YOU TODAY?’); CRLF;

END.
The program returns from a procedure by encountering an "END"

statement. It is not possible to exit from the middle of a procedure or
function via a "RETURN" as in BASIC. You always enter a procedure at
the top and exit at the bottom.

Parameters are used to pass information to the routine. For
instance, suppose we want to simulate the SPC procedure in BASIC.
SPC(I) prints I spaces onto the CRT. The procedure to do this could be:

PROC SPC(I);
VAR J .-INTEGER; BEGIN

FOR J:=l TO I DO WRITE(’ ’);
END;

t

Now, in our mainline program, if we write
WRITE(’HELLO’); SPC (2); WRITE(’THERE’);

It would print "HELLO THERE" with two blanks between the "HELLO" and
THERE". You can have as many parameters in your list as you need,
simply separate them with comma's.

i.e,
PROC TEST(I,J);

BEGIN WRITE(I#,J#); END;
Is called by TEST(3,2) for example.

-17-

Aug 1979 Programme Pascal Version 1.0

Functions are set up in the same manner as procedures. Instead of
“PROC" you use "FUNC", and then somewhere in the body of the function
you are allowed to make the assignment:

<funcname>:=<expression>;
The value will be returned when you exit the subroutine. Functions are
invoked by appearing anywhere an expression is legal, some examples:

I:=<funcname>;
WRITE(<funcname>);
MEM[<funcname>:=<expression>;
ETC.

In the above examples simply replace <funcname> with the name of
the function you wish to use.

EXAMPLE:
PROGRAM TEST;
VAR I:INTEGER;
FUNC ADD1(I);
BEGIN

ADD1:=I+1;
END;
BEGIN

I:=ADD1(2);
END.

I now equals 3.

- CALL -
Often it is desirable to call machine language programs directly

from a Pascal program. This is handled by the builtin procedure
"CALL". As an argument, you pass CALL the address of the machine
language subroutine, and whatever 6502 machine language program is
sitting at that address will be executed. This is very similar to the
"CALL" in BASIC.

EXAMPLES:
CALL(-936); - HOMES AND CLEARS SCREEN.
CALL(-151); - PUTS YOU INTO THE APPLE MONITOR.

USING THE PASCAL EDITOR
The editor provided with the Tiny Pascal system is a

editor written by Herbert Yuen. The source for the editor
Pascal) is in the file "EDITOR.S".

You may enter the editor by typing "E" while
monitor. The Apple II will respond with:

NEW/EDIT(E):

line oriented
(written in

in the Pascal

-18-

Aug 1979 Programma Pascal Version 1.0

By pressing "E" or <cr> you can edit a file existing (created
previously or L(OAD)ed in at the Pascal monitor level). By pressing "N"
the editor will clear any existing text and place you directly in the
"insert" mode.

Once you are in the editor (by using the "E" command or by getting
out of the insert mode when editing a N(EW) file) you will be at the
editor command level. Valid commands are:

-19-

Aug 1979 Programme Pascal Version 1.0

n' refers to a decimal number in the range 1-999.

L: list entire file.
P: prints current line.
P~: prints top line.
P*: prints last line.
Pn: prints the next 'n' lines.

R<string>: replaces current line by <string>.
A<string>: appends <string> to the end of the current line.

D: deletes current line.
D": deletes the first line.
D*: deletes the last line.
Dn: deletes the next 'n' lines.
X: status, prints size of file etc.
U: move the line pointer up one line.

Un: move the line pointer up 'n' lines.
N: move the line pointer to the next line.

Nn: move the line pointer past the next 'n' lines
E: exit the editor.
I: enter the insert mode (automatic when editing a N(EW)

file). All following text is inserted AFTER the current
line. You exit the insert mode by typing <cr> as the first
character of a new line (to insert a blank line type at
least one space prior to the <cr>). If the textfile is
empty (when editing a N(EW) file) you must insert at least
one line of text before exiting the insert mode.

I": Insert text before the first line.
I*: insert text after the last line.
M: enter intra-line editing mode. " *’ denotes a control

character. Commands in the intra-line editing mode are:
aA: copies current character.
aG: copies entire line.
aH: backspace one character.
AS<c>: copies all characters up to <c>.
aN: re-edit new line.
<cr>: exit modify mode.

In addition to the Pascal editor you may use the Apple Pie (version
2.0) text editing system to create source files for creating tiny Pascal
source programs. Since Apple Pie textfiles and Tiny Pascal textfiles
are incompatable, Pie textfiles must be converted before attempting to
compile a Pascal program created by Pie. To accomplish this run the
program "CONVERT/PIE" (a source is provided). Programs created using
Apple Pie cannot be modified by the tiny Pascal editor (even after
conversion by "CONVERT/PIE".

Since neither Pie nor the tiny Pascal editor allow you to insert
control characters into the source code you must use constants with the
appropriate value instead of the actual control character. For
instance, to display a catalog from a program you could use

WRITE(CTLD,'CATALOG',CR);
-19A-

Aug 1979 Programme Pascal Version 1.0

Where CTLD=4 and CR=13. The "[" and "]" characters are directly
available from the keyboard using control-t and control-y.

-/

Tab characters. The compiler and editor both recognize the TAB
character (control-I). During listings two blanks are substituted for
each TAB character.

— MORE ADVANCED TOPICS —

- ERROR MESSAGES - I t
The error messages printed by the compiler are the standard error

messages found in PASCAL:USER MANUAL AND REPORT by Jensen & Wirth. In
addition error 999 may occassionally appear. Error 999 indicates that
the static function/procedure nesting level, or the number of)
permissable variables in a function/procedure, has been exceeded.

- MAXIMUM NUMBER OF VARIABLES - >
The total number of integer variables (including each element of an

array) must not exceed 2048 (decimal). If you need an array of 4000
elements you must break it into two arrays of 2000 elements each, one
array must be declared at the current level of procedure or function.
The second array must be declared within an internal procedure or >
function. The arrays must have different names (if both are to be
accessed). The inner procedure can now "see" both the outer array and
its own. The main body of the outer procedure can now be a simple call
to the inner procedure.

If a function/procedure is 16 levels deeper than the outermost
function it can no longer access variables in the outer
function/procedure. This highly unusual situation is flagged with the
error 999 message.

- RUN TIME ERRORS -
Runtime errors will return you to the Pascal monitor, which will

identify the type of error and the P-code address of its occurance.
This can be matched against the compiler listing to determine in which
line the error occured.

- SYSTEM FLAGS -
The 6502 P-code interpreter maintains an eight bit flag register at

location %000D hex which is used during runtime errors. Four of the
eight bits are used to determine whether or not a runtime error will be
flagged.

-20-

I
(• '

■
i

Aug 1979 Programma Pascal Version 1.0

The following bits are defined:
BIT 0: arithimetic overflow (>32767)
BIT 1: division by zero (ZERO DIVIDE)
BIT 6: invalid opcode (*DAMAGE*)
BIT 7: stack overflow (stack full)

The appropriate bit is on (1) if the error is enabled and off (0)
if disabled. The invalid opcode and stack overflow bits cannot be

> disabled. The defaults are zero divide enabled and arithimetic overflow
disabled. This is because the compiler uses + and - for address
 arithimetic which sometimes produces arithemetic overflow. Your program
' may wish to enable arithimetic overflow for a few instructions, the

disable it again.
MEM[%000D] := %00FF; ... MEM[%000D] := %00FE;

- PASSING PARAMETERS TO MACHINE LANGUAGE SUBROUTINES VIA CALL -
It is possible to pass certain values to machine language

subroutines invoked via the '’CALL" statement. Whenever a CALL is made
the accumulator is loaded from location %001A, the X-register is loaded
from location %001B, and the Y-register is loaded from location %001C.
When the machine language subroutine returns the contents of the
registers are stored in their respective locations. This allows
flexible management of data when calling machine language routines.

One very useful example might be hexadecimal output. Although you
can output a hex number directly from Pascal you are forced to output
exactly four hex digits with each hex write. Sometimes it would be nice
to be able to output only two hex digits at a time. The following
program will perform a memory dump outputting only two hex digits at a
time.

PROGRAM HEXDUMP;
VAR LOCATION, LOWER, UPPER:INTEGER;
BEGIN

WRITE('INPUT LOWER BOUNDS:'); READ(LOWERS);
WRITE ('INPUT UPPER BOUNDS:'); READ (UPPERS) ;
FOR LOCATION:=LOWER TO UPPER DO BEGIN

MEM[S001A] : =MEM [LOCATION­
CALL (% FDD A) ;
WRITE(' ');
IF NOTfLOCATION MOD 8) THEN WRITE(13);

END ;
END;

-21-

Aug 1979 Programma Pascal Version 1.0

- MINIMAL RUN TIME SYSTEM -

You may wish to overwrite the compiler and editor and use this
memory space for your own program. By setting the P-code origin at 1800
and then compiling (at 5000) then moving your program to location 1800
you can run your program in a stand-alone environment. You can also use
the monitor F(ENCE) command to make more room for variable storage by
setting low to 1800 and leaving your program at 5000.

If you would like an autostart capability, overwrite the Pascal
monitor with your program. RESET and *800G will then auto-execute your
program (at hex %1300). However you must adjust the memory fences by
changing the defaults in the interpreter. If you save the P-code
interpreter and your program to disk, BRUN <progname> will auto-execute
your program. In addition, if the "HELLO" program on your disk BRUN's
the program, it will auto execute when the DOS is booted. For more
information see the section on the interpreter.

EXTERNAL PROCEDURES AND OVERLAY

Any program may call procedure and functions which are external to
it. The program should use the ordinary PROC or FUNC heading when it
declares the external procedure or function. However, in place of the
BEGIN ... END block of the procedure or function body, a single
hexadecimal constant should appear. When the procedure or function is
called, control will be transferred to that hex address. The PROGRAM
heading of the external procedure or function should match the internal
heading of the calling procedure. For example, the Pascal monitor
contains the declaration

FUNC EDITOR; (* PASCAL EDITOR *)
%3000;

The program line of the editor reads:
PROGRAM EDITOR;

Neither have any parameters (although
declaration, the monitor treats EDITOR just
internal function.

both could).
as it would

After the
any normal

- VERY HARD TO FIND BUGS -

Programma Pascal does not check array subscripts to see whether or
not they are in bounds. If you store a value at position 10 of a nine
element array you will damage the stack. Since return addresses are
stored on the stack, you may find yourself in an embarrasing situation.

-22-

Aug 1979 Programma Pascal Version 1.0

Another difficult but to detect is the use of zero instead o "0"
(oh) in a variable name, or a hidden control character which does not
pr int.

LIBRARY.S

Phillip Wasson has written some very useful (though untested by
Programma) functions and procedures. They are in the file "LIBRARY.S".
You may find them to be of interest.

Programma Pascal vs. Supersoft Pascal

Programma Pascal is a derivative of Kin-Man Chung and Herbert
Yuen's Tiny Pascal. Supersoft Pascal is also a derivative of Tiny
Pascal for the Radio Shack TRS-80 and Northstar computers.

Supersoft Pascal has an additional array called MEMW. Assignments
to and from MEMW transfer all 16 bits as opposed to MEM, which only
transfer the low order 8 bits. See LIBRARY.S.2 for a procedure and
function which simulate MEMW.

Programma Pascal has added the external procedure definition and
the PROGRAM header, which work together.

Otherwise the two Pascals are quite compatable at the source level,
although their P-codes have been optimized for different environments.
It may be necesary to rewrite certain sections of code which have been
designed to run on the different computers. However, translating
Supersoft Pascal to Programma Pascal will be an order of magnitude
easier than translating BASIC.

- DETOKEN -
Detoken is a program written by Randy Hyde which will "detokenize"

an Integer BASIC program. It can be used to create BASIC program
textfiles which can be edited by APPLE PIE.

- LIBRARY.S.2 -
Contains several

string routines in
given.

string handling
UCSD Pascal.

routines which mimick many of the
Several other utilities are also

- CANNIBALS -
A programming example which demonstrates many of the features of

Programma Tiny Pascal.

Aug 1979 Programma Pascal Version 1.0

- THE P-CODES -

A table of P-codes has been provided with this documentation. One
special P-code, hex 30, is used as a Pascal breakpoint. When executed
hex 30 will exit to the Apple II monitor.

- THE INTERPRETER -

The 6502 P-code interpreter has
black box. The only locations which may
the 6502 environment to another appear
following six bytes of default values.

0800 - JMP COLDSTART
0803 - JMP WARMSTART
0806 - JMP ERROR ENTRY
0809 - JMP READ BYTE
080C - JMP WRITE BYTE
080F - JMP SET MEMORY FENCES

been carefully designed to be a
need adjusting when moving from
in the JMP vectors and the

0812 -
0813 -
0814 -
0815 -
0816 -
0817 -

Default
Default
Default
Default
Default
Default

start address of P-code pgm (low order byte),
start address of P-code pgm (hi order byte).
starting PAGE of Pascal stack.
fence PAGE.
HIGH memory page location.
SYSBIT error enable flags (currently hex $FE)

The interpreter itself was written using LISA (a 6502
assembler) The interpreter, monitor, compiler, and editor
currently reside in locations $800 - $4000. If you wish to
use HIRES graphics (and the Apple supplied routines) the
current P-code interpreter will prove to be located in the
wrong area. On the Pascal disk is a binary file called
"PCODE.HIRES", it is assembled beginning at location $4000 in
memory so that it will be out of the way of the first HIRES
page and the Apple's HIRES routines. To use "PCODE.HIRES"
first create and compile your program using the normal Pascal
system. Once the syntax errors have been taken care of, save
the codefile to disk. Load the binary file "PCODE.HIRES" and
then adjust the memory fences so that they are ABOVE your
program. Now you can use the "U(SER)" command from the Pascal
monitor to run your HIRES program.

If you need the P-code interpreter assembled for a
different location please contact Programma and they will be
happy to assist you.

-24-

Aug 1979 Programma Pascal Version 1.0

MEMORY REQUIREMENTS

Pascal occupies the following memory locations:
0000 - 001F:These are the zero page locations used by the

6502 P-code interpreter.
00D8 - 00DF:Zero page locations reserved fro DOS/Pascal

interface.
0800 - llFF:P-code interpreter and the compiler's reserved

symbol table.
1200 - 12FF:A spare page for storing user builtin

functions, patches, and so forth.
1300 - 17FF:Pascal monitor. This is a Pascal program. The

source code to this program can be found in
the file "MONITOR.S", so feel free to modify
it and substitute your own improved monitor
here. The monitor is actually much smaller
than the space provided, so you have plenty of
room for growth.

1800 - 2FFF:Pascal compiler.
3000 - 3FFF:Pascal editor. You will find the source in

"EDIT.S". 4000 - 4FFF:(LOW-FENCE) The stack.
All variables created in a Pascal program are
stored on this stack. The stack starts at
fence-1 and grows towards LOW.

5000 - 95FF:(FENCE-HIGH) User memory. This area is not
quite a part of the Pascal memory space. It is
used to store text, programs, user
subroutines, and so forth. The Pascal monitor,
editor, and compiler will not normally access
or change any memory above HIGH.

%
-25-

Aug 1979 Programme Pascal Version 1.0

- CHANGING MEMORY LIMITS:LOW, FENCE, AND HIGH -

The F(ENCE) command in the Pascal monitor allows the user to
specify the memory limits for a Pascal program. This is similar to
setting LOMEM and HIMEM in a BASIC program.

Instead of two memory bounds (as in the LOMEM/HIMEM commands) the
Pascal user, must set three memory bounds: LOW, FENCE, and HIGH. LOW is
the absolute smallest memory location usable by a Pascal program. It is
roughly equivalent to LOMEM. HIGH is the absolute highest memory
location usable by the Pascal program and is roughly equivalent to
HIMEM. FENCE resides somewhere inbetween LOW and HIGH and divides the
memory area between LOW and HIGH into two areas. One of these areas
(from LOW to FENCE-1) is reserved for variable storage. The other area
(from FENCE to HIGH-1) is reserved for program storage.

Should you ever get a stack full error it simply means that you
have not reserved enough memory for your variables (which are kept on
the stack) and as a result, you need to adjust the FENCE upwards towards
HIGH. The default settings are LOW=4000, FENCE=5000, and HIGH=9600.
This has been optimized for text editing when using the Pascal editor.
This will only leave enough room for approxamately 500-1000 variable
locations. Generally, except for smaller programs, you will want to
adjust the FENCE to give you more room.

PROPRIETARY NOTICE

Since many users will find Programma Pascal much easier to use (and
twice as fast!) as Integer BASIC it should not be too long before
programs written in Tiny Pascal begin to appear on the marketplace.
Although, in this paper, explicit instructions have been given guiding
the user in creating "stand alone/auto execute" Pascal programs,
Programma does not release rights on the P-code interpreter. All
information presented in this paper is intended for the sole use and
enjoyment of the original purchaser. Since we do not want to discourage
the propagation of quality software written in Tiny Pascal we can offer
you four suggestions when selling your Pascal programs.

1) Sell the source listing (or file) only. The end user must
purchase Tiny Pascal in order to use your program.

2) Sell the P-code file only. The end user must purchase either the
Tiny Pascal system, or the P-code interpreter alone.

3) Negotiate a license agreement with Programma
sell the P-code interpreter together with your program,
of your own marketing and distribution.

International to
You take care

4) Sell your software product through Programma International.
Programma will patch your program up so that it will auto-execute. All
you have to do is sit back and collect the royalties.

-26-

Clarity Tiny Pn^cal P-code Instruction Set

Least Significant Nybble

INL use local address mode. The least
significant nybble specifies the offset from the
l°°al contour plus 5 . This gives immediate access
to the first five parameters and first eight local
variables. INL is the local! form of INT.
CAL the least significant nybble specifies the
static nesting depth of the call.
IDA, STA, JSR the absolute form of LOD, STO and CAL.
J-Q combines the EQU comparison and the JPT (jump
if condition true). Similarly, JNE, JGE and JLT are
used to optimize CASE and FOR loops.

PR
O

D
U

C
T

D
ESC

R
IPTIO

N

PLEASE CIRCLE THE APPROPRIATE PROBLEM AND MEDIA CODES BELOW.

PROBLEM: MEDIA:

1. MISSING OR INCOMPLETE A. DOCUMENTATION
2. WRONG PROGRAM RECEIVED B. MAGNETIC TAPE
3. UNREADABLE DATA C. CASSETTE TAPE
4. DAMAGED D. DISK
5. QUESTION E. CARDS
6. IMPROVEMENT F. PAPER TAPE
7. INFORMATION G. DISKETTE
8. PROGRAM PRODUCT PROBLEM H. PAPER LISTING
9. OTHER I. OTHER _______________________

SOFTWARE PRODUCT NAME:

VER #: SER #:

COMPUTER: ATTACHED EVIDENCE SUPPLIED:

MONITOR/DOS: 1. PROGRAM LISTING

MEMORY:
2. HEX MEMORY DUMP
3. CONSOLE MESSAGES
4. OTHER _______________________

SUBMITTED BY: DATE:

COMPANY: MAIL STOP:_______________

ADDRESS: ______________________________________

CITY: STATE: ZIP:

COUNTRY: TELEPHONE:

SER
Form

NON EXCLUSIVE LIMITED LICENSE AGREEMENT
END USER AGREEMENT

AGREEMENT

This agreement is between the person or organization designated below
(LICENSEE) and PROGRAMMA International, Inc., a California corporation,
at 3400 Wilshire Boulevard, Los Angeles, California 90010 (PROGRAMMA).

PURPOSE AND CONSTRUCTION

The purpose of this agreement is to convey to LICENSEE a license to use
the proprietary computer program listed and described below, together
with accompanying copyrighted media material and documentation.

CONSIDERATION AND TERM

This license is granted by PROGRAMMA in return for a fee as described
below and LICENSEE'S agreement to respect the terms and conditions
regarding permitted use of the PRODUCT and of related materials supplied.

The term of this license is 19 years, commencing on the date as signed
below. The license may be renewed for an additional term of 19 years
at the option of the LICENSEE upon payment of an additional fee of
$1.00 to PROGRAMMA at any time during the initial term.

EXCLUSIVE SOURCE

LICENSEE must obtain all product materials through PROGRAMMA or through
an AUTHORIZED PROGRAMMA DEALER and no other source. PROGRAMMA product
materials include, but are not limited to, manuals, license agreements
and media upon which proprietary computer programs are recorded. Except
for archival copies, as defined elsewhere in this agreement, LICENSEE
shall make no copies, of any kind, of any of the materials furnished by
PROGRAMMA, unless specifically authorized to do so in writing signed by
an officer of PROGRAMMA International, Inc.

LIQUIDATED DAMAGES

LICENSEE recognizes that PROGRAMMA has expended considerable time and
expense to develop PROGRAMMA's products and PROGRAMMA would be damaged
by unauthorized copying and reproduction or distribution of PROGRAMMA's
product materials. In the event LICENSEE breaches this Agreement by
unauthorized copying or reproducing or distributing of PROGRAMMA's
product materials, LICENSEE agrees to pay PROGRAMMA as liquidated
damages, for each occurance of the unauthorized act of copying or
reproducing or distributing of PROGRAMMA's product materials, the sum
of $1,000 (One Thousand Dollars) in lawful United States Currency,
immediately upon demand by PROGRAMMA.

Furthermore, PROGRAMMA agrees to pay to any person, company, or other
lawfully constituted entity that provides information that leads to a
successful prosecution and recovery, the sum of $250 (Two Hundred and
Fifty). At all times, the decision to evaluate such information as
well as the decision to prosecute remains at the sole option of PROGRAMMA.

End
U

ser
A

greem
ent;

NON EXCLUSIVE LIMITED LICENSE AGREEMENT
END USER AGREEMENT PAGr-?

Any sum paid will only be paid once, and, in the event of multiple
entities, the sum will be distributed at the discretion of PROGRAMMA.

ARCHIVAL COPIES

LICENSEE may make archival copies of those portions of PROGRAMMA
product(s) that are provided on machine readable media, provided such
copies are for the LICENSEES personal use and that no more than one (1)
such copy is in use at any time unless LICENSEE has paid for multiple
copy use as described below. LICENSEE agrees to label each archival
copy with a reasonable copy of PROGRAMMA's copyright notice, product
name, and LICENSEE serial number as furnished with the vended media.
Failure to label each archival copy shall be considered a breach of
this Agreement for which liquidated damages are applicable.

MULTIPLE COPY USE

In the event that LICENSEE intends to use PROGRAMMA product or any
part thereof on more than one computer, the required fee for each use
must be paid. This Agreement licenses the LICENSEE to use the product
on a single computer installation.

«

SOURCE CODE AVAILABILITY AND ACCESS

PROGRAMMA agrees to furnish to the LICENSEE, upon request and for a
separate charge listed below, a single copy of the source code used
in the preparation of the product. Upon taking possession of the
source code, the LICENSEE agrees that the source code shall be subject
to the restrictions on the product itself.

i

PRODUCT INCLUSION AND MODIFICATION

The LICENSEE has the absolute right to modify the product or to include
the product as part of another system, limited, however, to the LICENSEE'S
internal use only. The product as so modified or as included as part of
a LICENSEE developed system remains subject to the same restrictions on
use, reproduction and disclosure as contained in this Agreement with
respect to the product itself. Upon any such modification or inclusion,
PROGRAMMA shall be released from any responsibility to maintain the
product, except that PROGRAMMA shall continue to disclose to the LICENSEE
any errors discovered in the product.

UPDATE POLICY

PROGRAMMA may, from time to time, revise the performance or offer
enhanced versions of its product(s) and, in so doing, incur NO obligation
to furnish such revisions to any PROGRAMMA customer. PROGRAMMA agrees to
furnish to the LICENSEE, upon request and for the cost of media, postage,
and handling, a copy of an updated version of the product, provided the
product fee remains unchanged. Should the product fee increase in an
enhanced version of the product, PROGRAMMA agrees to furnish to the
LICENSEE, upon request for the cost of media, postage, and handling and
the difference between original product fee and updated product fee, a

NON EXCLUSIVE LIMITED LICENSE AGREEMENT
END USER AGREEMENT PAGE 3

copy of an enhanced version of the product.

PATENT AND OTHER PROPRIETARY RIGHTS INDEMNITY

PROGRAMMA warrants that the product sold does not infringe upon or
violate any patent, copyright, trade secret or any other proprietary
right of any third party. In the event of any claim by any third
party against LICENSEE, the LICENSEE agrees to promptly notify PROGRAMMA
and PROGRAMMA shall defend such claim, in LICENSEE'S name, but at
PROGRAMMA's expense and shall indemnify LICENSEE against any loss,
cost, expense or liability arising out of such claim, whether or not
such claim is successful.

ASSIGNMENT OF AGREEMENT

This Agreement is not assignable without written permission from
PROGRAMMA. Any attempt to assign any rights, duties or obligations
which arise under this Agreement without the permission of PROGRAMMA
shall be void.

LIMITED WARRANTY POLICY

PROGRAMMA warrants that all materials furnished by PROGRAMMA constitutes
an accurate manufacture of PROGRAMMA products and will replace any
such PROGRAMMA furnished material found to be defective, provided such
defect is found within ten (10) days of purchase by LICENSEE. However,
PROGRAMMA makes NO expressed or implied warranty of any kind with
regard to performance or fitness for any particular purpose for any
PROGRAMMA product. PROGRAMMA is NOT responsible for any loss or
inaccuracy of data of any kind nor for any consequential damages
resulting therefrom whether through PROGRAMMA negligence or not.
PROGRAMMA will not honor any warranty where PROGRAMMA product has been
subjected to physical abuse or used in defective or non-compatible
equipment.

PROTECTION AND SECURITY

LICENSEE acknowledges that all material and information which will come
into his possession or knowledge in connection with this Agreement or
the performance hereof, consists of confidential and proprietary data,
whose disclosure to or use by third parties will be damaging. LICENSEE
agrees to hold such material and information in strictest confidence,
not to make use thereof other than for the performance of this
Agreement, to release it only to employees requiring such information,
and not to release or disclose it to any other party.

GUARANTEE OF OWNERSHIP

PROGRAMMA warrants that it is the sole owner of the product and has the
full power and authority to grant the rights herein granted without the
consent of any other person or entity.

