

Create Self-Booting Cassettes and Disks
From ABC Compiled BASIC Programs

Version 1.03

Program, Documentation, and Packaging
Copyright (c) 1983
Monarch Data Systems, Inc.
P.0. Box 207
Cochituate, Massachusetts 01778
(617) 877-3457

All Rights Reserved
"ABC - A BASIC COMPILER"

and "MAKEBOOT"
are trademarks of Monarch Data Systems, Inc.

Section 1

Section 2

Section 3

Section 4

Section 5

CONTENTS

Introduction

1.1 Restrictions

Running Makeboot

The New Interpreters

3.1 Purpose

3.2 Instructions For Use

3.3 Compatibility With Older Compilers

3.4 Problems Using the RS-232 Driver

Running Boot-Load Programs
4,1 Booting Disks
4.2 Booting Tapes

4.3 Rerunning Boot-Load programs

Adding Other Modules
5.1 Procedure to Add Files

5.2 Choosing a Load Address for an
Included File

10

Section 1
Introduction

Makeboot is a utility that lets you create self-booting disk or
cassette versions of your compiled software. It greatly
reduces the loading time of your programs, and saves memory
and disk space by eliminating the need for a disk operating
system (DOS). The Makeboot disk also comes with two other
interpreters allowing you to compile your programs so that they
will be loaded in memory at an address as low as $700
(hexadecimal notation).

1.1 Restrictions

Makeboot can be used with virtually any BASIC program that has
been successfully compiled by the ABC compiler. The only
exceptions are those programs which require the presence of a
disk operating system such as Atari DOS 2.0S. Also, you can
not use relocatable ABC compiled programs with Makeboot.

When writing a BASIC program that may be used with Makeboot,
you should avoid the following:

1. OPENing a disk based file ('Dn:") for any type of INPUT,
PRINT, PUT, or GET command;

2. The NOTE and POINT commands;

3. XIO commands which access a disk device; e.g.
XIO 33,#1,0,0,"D:FILENAME" to delete a file (other XIO
commands for screen fill, etc., may still be used).

Remember that the ABC compiler will still accept these BASIC
commands as being perfectly valid, because it has no way of
knowing whether or not you intend to use Makeboot after
compilation. It's up to you to make sure your compiled program
doesn't need DOS.

Section 2
Running Makeboot

Compile your BASIC source program according to the
instructions in Section 3 of the ABC Reference Manual. Any
interpreter address is fine.

Run your program to verify that it is working properly in
compiled form.

Make sure that you have a supply of formatted disks on hand
if you will be creating disk booting software. If you need
to, use ATARI DOS option 'I' to format disks. Cassettes
need no special formatting.

Boot the Makeboot diskette as follows: Remove all
cartridges, place the Makeboot disk in your powered on
drive number one, then turn on the computer.

Makeboot will first ask you for an input object filename.
Respond with the name of your compiled program. Include
device numbers and filename extensions as necessary. The
default device is "DI1:", and the default extension is

" _CMP" (the default extension used by the compiler).

The specified file will be read into memory and modified to
include all necessary boot code. Makeboot will alert you
if the file cannot be opened, or is not in the proper
format. Relocatable compiled programs cannot be used with
Makeboot.

You will then be asked if you want to add other modules to
the boot program. Respond with 'N' (for no) at this time.
For details on using this optional facility see section 5
in this manual.

Next, you will see the prompt "Write to Cassette or Disk?"
Remove your source disk from the drive, and respond with
the first letter of the desired output device, 'C' for
cassette, and 'D' for disk.

If you type 'D' for disk, Makeboot will prompt you for a
drive number. Type 1, 2, 3 or 4 and RETURN, or just RETURN
for the default of drive number one. You will now be
instructed to insert a formatted disk into the selected

drive. Make sure this disk has nothing important on it,
because Makeboot is about to write all over it! When
everything is ready, hit RETURN and Makeboot will create a
boot-loading disk version of your compiled program. Note
that a disk created by Makeboot cannot be duplicated using
option 'J' of Atari DOS 2.0S.

If you type 'C' for cassette, Makeboot will instruct you to
insert a blank tape into your cassette drive. The double
"squawk" means that it is ready to write the cassette. Cue
the tape up to the beginning (a leaderless,
computer—certified brand is recommended). Press the PLAY
and RECORD keys on the cassette drive, hit RETURN and
Makeboot will create a self-booting image of your compiled
program on tape.

When the new disk or tape is ready, Makeboot will ask you
to press OPTION to reboot the system, SELECT to return to
DOS, or START to write another tape or disk with the same
program. If you are using Atari DOS, you must place a disk
with DUP.SYS into drive one before choosing a return to
DOS. If you want to boot the self-booting program you just
made, make sure that there are no cartridges in the system
(they should already have been removed to run Makeboot).

Section 3
The New Interpreters

3.1 Purpose

One reason for creating a self-booting program is to reduce the
memory requirements for that program. Because self-booting
programs are loaded without DOS, programs may be situated in
memory starting with page 7 (hex $700). If you normally use
the default ABC interpreter ($2600) you would gain 7,936 bytes
of space! Even if you used the lowest interpreter normally
supplied with ABC ($1FO0) you would gain 6,144 bytes. Two
interpreters are provided with Makeboot to allow you to compile
your programs for the self-booting environment. One is at
address $700 (hex) and the other at $E00 (hex). The $700
interpreter is intended for most programs, while the $E00
interpreter is used for programs using the RS-232 driver.

3.2 Instructions For Use

To make use of the new interpreters, you must follow
instructions similar to those found in section 5.1 of the ABC
Manual which are restated here.

a. When Booting ABC, keep the OPTION console button pressed
until the title screen is displayed and the prompt for a
new interpreter name appears. Now place the Makeboot disk
in drive number one and then respond with either
"INTERP.X07" or "INTERP.XOE". Another drive may be used to
load the interpreters by simply adding the appropriate disk
designation to the name; e.g. "D2:INTERP.X07".

b. When the prompt for the source filename appears, you may
remove the Makeboot disk and proceed as though you were
compiling normally (see page 7, Section 3 of the ABC
Manual).

Remember, Makeboot will make self-booting programs for any
interpreter address. However, you will only be able to test
your compiled programs under DOS if the address is high enough
($1F00 or more). We suggest that you first try to make a
self-booting program that is compiled at the default address
and had been run under DOS. If that works ok, you should have
no problem with a lower addressed interpreter. Do watch out
for the size of string arrays, though. In the self-booting

environment, you may find that you have more than 32K of memory
available. However, if you dimension a string array with the
size dependent on the amount of free memory, you may exceed
the limitation that a string should not be dimensioned larger
that 32,767 bytes.

3.3 Compatibility With Older Compilers

The interpreters provided with Makeboot may be of a later
revision level than those supplied with your compiler. The
interpreters with Makeboot may therefore be slightly longer and
different. This means that you cannot create a relocatable
program using MKRELO by mixing a program compiled with one of
the interpreters on the Makeboot disk with a program compiled
with an interpreter on the compiler disk. Other than that, you
should have no problem with the newer interpreters.

3.4 Problems Using the RS-232 Driver

The 850 interface module responds and boots like a disk drive
if no disk drives are present or powered on during system boot
time. If you are making a self-booting cassette, and the load
address of your program is $EO0 hexadecimal (3584 decimal) or
greater, the interface module will be 'booted' for you
automatically and load 'beneath' your program. However, if you
are creating a self-booting disk (at any address), your program
will have to load the RS-232 driver from the 850 by itself.

The information to load the RS-232 driver from the 850 is
unknown to us at this time, and therefore cannot be printed in
this manual. If you are aware of the procedure and care to let
us know, we will keep it on file for other interested
customers.

Section 4
Running Boot-Load Programs

4.1 Booting Disks

A disk created by Makeboot is loaded just like any other
self-booting disk in your library:

a. Turn off your computer and remove all cartridges.

b. Turn on Drive number one and wait for its red BUSY light to
go out.

c. Insert the disk created by Makeboot into drive number one
and turn on your computer. The program will load and run

automatically.

4.2 Booting Tapes

The cassette procedure is also standard for boot-loading tapes:
a. Turn off your computer and remove all cartridges.

b. Rewind the tape created by Makeboot to the beginning. If
you have removed the tape, be sure the correct side is
facing upward when you put it back in.

c. Press and hold the START key as you turn on the computer.
You should hear a single "squawk" from the console. Press
the PLAY key on the cassette drive, then hit RETURN. The
compiled program will load and run automatically.

4.3 Re-Running Boot-Load Programs

You can automatically RE-RUN a disk or tape program created
with Makeboot by pressing the SYSTEM RESET key.

Section 5
Adding Other Modules

Some programs tend to load additional data (such as new
character sets) from the disk. Without DOS, this is harder to
do because you cannot use the simple OPEN and GET commands.
Instead, you would have to use "raw" disk I/O which requires
that you place your data on specific sectors on the disk.

Makeboot has another solution to this problem. It allows you
to include other files as part of your self-booting program so
that they automatically appear in memory when the disk or
cassette is booted. The main job is to locate the data at an
appropriate address and have the program know where the data
will be. Sometimes this requires a two-step process, once to
find out the first available address, and the second time to
actually create the boot program. The following instructions
should clear up this point.

5.1 Procedure to Add Files

a. When Makeboot asks if you want to load additional modules,
respond with 'Y' (for yes).

b. Makeboot then requests the name of the file to be included.
A default "D1:" is supplied if necessary, but no default
extension is added.

c. Makeboot then shows you the first address unused by the
compiled program on three different memory boundaries; the
very next byte (1), the next 256-byte boundary (256), and
the next 1K boundary (1024). It also shows how much memory
is left within the Makeboot program buffer for each of
those conditions.

d. Respond to the prompt for a load address. You may use any
of the addresses displayed, or any arbitrary address that
is both above the next available byte and below the
limitation imposed by the end of the internal Makeboot
buffer. An incorrectly entered number (an empty line or
bad digits) will cause Makeboot to print out an error
message, time out, then start over with step 'a' above.
This error handling allows you to break out of the "load
additional modules" loop.

e. Makeboot will proceed to read in the entire file specified
and make it part of the self-booting program.

f. You may continue to load as many files as you like.
Respond with 'N' when you have no more files to include and
proceed normally from step 'h' in section 2 of this manual.

5.2 Choosing a Load Address for an Included File

As can be seen from the above instructions, you may not know
the first available address until you actually go through the
process of attempting to create the self-booting program. At
that point, you may have to recompile you program so that it
knows the address that a module will appear, then go through
the Makeboot process again.

Although an arbitrary address can be used to load an included
file, the self-booting image that is created will contain all
the bytes from the lowest address to the highest address
loaded. There are no gaps even if an included file is. loaded
many thousands of bytes above the first available byte shown.
This will tend to slow down the boot process but should
otherwise not affect normal operation.

Any included files actually become part of the compiled
program, and do not have to be accounted for in any way (e.g.
you do not have to adjust pointers in the operating system).
The memory that is used for the compiled BASIC INPUT buffer,
the GOSUB stack, etc., is allocated beyond any file that is
included. Do not expect to load a file and consider that to
be the last location used by the compiled code. PEEK(106), and
PEEK(14)+256%PEEK(15) still gets you pointers to the end of
memory and end of compiled basic, respectively.

Do not include standard assembly language files using this
method without stripping them of any header and internal
segment boundaries. Makeboot includes the added files as
strictly raw, uninterpreted data. If your file cannot be
treated as a simple block of data, it probably will not be
successfully used in this environment.

- 10 -

Warranty Information

Monarch Data Systems, Inc., warrants to the original purchaser
that this Monarch Data Systems, Inc. program diskette (not
including the computer programs) shall be free from any defects
in materials or workmanship for a period of 90 days from the
original date of purchase. If a defect is discovered during
this 90-day warranty period, Monarch Data Systems, Inc. will
repair or replace the diskette at Monarch Data Systems, Inc.'s
option, providing that the diskette and proof of purchase are

delivered or mailed, postage prepaid, to Monarch Data Systems,
Inc.

This warranty shall not apply if the diskette:

-- Has been misused, or shows signs of excessive wear;

-— Has been damaged by the playback equipment, or;

—- If the purchaser causes or permits the diskette to be
serviced or modified by anyone other than Monarch Data
Systems, Inc.

Any applicable implied warranties, including warranties of
merchantability or fitness, are hereby limited to 90 days from
the original date of purchase. Consequential or incidental
damages resulting from a breach of any applicable express or
implied warranties are hereby excluded.

Notice

All Monarch Data Systems, Inc., computer programs are
distributed on an "as is'" basis, without warranty of any kind.
The entire risk as to the quality and performance of such
programs lies with the purchaser. Should the programs prove
defective following their purchase, the purchaser and not the
manufacturer, distributor, or retailer assumes the entire cost
of all necessary servicing or repair.

Monarch Data Systems, Inc., shall have no liability or
responsibility to a purchaser, customer, or any other person or
entity with respect to any liability, loss or damage caused or
alleged to have been caused directly or indirectly by computer
programs sold through Monarch Data Systems, Inc. This includes
but is not limited to any interruption of service, loss of
business or anticipatory profits, or consequential damages
resulting from the use or operation of such computer programs.

The provisions of the forgoing warranty are subject to the laws
of the state in which the diskette is purchased. Such laws may
broaden the warranty protection available to the purchaser of
the diskette.

- 11 -

NOTES

- 12 -

