

SOFTWARE

INTERNALS MANUAL

FOR THE
SORCERE

R

by
Vic Tolomel
Contents
1. Introductionto Machine Language 1-1t0 1-6
2. SorcererDevicesandPorts 2-1t02-5
3. SorcererMonitorooo.... 3-1t03-13
4. Sorcerer Cassette Interface 4-1t04-4
5. SorcererBASICInternals 5-1t05-13
6. SorcererVideo and Graphics 6-1t06-17
7. SorcererKeyboard 7-1t07-3
INDEX .\ e i-1toi-5
NOTES ..o n-1ton-4

Published by Quality Software
€1979 by Victor Tolomei. All rights reserved
No part of this publication may be
reproduced without prior written consent

CHAPTER
ONE
Introduction to Machine Language

HEX, BINARY, AND DECIMAL

Before one can understand how the Sorcerer really works, some
familiarity with machine language is necessary. First of all, let’s dis-
cuss the concept of “hex”. “Hex” is short for hexademical. This is a
number system based on 16, not 10 as we are used to (decimal). In
decimal, we have 10 possible digits, 0, 1, 2, ... and 9. In hex, we
have 16. Of course the first 10 are 0 through 9 as with decimal. But
there are 6 more, A, B, C, D, E, and F. “A” means 10, “B”"means 11,
“C” 12, “D” 13, “E” 14, and “F” 15. So a number like 1CB3 makes
sense in hex. In decimal numbers each digit represents a “power” of
10, namely “ones”, “tens”, “hundreds”, and “thousands”. For ex-
ample, the decimal number 1895 means 1 thousands plus 8 hun-
dreds plus 9 tens plus 5 ones, or

1895 = 1x1000+ 8x100+ 9x10+ 5
= 1000 + 800 + 90 + 5

In hex however, each digit (O through F) represents a power of 16,
“ones”, “sixteens”, “two hundred fifty sixes”, and “four thousand
ninety sixes”. For example, the hex number 1895 can be written as in
the example above

1895 = 1x4096 + 8x256 + 9x16+ 5
4096 + 2048 + 144 + 5

6293 (decimal)
Another hex number 3CF1 can be seen as

3CF1 = 3x4096 + 12x256 + 15x16+ 1
12288 + 3072 + 240 + 1
15601 (decimal)

Chapter One

The reason why understanding the hex number system is so im-
portant is that the hexadecimal number system is used in describing
system software for the majority of computers today—big, mini, and
micro. This includes the Z80 MPU, which is the basis of the Exidy
Sorcerer. Its machine language instructions are in hex and characters
are all coded in hex.

If you understand hex, then “binary” (the number system based
on 2) should present no problems. There are only 2 digits possible to
make any binary number, O and 1. These binary digits are called
“bits”. A bit can be 0 or 1. Each of these digits represents a power of 2
(1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192,
16384, and 32768). Soanumberin binarylike0011110011110001
is

0011110011110001 = 0x32768 + 0x16384 + 1x8192 + 1x4096 +

1x2048 + 1x1024 + 0x512 +0x256 +
1x128 + 1x64 +1x32 +1x16 +
0x8 + 0x4 + 0x2 +1
= 8192 + 4096 +2048 +1024 +
128 + 64 + 32 +16 + 1
=15601 (decimal)

But that means, according to the previous example, that since 15601
decimal is also 3CF1 hex, then

0011110011110001 (binary) = 3CF1 (hex).

This is no mere coincidence. Let’s see why. If we look at a “4-bit binary
number” (ie, a number in binary made up of only 4 digits of 0's and
1’s), then the smallest it could be is 0000 (0 decimal), and the largest
it could beis 1111 (15 decimal or F hex). Thus every digit in hex, O-F,
can be expressed exactly as a 4-bit binary number:

Binary Decimal Hex
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 - 4
0101 5 5
0110 6 6

Introduction to Machine Language

0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

In other words, a hex digit is really just another way of writing 4 bits, or,
every 4 bits of a binary number can be grouped as 1 hex digit. Let’s see
how that works with the numbers we just did. 0011110011110001
can be broken into groups of 4 bits (right to left) as follows:

0011 1100 1111 0001

If each 4-bits group is viewed individually, they calculate to

0011= 3 decimal (3 hex)
1100=12 decimal (C hex)
1111=15 decimal (F hex)
0001= 1 decimal (1 hex)

So it can be written

0011 1100 1111 0001 binary
3 C F 1 hex

So hex and binary are actually the same thing, with different group-
ings. Another example, to write OF8D hex in binary

0 F 8 D hex
0000 1111 1000 1101 binary

which, when pieced back together, becomes
0000111110001101 = OF8D

BITS, BYTES, ADDRESSES, AND “K”

Enough about decimal, hex, and binary. We now know how num-
bers are written on the Z80. Let us take a look at how memory is
organized.

1-3

Chapter One

The smallest unit of information that can be placed in the
memory of just about any computer made, including the Z80, is a bit,
the same bit we saw earlier. This only holds a 0 or a 1 however, and is
too small for normal numerical use. So a larger unit was created,
called a “byte”. A byte is just 8 bits or 2 hex digits grouped together.

So a byte can contain a number from 00000000 binary (00 hex,
0 decimal) to 11111111 binary (FF hex, 255 decimal). Each unique
byte in the Sorcerer's memory space is assigned a 4-hex digit (2-byte)
number called an “address”. This address identifies the particular
byte and its contents. Addresses start at 0000 hex and end at FFFF
hex (65535). Thus the Sorcerer (Z80) can have up to 65536 bytes of
memory. Another way programmers like to put this is to use the term
“K”. A “K” is just another way of saying the number 1024 decimal. So
65536 boils down to 64K (64 x 1024 = 65536).

RAM VERSUS ROM

Since we are on the subject of memory, there are two types. In
one type the contents can never be changed. Information can only be
“read” from it. This is called Read Only Memory or ROM (computer-
ists love abbreviations or acronyms). ROM is usually used to contain
programs or data which is to be present in the same state all the time.
For example, the Sorcerer Monitor program is in ROM (starting at
memory byte address EO00 hex) and Sorcerer BASIC is in ROM (the
ROM-PAC starting at address CO00 hex). ROM can have its contents
“burned in” permanently at the factory, or can be burned in once by
the programmer (called PROM or Programmable ROM), or can be
erased by strong ultraviolet light and burmed in over and over again
(called EPROM or Eraseable PROM).

However, for programmers to write and run programs, we need
memory in which we can change or modify the contents. This is called
Random Access Memory or RAM. When the size of a Sorcerer’s
memory is given (e.g., 8K, 16K, 32K), this number applies only to
RAM, or user-modifiable memory. All Sorcerers have the same ROM
area potential. So a 16K Sorcerer has 16 x 1024 or 16384 bytes of
RAM.

1—-4

WO RS WY NG e R W

Introduction to Machine Language

STATIC VERSUS DYNAMIC

The above two terms are usually only applied to RAM. Static RAM
has the ability to hold its contents indefinitely as long as electrical
power is applied. Dynamic RAM on the other hand quickly (in milli-
seconds usually) loses or leaks its contents, and the data must be
re-written or refreshed to the RAM often enough to keep the data from
disappearing altogether. Typically static RAM requires more power, is
more expensive, but is faster. The Sorcerer and many other Z80
based systems uses dynamic RAM because of power and cost con-
siderations, and also because the Z80 MPU is well-suited to interface
to dynamic RAM (e.g., it can be made to do the RAM refreshing).

Z80 ARCHITECTURE

The Z80 microprocessor is an 8-bit based machine. In other
words, its data flow and arithmetic is usually on a 1-byte basis. It can
address up to 64K bytes of memory. On the Sorcerer, amaximum of
32K bytes of this can be placed onboard (in the keyboard unit), while
another 16K can be located as ROM for the Monitor and various ROM

cartridges.

In addition to having 64K of possible memory, the Z80 has 22
registers. These are special high speed memories which reside on
the MPU chip, and are used for arithmetic and program logic func-
tions. These are all 1 byte in size unless otherwise noted:

A — the accumulator. This is the central register.

F — the flags register. Each bit represents a CPU status. E.g., the "Z" bit
is set on if the result of the execution of an arithmetic or logical
instruction is zero.

B — general use register.

C — general use register.

D — general use register.

E — general use register.

H — general use register.

L — general use register.

SP — 2-byte register containing the current stack address.
PC — 2-byte program counter containing the address of the next in-
struction to be executed.

1-5

Chapter One

IX — 2-byte index register. Usually will contain an address to be used
with a constant offset or displacement.
IY — 2-byte index register with the same type of use as IX.
| — register used to allow processing of external interrupts to the
280 from the S100 bus.

R —refresh register which can be used to provide dynamic RAM re-
freshing operations.

Registers A, F, B, C, D, E, H, and L have an alternate register
called A’, F°, B’, C’, D', E’, H’, and L". Only one set can be used at a
time, while the other set allows space to save important program in-
formation. The EXX and EX Z80 instructions are used to flip back and
forth between them. Also some registers can be connected together
to create 2-byte, 16-bit register pairs. These are AF, BC, DE, and HL.

For more detailed information on the Z80 MPU the reader is
referred to the Zilog publication “Z80 CPU, Z80A CPU Technical
Manual” product number 03-0029-01.

CHAPTER
TWO

Sorcerer Devices and Ports

I 1/0 DEVICES AND PORTS

The Sorcerer has the following I/O devices or ports. Listed also is
the Monitor command(s) to activate each:

a. the keyboard SET =K

b. the video screen SET O=V

c. cassette tape #1

d. cassette tape *2

e. serial RS-232 interface SET I=S, SET O=S
f. parallel interface SET I=P, SET O=P
g. Centronics printer interface SET O=L

Note that these are onboard ports. This list does not include any
devices added to the Sorcerer via the S-100 expansion facility.

The keyboard is implemented as part of the Z80 I/O port number
FE (254), input bits 0-4, output bits 0-3. The video screen needs no
port but uses the 1920-byte RAM area at address FO80 as a 64 by 30
screen. There is a port FE bit (input 5) indirectly related to video
processing which signals when vertical retrace is in progress on the
TV screen. The two cassette interfaces are part of the serial interface
and provide an audio translation of the digital data suitable for
recording on tape quite reliably.

The Sorcerer’s serial and parallel ports are discussed in detail in
this chapter. For further discussion of the video screen, see Chapter
6. For a further discussion of the keyboard, see Chapter 7.

2—1

Chapter Two

SORCERER SERIAL PORT

The serial port allows data transfer to occur between the Sorcerer
and extemnal devices (such as printers, modems, cassette tape, and
the like). Data travels one bit at a time in a predefined conventional
sequence called “asynchronous transmission protocol”.

The protocol defines how the data is to look, and the speeds at
whichitis to travel. For example, each 8-bit byte of data is actually sent
as a 10- or 11-bit stream, sometimes even longer. The 8-bits must be
preceeded by a bit called a “start bit”, and must be followed by 1 or
usually 2 or more “stop bits”. These bits also must be send and
received at a particular speed, predetermined by the sender and
receiver. The speed is given in bits per second, or commonly called
“baud” (derived from Baudot, the name of one of the forerunners of
terminal communications). Thus 300 baud means 300 bits per
second. Since it takes about 10-11 bits to transmit a byte or
character, this means about 30 characters per second (cps). The
Sorcerer serial interface “speaks” this common language, and
operates at one of two speeds, either 1200 baud (120 cps) or 300
baud (30 cps).

The serial port is actually two devices, an RS-232C interface and
the dual cassette interface. RS-232C is the name given to a widely
accepted standard of signal voltage and logic levels and the pinouts of
the 25-pin plug or connector used for cabling between the sender and
receiver. The asynchronous protocol signals are usually sent via this
RS-232C standard. Another part of the Z80 port FE, output bit 7,
determines whether the serial port is RS-232C (bit on) or dual
cassette (bit off). Dual cassette is the default. Output bit 6 controls
the baud rate (1 for 1200 baud, 0 for 300 baud, default is 1). Port
status is placed on port FD while data transfer occurs on FC. To
connect a 300 or 1200 baud RS-232C serial printer to the Sorcerer,
follow instructions given with the printer and from Exidy. However, the
following guidelines may be used:

1. Connect pin 7 of the serial DB25 connector to printer ground pin 7.
2. Connect pin 3 to printer pin 2.
3. Connect pin 2 to printer 3.

2—-2

Sorcerer Devices and Ports

Reset the Sorcerer, enter the Monitor (BYE in BASIC), enter the
command SET O=S, and all output which would have gone to the
screen will go to the printer until RESET or SET O=x is entered (x is
usually V to return to video).

There is also software available from Exidy providing a serial
device driver, and the ability to use the serial interface to turn the
Sorcerer into a terminal connected to another computer. Typically a
modem and possibly an acoustic coupler may be required here. For
this use connect pin 2 to pin 2 and pin 3 to pin 3.

The cassette interfaces may also be used with motor control.
Pins 12 and 24 can be used to turn cassette number 1 off and on for
the commands SAVE, LOAD, FILE, and BATCH. Pins 13 and 25
work similarly for cassette number 2. Pins 15, 5 and 20 are the mike
input, auxiliary input, and earphone output connections for cassette
number 1. Pins 16, 18 and 21 perform the same services for cassette
number 2. Note that cassette number 1 has these mike and ear
connections duplicated as RCA plugs on the back of the Sorcerer.

SORCERER PARALLEL PORT

The parallel port differs from the serial port mainly in that data is
transferred an entire byte at a time. This is ideal for fast printers and
sometimes even some floppy disk units. The Sorcerer also provides
an interface to the popular Centronics printer. The same parallel port
is used, but unique software “handshaking” is done by the monitor
I/O driver. An example of the handshaking which occurs between the
Sorcerer and printer might be the following “electronic conversation”
over port FE, the parallel interface status port:

Printer: “Wait, I'm still busy, send no data.”
“OK, now you can send.”
Exidy: “Here it is, let me know when I can send more.”

The 8-bit data (and at times status) rides on port FF.

To successfully hook up a Centronics or Centronics-like printer
to the parallel port, again follow the printer’s and Exidy’s instructions.
Here are some additional guidelines:

2—-3

Chapter Two

1. Connect parallel pins (DB25 connectors again) 5-7 and 16-19
(data bits 0-6) to the printer’s data lines 0-6 (see printer’s pinouts).

2. Connect pin 4 (data output bit 7) to the printer’s input strobe line, a
negative (true is low, false is high) pulse indicating data is ready to
be transmitted.

3. Connect pin 1 to the printer ground.
Connect pin 25 (input data bit 7) to the printer busy line, indicating
the printer is not ready to accept any data (probably still printing
previous data or is out of paper).

5. Pins 2 and 3 (output accepted and available) and others may also
be required depending on the printer model.

Once this is done, RESET the Sorcerer, enter the Monitor, type
in the command SET O=L, and from that point on all output will be
routed to the screen and the printer, until RESET occurs or until
another SET O=x command is entered.

CHAPTER
THREE

Sorcerer Monitor

SORCERER MEMORY MAP

To get an overall picture of how the Sorcerer utilizes the 64K of
(possible) memory, a “memory map” is given in Figure 3-1. The term
“HIMEM” in Figure 3-1 refers to the highest address in RAM and is
described in detail later in this chapter. Table IlI-1 provides a more
thorough description of the memory map of Figure 3-1.

Memory is cut up into pieces and each piece is used for a different
purpose. In Table IlI-1, the address of the first byte of each piece is
listed along with the use of that area. The address is given in both hex
and a form of decimal that is usable directly in BASIC with the PEEK
and POKE commands. Note that some of these decimal numbers are
negative. If the address exceeds 7FFF (32767), then BASIC requires
that the two’s complement form of the number be used, i.e. the
negative form. For decimal numbers greater than 32767, 65536 is
subtracted from the number before use in PEEK and POKE
instructions.

Be aware also that this is an overall wide angle view of memory.
Detailed maps of the Monitor Workarea and the BASIC Control Area
will be found in Tables IlI-2 and V-1 respectively.

MONITOR WORKAREA

This section is a detailed description of the Monitor Workarea,
which is the area of memory beginning at location 1F91, 3F91, or
7F91, depending on the amount of RAM in the Sorcerer.

3—1

Chapter Three

0000

0100

HIMEM-00FF

HIMEM-006F

HIMEM

C000

EO00

FO00

F800

FFFF

Figure 3-1. SORCERER MEMORY MAP

RESTART SPACE

USER RAM

MONITOR STACK

MONITOR WORKAREA (MWA)

ROM PAC SPACE

POWER-ON MONITOR SPACE

VIDEO DRIVER AND
DISPLAY SPACE

CHARACTERS AND GRAPHICS
DEFINITION SPACE

1

Sorcerer Monitor

Hex

0100

1F00
3F00
7F00

1F90
3F90
7F90

1F91
3F91
7F91

IFFF
3FFF
7FFF

C000

FO00

F080
F800

FC00

FEOO

FFFF

Decimal
0
256

7936
16128
32512

8080
16272
32656

8081
16273
32657

8191
16383
32767

- 16384
-8192
-4096
-3968
-2048

-1024

-512

Table I1I-1. SORCERER MEMORY MAP DESCRIPTION

256-byte Z80 Restart space (RAM)
User RAM start, begin BASIC Control Area (RAM)

Monitor Stack end (8K machines) (RAM)
(16K machines)
(32K machines)

Monitor Stack start (BK machines) (RAM)
(16K machines)
(32K machines)

Monitor Workarea start (8K machines) (RAM)
(16K machines)
(32K machines)

End User RAM (BK machines) (RAM)
(16K machines)
(32K machines)

Begin 8K ROM PAC (e.g., begin BASIC) (ROM)
Begin 4K Monitor Program (ROM)

128-byte video driver space (RAM)

1920-byte video screen (64x30) (RAM)

1K standard Sorcerer ASCIl alphanumerics (00-7F)
(PROM)

512-byte Sorcerer keyboard standard graphics char-
acter set, accessed by depressing GRAPHICS key,
character codes hex 80-BF (128-191) (RAM)

512-byte User Programmable graphics character set,
accessed by depressing SHIFT and GRAPHICS keys,
codes hex CO-FF (192-255) (RAM)

End Sorcerer address space (64K)

.EOOO

Chapter Three

The Monitor Workarea, hereafter called MWA, is used by the
Sorcerer Monitor program to save important information needed for
its successful operation. This area is always located adjacent to the
Monitor Stack, and is always placed at the very top of available RAM
space. For an 8K machine, the top of RAMis at 1FFF (8191), for 16K
3FFF (16383), and for 32K 7FFF (32767). This address is called
HIMEM and its value is placed by the Monitor in the two bytes at
address FO00-FO01 (-4096 to -4095) in the video driver RAM
space. Remember that, as with most micros, the two bytes of data are
reversed in storage. For example, for a 16K Sorcerer, FO00-F001
contains FF3F, not 3FFF. The address of the MWA is directly related
to HIMEM, so MWA values can be found by the same method
regardless of what size machine is being used. To calculate the
address of the MWA, get the HIMEM value at FO00-F001 and
subtract 6E (110) or add FF92 (110) For example |n 280

Assembly Language: Feor IMEM i
LD HL, (OFOOOH) GET HIMEM "/ F]
LD BCOFF92H .pUT -110 IN BC
ADD HL,BC ;HL POINTS TO THE MWA

Or in BASIC,

100 AD = 256*PEEK(-4095)+PEEK(-4096)
110 IF AD>32767 THEN AD = AD-65536
120 AD =AD-110

There is also a Monitor subroutine designed to do this calculation for
you. It is at address E1A2(-7774). When CALLed, it puts the MWA
address in Z80 register IY.

CALL OE1A2H :IY POINTS TO THE MWA

Table 1lI-2 is a detailed map of the contents of the MWA. It is
presented in the same format as the overall memory map of Table IlI-
1, except that the addresses will be shown in a different form. First the
offset in hex from the beginning of the MWA will be given. This can be
used in ZBO Assembly Language as a displacement away from the
starting address of the MWA, where the starting address has been
placed in an index register such as IY. For example, if the

3—4

Sorcerer Monitor

displacement is listed as +41 to a particular field, then that field can be
addressed in Z80 by (IY+41) or by 41(IY).

The second part of the address given in Table IlI-2 is an absolute
address of the field in RAM. Since the MWA moves depending on the
size of the machine, the first two hex digits of these addresses can
change. However, the last two digits are always the same, and so only
the last two digits are listed. The first two will either be 1F (8K), 3F
(16K), or 7F (32K). Note: if the user resets the top of RAM, such as
with a USER reentry to the Monitor, with a size that does not end in
FF, then the above addressing scheme is not applicable and only
the displacement method may be used.

Table 111-2. SORCERER MONITOR WORKAREA (MWA) MAP (1 of 4)
ADDRESS DESCRIPTION

Last Two
Relative to Hex
Start of of
MWA Address
+00 91 60-byte Monitor command input buffer. Any command
entered from the current RECEIVE device (SET I=x) such
as the keyboard, serial or parallel ports is placed in this
area. It is left-justified, and terminated by an ASClII carriage
return character (hex code 0D), 13 decimal, hereafter
called a CR). The Monitor_subroutine at E13A (7878)
builds this buffe\'f— rom the input.

+3C CD Port FE interface status

+3D CE Serial interface and dual cassette interface baud rate save
area. 1200 baud is indicated by hex 40, 300 baud by the
value 00. Serial port or cassette baud rates are set to the
default of 1200 baud (hex 40) by the Monitor COLD Reset
routine at EOOO (-8192) and by the Monitor USER Reset
entry point at EO06 (-8186). Such a coldstart is done, for
example, when the RESET keys are depressed. This byte
is also set by the SET T=0 and SET T=1 commands (at
Monitor routines at ESA2, -6750).

couepe

Py 2 N/

Chapter Three

e

Table 11I-2. SORCERER MONITOR WORKAREA (MWA) MAP (2 of 4)

DESCRIPTION

SEND delay time. This value is used to delay before a
SEND (to video, serial, or parallel) is done. The actual
delay is about 1500 times this value in machine cycles.
This delay can therefore range from 0 to approximately
400000 cycles. The value is set by the SET S=n
command.

Current SEND routine address. The default address set by
COLD starts is the video routine at E9FO0 (- 5648). It can
be changed by the SET O=x command

Current RECEIVE routine address. The default is set by
COLD starts to be the keyboard routine at EB1C (- 5348).
It can be changed by the SET I=x command.

Batch mode status. 00O=normal input, nonzero=batch
mode. This byte is used by the Monitor command input
routine at EI13A (-7878) to determine whether
commands are to be fetched from the RECEIVE device or
from the batch tape serial port. The OVER command
turns this off and the BATCH command turns this on.

Monitor output prompt character. The default is the
character " > " or ASCll code 3E (62) set by COLD starts.
It can be changed by the PROMPT x command. It is output
to the SEND device every time a Monitor input command
is being requested at EOED (-7955).

Tape status, baud rate, motor control save area. This is
zeroed when the tape(s) is turned off, and otherwise
remembers the status of the tape baud rates (00=300,
40=1200) and motor controls (10=motor *1 on,
20=motor #2 on).

ADDRESS
Last Two
Relative to Hex
Start of of
MWA Address
+3E CF
+3F DO
Y ar oy i
*“ J '_/,‘_L;'
+41 D2
+43 D4
+44 D5
+45 D6
3—6

& il e

l Table I1I-2. SORCERER MONITOR WORKAREA (MWA) MAP (3 of 4)

ADDRESS DESCRIPTION
Last Two

Sorcerer Monitor

st
i

+
F 8
h
O
~l]

Tape input and output CRC (Cyclic Redundancy Check).
The CRC is used to check whether the data has been trans-
mitted successfully to/from the tape. This technique is
is described in detail in Chapter 4.

+47 D8 Beginning of the 16-byte tape output file header area.
The first 5 bytes here contain the 5-character ASCII file
name as entered on the SAVE or CSAVE command. It is
left justified and padded to the right with ASCIl blanks
(code 20 hex, 32 decimal).

+4C DD File header identification byte, usually hex 55.

+4D DE File type. Usually C2 (194) for a BASIC save file. If the high
order bit (80, 128 decimal) is on, the file cannot be auto-
matically executed with the LOADG command. This is set

by the SET F=xx command.
+4E DF 2-byte length of the file in bytes.

+50 E1 2-byte program loading address. For BASIC files, this is
always 01D5 (469) because BASIC programs always start
at that address. See the BASIC Control Area description in
Chapter 5. For other programs such as those in machine
language, this address is the "ssss” of the command
“SAVE name ssss eeee’.

+52 E3 2-byte program “go-address” for auto execution files. The
Monitor will automatically begin execution of the program
at this address with the LOADG command. This address

is set by the SET X=nnnn command.
+54 E5 3 bytes of reserved space, ending the output tape header.

3-7

Chapter Three

Table 11I-2. SORCERER MONITOR WORKAREA (MWA) MAP (4 of 4) l

DESCRIPTION

16-byte tape input header area. The format is identical to
that of the area at +47. This area is filled in from reading
the tape for commands such as CLOAD, LOAD, FILES,
and so on.

Character under the cursor. Since the cursor is an under-
score character (ASCIl code 5F, 95 decimal), it actually
replaces the character at the cursor location. This hidden
character is saved to be put back when the cursor is
moved. The save is done by E9CC (-5684), and it is
replaced by E9ES8 (-5656).

2-byte line number where the cursor is times 64. This
ranges from 0x64 (0) to 29x64 (1856), and is the offset
from the beginning of the screen to the cursor line start.

2-byte cursor column number (0-63). When added to +68
the actual cursor offset into the screen is found.

Last character entered from the keyboard. This is used for
the processing of the REPT (repeat) key logic. This
character is entered to the keyboard input routine about
every 30000 machine cycles as long as the REPT key is
depressed. It is always the last key entered, and is saved
and used by the keyboard processing routine at EB1C
(-5348).

Two bytes of reserved space. This brings us to the end of
the MWA, and in fact the end of the user RAM.

ADDRESS
Last Two
Relative to Hex
Start of of
MWA Address
+57 E8
+67 F8
+68 F9
+6A FB
+6C FD
+6D FE
3-8

Sorcerer Monitor

MONITOR SUBROUTINES

The Sorcerer ROM Monitor is packed with well-written and useful
subroutines which can be called from BASIC and assembly language.
All are resident in the 4K ROM between locations EO00 and EFFF.
Table 11I-3 is a brief description of all the useful routines, and how to
interface to them.

The subroutine addresses will be given in hex, of course, but will
also be given as a pair of decimal integers in the order necessary to
POKE into the BASIC USR jump vector at locations 260-261.

An example of how this can be done in BASIC is as follows:

100 POKE 260, 177 : REM HEX Bl
200 POKE 261,233 : REM HEX E9
300 X=USR(X) : REM CALL HEX E9BI1

This routine clears the screen and retums the cursor to home
(the upper left hand comer).

Chapter Three

TABLE III-3. SORCERER ROM MONITOR SUBROUTINES

ADDRESS
Decimal
Hex Poke Values
EO00 0,224
EO003 3,224
E006 6,224
> £673
E009 9,224

> L@

EO0C 12,224
> L rr

Ve

EOOF 15,224

a2 0 N

E012 18,224
EO015 21 2§4

E018 | 24224

L—)f-_.l.

EO1B L 27 224

.

EOIE , 30,224

okl

E021 ;33204
E024 36,224

E027 39,224

DESCRIPTION
Monitor Cold Start (on RESET) - ~
Monitor Warm Start (on BYE command) = /7 £ »

Monitor User Cold Start - similar to EO00 except HL is
is input containing what the user wants to use as HIMEM

RECEIVE: retums NZ and a character from the current
RECEIVE device in the accumulator (A), or Z if no
character yet

SEND: sends character in A to the current SEND
device

SERIAL IN: reads a character into A from the serial
input device or from cassette tape
SERIAL OUT: writes character from A to serial/tape

QCKCHK: returns NZ if Control-C or ESC gR(.IH/ STOP)
is depressed otherwise it retums Z C7hL = E,CTA

CRPPRIC: 7

} .
KEYBOARD the RECE.NE routlne if SET I—K (default).

See E009.

VIDEO: the SEND routine if SET O=V (default).
See E0OC.

PARALLEL IN: the RECEIVE routine if SET I=P.
PARALLEL OUT: the SEND routine if SET O=P.

CASSETTE MOTOR CONTROL ON: will tum motor
on and set the baud rate of the requested cassette.
MWA + 3D must contain the baud rate (00=300,*
40=1200) and reg B must contain the cassette number
(1 or 2).

CASSETTE OFF: tums off both tapes

Sorcerer Monitor

EO2A

S
o

L5
S

=
-
AN

E1A2

E1BA

E1C9

E1D4

\
-
=3
-
~

E1E8

E1ED
E205
E23D

42,224

186,225

201,225

212,225

232,225

237,225
5,226
61,226

TAPE SAVE: Save memory onto tape. MWA+50,
MWA+51 must contain the memory address where
SAVEing is to start. It must also be pushed on the stack.
DE must contain the ending address. HL must point to
a byte containing a CR (hex 0D). MWA +47 through
MWA +4B must contain the ASClI file name; MWA +4D
must contain the file type; MWA +52, MWA +53 the GO
address if any.

TAPE LOAD: load a file into memory from tape.
MWA+47 through MWA+4B must contain the file
name to load. If a LOADG is to be done, a Z flag must
be on the stack, otherwise an NZ flag. Then if the
program name is specified, put NZ in the flags,
otherwise Z (i.e., load the next file on the tape).

MONITOR INPUT: will put the command in the
command input buffer at MWA+0. [Y must point to the
MWA. MWA+43 must contain O (not Batch).

Will find MWA and put the address in IY without causing
screen flicker (only does so during vertical retrace on
the TV to avoid Direct Memory Access conflicts — see
Chapter 6).

SENDLINE: sends an entire line to the SEND device.
HL points to the line, which must end in a 00. LF's are
always sent when CR's are found.

ERROR: sends "ERROR" followed by the diagnostic
message (which is pointed to by HL).

OVER Command Processor (CP). Handles all work
necessary for the OVER command.

Sends 4-byte ASCII equivalent of the 2-byte integer in
DE. If DE=3F29, then "“3F29" is sent.

Send 2-byte ASCII of byte in A.
Send a CR followed by a LF, CRLF

Converta 1-4 byte ASCIl hex number (pointed to by HL)
into DE. If HL points to A93 followed by a “Monitor
Delimiter” (e.g., blank, CR, etc.), then DE will contain
0A93. This is the reverse process of the routine at
E1ES8.

W s s

3—11

Chapter Three

Table IlI-3. SORCERER ROM MONITOR SUBROUTINES, Continued '

ADDRESS

Hex pacomal DESCRIPTION

E2D2 210,226 Send as many blanks as the number in B. *

E4D3 211,228 DUMP CP.

E538 56,229 ENTER CP

E562 98,229 MOVE CP

E597 151,229 GO CpP

E5A2 162,229 SET CP

E638 56,230 SAVE CP

E6B9 185,230 FILES CP

E78A 138,231 LOAD CP

E845 69,232 PROMPT CP

E858 88,232 BATCH CP

E85C 92,232 CREATE CP

EB84 132232 LISTCP

EBA1 161,232 TEST CP

E9BA 138233 PP CP

E993 147,233 CENTRONICS OUT: the SEND routine for SET O=L.

E9B1 177,233 Clear the video screen and refresh/rewrite the graphics
character set at FCOO.

E9CC 204,233 Move the cursor to line/column specified in the MWA.
See cursor positioning discussion in Chapter 6.

ESD6 214,233 Find the cursor. HL is set to the screen address (which
starts at FO80) and DE is set to the column number.

EB10 16,235 Refresh character set at FC00

ECIE 30,236 Keyboard input tables (to EDFD). See Chapter 7 on the
keyboard.

EDFE 254,237 Character set for the 64 standard graphics 80-BF to be
copied to FC00.

3—-12

CHAPTER
FOUR

Sorcerer Cassette Interface

CASSETTE TAPE FILE FORMAT

When a SAVE, LOAD, or FILES command is done from the
Monitor, or when a CSAVE or CLOAD is done from BASIC, files are
processed from the cassette tape device on the serial interface. This
applies to both cassette 1 and #2. The cassette tape motor-on
routine can be found at E024 (-8156), motor-off at E027 (-8153),
cassette save at EO2A (-8151), and cassette load at E02D
(-8148).

Cassette files on the Sorcerer can be written at either 300 or
1200 baud. The cassette file format is the same for both BASIC and
machine language tapes at either baud rate and is depicted in Figure
4-1, A full description of this format follows:

1. Inter-file tone

a. a high frequency tone always output by the cassette
interface when data is not present.

2. 101-byte leader

a. 100 bytes of 00 (nulls)
b. 1 byte of 01 (control-A or SOH, Start-Of-Header)

3. 16-byte file header (described in Table III-2)
4. CRC for header

a. 1-byte Cyclic Redundancy Check (CRC) for error
checking. The CRC byte is described in a later section
of this chapter.

4—1

Chapter Four

Figure 4-1. CASSETTE FILE FORMAT
A AN A e e ey

Inter-file tone

101-byte leader

16-byte header
header

CRC for header

101-byte leader

256-byte block *1

CRC for block *1

data

It

256-byte or short
block #n

CRC for last block

Inter-file tone

4-2

Sorcerer Cassette Interface

5. Up to 256 bytes of data
6. CRC for above data block (1 byte again)

7. Repeat 5 and 6 until data exhausted. The last data block may
be short (less than 256 bytes). CRC still follows.

8. Inter-file tone (same as before the file).

To LOAD or CLOAD a file, or to perform a FILES command, the
Monitor scans the tape (whichever is on) for the leader. Then the
header is read into the MWA and the “FOUND..." message is sent to
the current SEND device. The data portion is then either skipped
(wrong file, or FILES command) or loaded. All CRC’s are always
validity checked for any of these commands. Thus to check all the bits
on an entire tape for errors, it is sufficient to perfform a FILES
command.

Note that the default tape transfer rate is 1200 baud. A much
more reliable method of saving data is to use 300 baud. However it will
take 4 times longer to SAVE and LOAD, and use a lot more tape. This
is accomplished with the SET T=1 command.

TIPS ON LOADING AND SAVING FILES ON TAPE

The following hints can be used to minimize problems with

. cassette recording of files:

To Load:

1. Use a relatively inexpensive cassette recorder ($30-560) with ALC
(Automatic Level Control). This means you have no control over
the volume or tone of the recordings. All are made exactly the
same way. Strangely enough, experience shows that expensive
recorders work worse.

2. Connect the MIC wire to the microphone input. Do not use the
auxiliary input on most recorders. The signal will be toc weak.

3. Connect the EAR wire to the earphone or monitor jack.
To Play:

1. You must find the correct volume and tone for your recorder. As a
first guess, set volume and tone to 7-8 out of 10, or 3/4 high.

4-3

Chapter Four

2. Listen to the tape play through the speaker. The interfile tone
should be louder than normal listening volume, maybe even as
loud as possible without distortion and noise. The data should
sound high-pitched and clear, like static.

3. Try loading a file. Tinker with volume and tone until at least a file
header is read without a CRC error (“FOUND . . ." message
appears). Now you are close enough to the correct settings.

4. Once found, the correct settings should be able to be used for all
tapes recorded on that recorder.

CASSETTE TAPE ERROR CHECKING

The CRC (Cyclic Redundancy Check) method is used to detect
bit transmission errors in cassette data recording and reading. The
CRC is stored in the Monitor Workarea (see Chapter 3) at MWA+46.
CRC checking is done as follows:

1.

Before the file is first written to tape (i.e. when the 101-byte
leader is written), the CRC byte is set to zero.

. For every data byte, in program or header, the current CRC

byte is subtracted from the data byte. The result is
complemented (all 1’s changed to 0’s and all 0’s changed to
1's) and stored as the new CRC byte.

. After the data in the file or block is completely written, the

current CRC is then written. Note: this procedure causes
BASIC programs to grow by one byte each time they are saved
on tape.

. When the file is loaded, the CRC is again calculated per steps

1 and 2 and then compared to the CRC byte associated with
the block being read in (the previously written CRC byte). A
match indicates that there are no errors, while a mismatch
means an error.

This procedure is the same for BASIC files as it is for machine
language files, because the same Monitor routines are used to
write/read tapes.

CHAPTER
FIVE
Sorcerer BASIC Internals

BASIC FLOATING POINT FORMAT

Numbers stored in Sorcerer BASIC are not integers but are
hexadecimal numbers in which the decimal point can move or “float”.
For example, the decimal point floats when 13.25 is divided by 10,
resulting in 1.325. It is from this idea that the term “floating point”
was derived.

Sorcerer BASIC stores floating point numbers in four bytes of
memory. Each number has 3 parts:

1. the sign (+ or -)

2. the “mantissa” (the actual number, but with the point shifted
to the left of the leftmost 1 bit of the number). So the number
127 decimal (7F,01111111) is a mantissa if it is thought of
as.1111111

3. the “exponent”, which is how much the point had to be shifted
in the number to produce the mantissa with the point at the
left

This may sound very complex, but it actually is not. Let’s take an ex-
ample, say 13.5 decimal. In hex this would be equal to D.8 (13+8*
1/16). Remembering that hex is just groups of four bits, the binary
equivalent of 13.5 would be 1101.1000. To create a mantissa from
this, we must shift the point (in this case, the “binary point”, not the
decimal point) to the left four places, producing .11011000. The
exponent can now be calculated. It is always a positive if the mantissa
shift was to the left, negative if to the right, and zero if no shift

5—1

Chapter Five

was necessary. Thus the exponent in this example would be +4 (4 to
the left). However, we are not quite done. Rather than worrying about
how to express a negative number exponent, 80 (128 decimal) is
always added to the exponent to produce the final result. Thus the
final exponent is 84 (132). Now we come to the sign. Since the digit
to the far left in the mantissa is always a 1 (because we shifted until
that was the case), then the sign can be stored in this bit without
losing any information. If the number is positive or zero, then the sign
bit will be 0. If negative, then the sign bit will be a 1. So the mantissa for
13.8 which is .11011000 in floating point binary changes to
.01011000. To assemble this number, first we put the exponent 84
then the mantissa filled out to the right to fill out the 4 bytes:

10000100 .01011000 00000000 00000000

Now if we ignore the point, since it is always in the same place, and
convert to hex, we have:

padding

845810000

exponent+128 t—sign/mantissa
implied point
If the original numberwere - 13.5instead, then nothing would change

except the sign. That is, the mantissa would change from .01011000
to .11011000, so the new number would be

84D80000

In the reverse direction, to convert floating point back to decimal, let’s
use 88FF4000 as an example:

1. Examine the exponent (88) and subtract hex 80 (128). In
this example 88-80=08. But this may produce a negative
number.

5-—-2

Sorcerer BASIC Intemals

2. Examine the mantissa with the implied point (.FF4000).

3. If the left bit (high order, the one next to the point) is on (itis),
then the number is negative, otherwise it is positive.

4, In either case, tum that bit on.

5. Shift the point according to the exponent from step 1 (08
here). If plus, shift right, if minus, left, if zero, no shift. Since
we have +8, shift the point right 8 bits.

o 11111,01 0000000000
11111 ‘0 0000

6. The numberis now FF.4000, and with the sign, - FF.4000, or
-255.25 decimal.

The only special case is the number 0. Here the exponent is 00. Some
examples are:

1815 = hex717 = B8B62E000 (floating point
1 1 = 81000000 hexadecimal)
-1 -1 = 81800000
-5 -8 = 80800000
0 0 = 00610000 (the mantissa is ignored)

The last idea that must be mentioned is that the bytes repre-
senting the number are actually stored in memory in reverse order, so
that the number eemmnnpp is stored ppnnmmee. For example,
decimal 1815 in the above example is stored as:

00 EO 62 8B

BASIC CONTROL AREA

This is a discussion of the area in RAM called the BASIC Control
Area, or BCA. This area is used by BASIC to store information
necessary to run or save a BASIC program. The BCA begins at
address 100 (256), as shown in Figure 5-1.

Figure 5-1. FREE RAM AS USED BY BASIC

ADDRESS .
100 ; 5
r BASIC i
E Control Area 1
D5 | |
| BASIC :
: Program |
S i
a | |
| BASIC |
| Program Variables |
@___. I S
b | BASIC
Program Arrays ;
— |
¢ |
| FREE SPACE
i
!_ S — S
d | BASIC
Stack i
¢ | BASIC |
String Space f
@ +
HIMEM -00FF | '
I Monitor i
! Stack
HIMEM -006F f ______ : |
Monitor !
j Workarea i
HMEM | |
5—4

Sorcerer BASIC Intemals

In detail RAM locations 100-14E (256-334) are copied from the
BASIC ROM (address C258) when a BASIC Cold Start occurs (i.e.,
after RESET or a PP X command is entered). The BCAis describedin
Table V-1. This description includes only those areas which are of
direct use to the programmer. It is intentionally sketchy, especially
due to the great number of fields.

FORMAT OF BASIC PROGRAM STATEMENTS

The first line of every BASIC program begins at location 1D5. All
BASIC lines have the following variable length format:

OFFSET DESCRIPTION

+0 2-byte link pointer address of the next sequential full line in the
program. This is independent of multiple statements on one line
separated by colons). The last line of the program points to
to location 0000 to indicate the end.

+2 2-byte BASIC line number of the line in integer binary (a number
between 0000 and FFF9, 0-65529).
+4 The BASIC statement(s), variable in length. Let us say they are "'n”

bytes long. Each BASIC “reserved word" such as GOTO, IF, END,
DIM, PRINT, etc is encoded here to a 1-byte character not
belonging to the ASCII character set (ie, hex codes greater than
7F). This speeds up processing and saves program memory
space. When the program is LISTed, these special bytes are
decoded back into their corresponding reserved words.

+44n Byte of 00 indicating the end of this line and beginning of the next.

FORMAT OF BASIC FLOATING POINT
VARIABLES AND ARRAYS

A BASIC floating point variable resides in the BASIC Program
Variable Area (see Figure 5-1). Each one takes a constant six bytes:

OFFSET DESCRIPTION

+0 2-byte variable name (two characters). The high order bit is always
0. The letters are also reversed as usual.

+2 4-byte floating point value currently held by this variable. See the
format description at the beginning of this chapter.

5-5

Chapter Five

Table V-1. BASIC CONTROL AREA MEMORY MAP

ADDRESS
hex/dec

100/256

103/259

145/325

147/327
18E/398
1B1/433

1B3/435
1B5/437
1B7/439

1B9/441

1BB/443

1BD/445

DESCRIPTION

3-byte JUMP instruction to CO6B (Warm Start). Done when PP
command is entered without operands.

3-byte JUMP to C7ES5 default (displays “FC ERROR” message).
This is the USR function hook. See BASIC Assembly interface
section for details.

2-byte address of top of string space (letter “e” in Figure 5-1) or
the beginning of the BASIC stack. This is set by the BASIC
CLEAR n command.

BASIC line input buffer and Direct Mode execution line.
Column number that the cursor is currently in.

2-byte address of instruction in the BASIC program about to be
executed when Control-C break is entered. This could be in the
middle of a line of multiple statements separated by colons.

2-byte BASIC line number of current line

2-byte address of the next full line to execute from the link
pointer of the current line (see below).

2-byte address of the end of the program and the beginning of
the BASIC Program Variable Area (letter “a" in Figure 5-1).

2-byte address of the end of the Variable Area and the start of the
BASIC Program Array Area (letter “b” in Figure 5-1). Whenever
changes are made to the BASIC program (adding, deleting,
updating lines) the above two addresses are used to define a
new Variable and Array area below the new BASIC program.
Thus a program cannot be continued with old variable/array
values once a change has been made.

2-byte address of the end of the Array Area and the pointer to the
top of free space (room for expansion — letter “c¢” in Figure 5-1).

2-byte address of the last used data operand of a DATA
statement so that the next READ will find the appropriate item.
This is reset by a RESTORE command.

Sorcerer BASIC Intemnals

ADDRESS
hex/dec DESCRIPTION

1BF/447 4-byte input parameter (usually floating point format) to the USR
function, and output parameter from the USR function. If
USR(3.5) is called, 3.5 is passed to the subroutine in floating
point. See a later section for BASIC/Assembly interfacing
details.

1D5/469 Beginning of all BASIC programs

Chapter Five

BASIC arrays all reside together in the BASIC Program Array
Area (see Figure 5-1). A floating point array is variable in length. An
array in BASIC can have up to 255 dimensions; call that number “n”.
Each can have any number of elements. Each array takes a minimum
of seven bytes and looks like this:

OFFSET DESCRIPTION

+0 2-byte array name. The high order bit is always 0. The letters
are reversed.

+2 2-byte total array length minus 4 (ie, the length of the array starting
after these 2 bytes). This is used to find the next array in the
area quickly.

+4 1-byte number of dimensions (we called it n).

+5 2-byte size (number of elements) in the 1st dimension.

+7 2-byte size of the 2nd dimension (if any).

+5+2(n-1) 2-byte size of the nth dimension

+5+2n Beginning of a list of contiguous 4-byte floating point array
elements. These are in row order.

FORMAT OF BASIC STRING VARIABLES AND ARRAYS

A BASIC string variable is similar to a floating point variable. It is
also 6 bytes long. It looks like:

OFFSET DESCRIPTION

+0 2-byte variable name. The high order bit is always 1.

+2 1-byte current length of the variable length string value.

+3 00

+4 2-byte address of the string itself. It resides either in the string space

or in the program statement itself (eg, 1005 AS="HI").

5-8

Sorcerer BASIC Internals

A string array is identical to a numeric array except for two very
important features:

1. the high order bit of the array name is always 1

2. the 4-byte value is not floating point format but the
length/00/stringaddress fields described above. All
dimensioning remains the same.

BASIC TO Z80 ASSEMBLY LANGUAGE INTERFACE

To call ZBO Assembly Language subroutines from Sorcerer
BASIC, certain general conventions and procedures must be
followed:

1. The machine language program must reside either in the first 256
bytes of memory (00-FF, 0-255 — usually a bad idea) or in the BASIC
free space area as shown in Figure 5-1. Either BASIC control, program,
variables, arrays or strings, or Monitor/video control resides in the rest
of memory. Thisis the only way a BASIC and machine language hybrid
can coexist without complicated machinations such as putting the
machine language routine right after the BASIC program and fooling
BASIC into thinking that it is part of the program. The BASIC free
space is the best and easiest choice. However there are some potential
problems:

a. Free space is dynamic. As the program changes, as variables/
arrays are added or change size, the start of the free space
moves. A machine language program placed too close to the
end of the Program Array Area can get walked on when the
program is enlarged. The end of the free space changes too,
since the BASIC stack (and/or string space) will grow and
shrink, especially with the CLEAR command. Since this
change is usually not as radical as that of the start of the free
space, | recommend putting the program close to the end of
the free space. But there are now other considerations.

b. The free space ends near HIMEM of the machine (where the
BASIC stack is). This changes with each different Sorcerer
size. So a generalized machine language subroutine designed
to run on any size Sorcerer (probably with several BASIC

5—-9

Chapter Five

programs) would either have to be relocatable (able to be
moved without affecting anything), or there will have to be
different versions of the program to run on different size
machines. Either of these approaches allows the BASIC
program to use the maximum amount of free space. A
subroutine designed for a particular BASIC program could
be placed at the top of the free space as long as the BASIC
program does not grow too much.

c. If the program is placed at the end of the free space an
excessive CLEAR n BASIC statement could kill it.

d. Thus no matter where the machine language program is
placed, certain precautions are necessary in order to coexist
with BASIC.

2. Assume a good location is found, and the Z80 program is written and
placed at that RAM location. Assume the start address to be 312A hex
(12586). To call this subroutine from BASIC, it must already be in
memory, and the USR function must be used. When BASIC executes
it, it converts the argument in the USR function to floating point and
places this number in the 4-byte USR parameter area at 1BF-1C2 (447-
450). It then calls the subroutine at location 103 (259). For example,
when the statement

2030 X=USR(25.7)
is executed, 25.7 is placed at 1BF and a CALL is made to 103.
3. Now, by default 103 contains the following Z80 instruction
JP 0C7E5H

or in machine language — hex C3E5C7. This is an unconditional
JUMP to the instruction at address C7ES in BASIC ROM. This default
subroutine prints the error message "FC ERROR" (function call
invalid) an stops the program. To call your subroutine, you must
change the JUMP instruction address to the address of the beginning
of your program. Again the instruction after a BASIC Cold Start looks

like
ADDRESS CONTENTS DESCRIPTION
103/259 c3 JUMP Z80 operation code
104/260 E5 Low part of address
105/261 Cc7 High part of address
5—10

Sorcerer BASIC Intemals

Leave the C3 JUMP, but change the address. If your program was at
312A as in our example, you must make the jump to 312A, or

JP 312AH

or in machine language — hex C32A31. Itis agood idea to change the
two address bytes every time the subroutine is to be called. Use the
BASIC POKE statement for this (which requires decimal operands).
Put 2A (42) at location 104 (260), and put 31 (49) at location
105 (261):

10000 POKE 26042

10010 POKE 261,49

10020 XX = USR(Y)

When the USR function is executed in line 10020, your routine at 312A
will be called. It could use the value in variable Y placed at 1 BF as input.
It could also put another value back as output. This value will be
returned to the BASIC statement as the “result” of the USR function. In
the above example, the value returned will be placed in variable XX.
Note that the short BASIC routine shown above can easily be made
into a GOSUB subroutine by adding the statement

10030 RETURN
Thus, to call your routine you need only say
GOSUB 10000

4. To terminate your subroutine, one of four things can be done:

a. Return directly to the Monitor and exit BASIC altogether, e.g.
for catastrophic errors. For Monitor Warm Start jump to
address E003. For Cold Start use EO00. The user will be
shown the Monitor prompt (* >").

b. For lesser errors detected give an FC ERROR MESSAGE, stop
the program, and return to BASIC READY level. This is simply
done by jumping to C7ES.

c. If errors are detected and your routines have displayed the
error message(s), you can stop the program and exit directly to
BASIC READY level. For a BASIC Warm Start jump to DFFA,
for a Cold Start DFFD.

d. Of course you can return normally to BASIC so it will continue
the program where it left off after the USR statement. This is
simply done by the RET instruction. Put a floating point
number at 1BF first if necessary.

5—11

Chapter Five

Note that all the Monitor subroutines are available to the Z80
subroutine, including turing the tape on, reading a file, and tuming it
off; or getting input from the keyboard. See Chapter 3 for a description
of available Monitor subroutines.

Debugging of the Z80 routine is a little more difficult than
debugging BASIC programs. BASIC loses control of the situation and
of what you are doing while your routine is running, and can’t “keep an
eye out” for potential errors as it can within a BASIC program. Great
care, desk checking, and modular programming are necessary.

An assembly language routine can also use as input and output
actual BASIC variables and arrays. Using the pointers in the BCA
described earlier, the program can find the variable/array lists and
scan for the one(s) with the correct name(s). Then using the floating
point or string formats, the values can be examined or changed.

5—-12

CHAPTER
SIX

Sorcerer Video and Graphics

CHARACTER CODES

To understand the Sorcerer’s video interface, the programmer
must be familiar with what a character code is. This code indicates to
the video driver which character to display on the screen.
Conveniently, character codes consist of exactly one byte, or eight
bits. Thus there are 28 or 256 possible character codes, numbered 0
to 255 (00-FF in hex). Table VI-1 on the following pages lists for each
character code the key press related to the code and the character
that the code represents.

Explanation of Table VI-1

Column 1 lists the decimal code for each character, which is used in the
BASIC function CHR$ and when POKEing characters.

Column 2 lists the hexadecimal code for each character, for use by
machine language programmers.

Column 3 indicates the keypress that corresponds to the respective
character code. There are three keys on the Sorcerer keyboard that
can be depressed simultaneously with the other keys to modify the
code transmitted. They are SHIFT (8), CTRL (C), and GRAPHICS
(G). The SHIFT LOCK key also affects the keyboard selection and
will be discussed in Chapter 7. The letters 8, C,and G in column 3 of
Table VI-1 indicate that the respective key or keys must be held down
to transmit the desired code. The letters NP in this column stand for
Numeric key Pad.

Column 4 depicts the character displayed on the video screen when the
relevant code is sent to the video driver. In the case of the user-
programmable characters (codes 128 to 255, part 4 of Table VI-1),
this column gives the memory address at which the character
definition is stored.

Column 5 gives the BASIC reserved word, if any, that each code
represents. This is the shorthand notation used to condense BASIC
program statements (see Chapter 5).

6—1

Chapter Six

Table VI-1. CHARACTER CODES AND KEYPRESSES
Part 1: CONTROL AND NUMERIC CHARACTERS

CODE CODE BASIC
(DECIMAL) (HEX) KEY PRESS CHARACTER RSVD WORD
0 00 Ce 0
1 01 CA [
2 02 CB L
3 03 cC 1
4 04 cD %
5 05 CE H
6 06 CF /
7 07 CcG o
8 08 CH N
9 09 cl >
10 0A cJ =
11 0B CK ¢
12 ocC CL ¢
13 oD CcM <
14 OE cN (2]
15 OF C-0 0
16 10 CcP)
17 11 cQ C}
18 12 CR ©
19 13 cS)
20 14 CT Y
21 15 cu v
22 16 (Y Il
23 17 CcWw 1
24 18 C-X X
25 19 cY +
26 1A CcZ $
27 1B C S
28 1C C\ F]
29 1D C) il
30 1E CA d
31 IF C-underscore [
6—2

Sorcerer Video and Graphics

l CODE CODE BASIC
(DECIMAL) (HEX) KEY PRESS CHARACTER RSVD WORD
32 20 space bar blank
I 33 21 S-1 !
34 22 82
35 23 83 #
I 36 24 84 $ $
37 25 85 %
38 26 86 &
l 39 27 s7 '
40 28 88 ((
41 29 $9))
l 42 2A S- *
43 2B S +
44 2C comma , ,
l 45 2D hyphen -
46 2E period .
47 2F / /
. 48 30 0 0
49 31 1 1
50 32 2 2
l 51 33 3 3
52 34 4 4
53 35 5 5
' 54 36 6 6
55 37 7 7
56 38 8 8
l 57 39 9 9
58 3A : :
59 3B - ;
. 60 3C 8-comma <
61 3D 8$-hyphen =
62 3E $-period >
l 63 3F S/ ?
l 63

Chapter Six

Table VI-1. CHARACTER CODES AND KEYPRESSES
Part 2: ALPHABETIC CHARACTERS

CODE CODE BASIC
(DECIMAL) (HEX) KEY PRESS CHARACTER RSVD WORD

64 40 @ ®
65 41 SA A
66 42 SB B
67 43 S§C C
68 44 SD D
69 45 SE E
70 46 SF F
71 47 S$G G
72 48 S-H H
73 49 S I

74 4A S-J J
75 4B SK K
76 4C SL L
77 4D SM M
78 4E SN N
79 4F - 20 @]
80 50 SP P
81 51 sQ Q
82 52 SR R
83 53 8-S S
84 % ST T
85 55 sd a
86 56 SV \"
87 57 sSwW W
88 58 S-X X
89 59 S-Y Y
90 5A SZ Z

91 5B [[

92 5C \ \
93 5D] J

94 5E A A
95 5F underscore -

6—4

Sorcerer Video and Graphics
CODE CODE BASIC
(DECIMAL) (HEX) KEY PRESS CHARACTER RSVD WORD
96 60 Sa ~
97 61 A a
98 62 B b
99 63 C c
100 64 D d
101 65 E e
102 66 F f
103 67 G g
104 68 H h
105 69 | i
106 6A J j
107 6B K k
108 6C L |
109 6D M m
\ 110 6E N n
111 6F O o
112 70 P p
113 71 Q q
114 72 R r
115 73 S s
116 74 T t
117 75 u u
118 76 Vv v
119 77 W w
120 78 X X
121 79 Y y
122 7A Z z
123 7B S| {
124 7C s\ :
125 7D S ¥
126 7E SV ~
127 7F S-underscore

Chapter Six

Table VI-1. CHARACTER CODES AND KEYPRESSES

Part 3: SORCERER-DEFINED GRAPHIC CHARACTERS l

CODE CODE CHAR. BASIC
(DECIMAL) (HEX) KEYPRESS CHAR. ADDRESS RSVD WORD
128 80 G-1 | FC00 END
129 81 G2 | FC08 FOR
130 82 G3 | FC10 NEXT
131 83 G4 | FC18 DATA
132 84 G5 . FC20 BYE
133 85 G6 | FC28 INPUT
134 8€ G7 | FC30 DIM
135 87 G8 1 FC38 READ
136 88 G9 ° FC40 LET
137 89 GO0 - FCa8 GOTO
138 8A G- - FC50 RUN

139 8B G-hyphen - FC58 IF
140 8C GA - FC60 RESTORE
141 8D G-tab m FC68 GOSUB
142 8E GQ X FC70 RETURN
143 8F GW r FC78 REM
144 90 GE 3 FC80 STOP
145 91 GR r FC88 ouT
146 92 GT | FC90 ON
147 93 GY | 4 FCo8 NULL
148 94 GU A | FCAO WAIT
149 95 Gl - FCA8 DEF
150 96 GO « FCBO POKE
151 97 GP - FCB8 PRINT
152 98 G| & FCCO CONT
153 99 G| v FCC8 LIST
154 9A GA L 4 FCDO CLEAR
155 9B GS $ FCD8 CLOAD
156 9C GD L FCEO CSAVE
157 9D GF _J FCES8 NEW
158 9D GG A FCFO TAB(
159 oF GH A FCF8 TO

6—6

Sorcerer Video and Graphics
CODE CODE CHAR. BASIC
(DECIMAL) (HEX) KEYPRESS CHAR. ADDRESS RSVD WORD
160 AO GJ = FDOO FN
161 Al GK u FDO8 SPC(
162 A2 GL | FD10 THEN
163 A3 G; & FD18 NOT
164 Ad Ge L FD20 STEP
165 A5 G ' N FD28 +
166 A6 G-underscore - FD30 —
167 A7 GZ | FD38 .
168 A8 GX | FD40 /
169 A9 G-C — FD48 A
170 AA G-V s FD50 AND
171 AB GB / FD58 OR
172 AC GN \ FD60 >
173 AD GM - FD68 =
174 AE G-comma - FD70 <
AF G-period - FD78 SGN
176 BO G-/ - FD80 INT
177 B1 G-minus, NP R FD88 ABS
178 B2 G-7, NP 4 FD90 USR
179 B3 G-8, NP = FD98 FRE
180 B4 G9, NP - FDAO INP
181 B5 G- —, NP # FDAS8 POS
182 B6 G4, NP | FDBO SQR
183 B7 G-6, NP | FDB8 RND
184 B8 G-X, NP wR FDCO LOG
185 B9 G-1,NP 4 FDC8 EXP
186 BA G2, NP = FDDO CcOS
187 BB G-3, NP — FDD8 SIN
188 BC G +, NP r FDEO TAN
189 BD G0, NP T FDES ATN
190 BE G-period, NP - FDFO PEEK
191 BF G- =, NP N FDF8 LEN
6—7

I‘ 175
N |

Chapter Six

Table VI-1. CHARACTER CODES AND KEYPRESSES
Part 4: USER-DEFINED GRAPHIC CHARACTERS

CODE CODE CHARACTER BASIC
(DECIMAL) (HEX) KEYPRESS ADDRESS RSVD WORD
192 co GS | FEOO STR$
193 Cl GS2 FEO8 VAL
194 c2 GS3 FE10 ASC
195 C3 GS4 FE18 CHR$
196 c4 GS5 FE20 LEFT$
197 c5 GS6 FE28 RIGHT$
198 c6 GS7 FE30 MID$
199 c7 GS8 FE38
200 C8 GS9 FE40
201 c9 GS0 FE48
202 CA GS-: FE50
203 CB GS-hyphen FES8
204 cC GS-A FE60
205 CD GS tab FE68
206 CE GSQ FE70
208 DO GSE FE80
209 D1 GSR FE88
210 D2 GS T FE90
211 D3 GS<Y FE98
212 D4 GS-U FEAO

213 D5 GS FEA8
214 D6 GS-O FEBO
215 D7 GS-P FEB8
216 D8 GS| FECO
217 D9 GS-| FEC8
218 DA GS-A FEDO
219 DB GS-S FED8
220 DC GSD FEEO
221 DD GSF FEES8
222 DE GSG FEFO
223 DF GS-H FEF8

207 CF GS-W FE78 '

Sorcerer Video and Graphics
CODE CODE CHARACTER BASIC
(DECIMAL) (HEX) KEY PRESS ADDRESS RSVD WORD
224 EO GS-J FFO0O
225 El GS K FFO08
226 E2 GS-L FF10
227 E3 GS-; FF18
228 E4 GS-@ FF20
229 E5 GS/ FF28
230 E6 GS-underscore FF30
231 E7 GS-Z FF38
232 E8 GS-X FF40
233 E9 GS-C FF48
234 EA GS-V FF50
235 EB GSB FF58
236 EC GS-N FF60
237 ED GS-M FF68
238 EE GS-comma FF70
239 EF GS-period FF78
240 FO GS-/ FF80
241 F1 GS-minus, NP FF88
242 F2 GS-7, NP FF90
243 F3 GS-8, NP FFo8
244 F4 GS-9, NP FFAO
245 F5 GS- —, NP FFA8
246 F6 GS-4, NP FFBO
247 F7 GS-6, NP FFB8
248 F8 GS-X, NP FFCO
249 F9 GS-1, NP FFC8
250 FA GS-2, NP FFDO
251 FB GS-3, NP FFD8
252 FC GS--+, NP FFEO
253 FD GS-0, NP FFES8
254 FE GS-period, NP FFFO
255 FF GS - = NP FFF8

Chapter Six

BASIC RESERVED CHARACTER CODES

The input/output (1/O) routine in BASIC “intercepts” control I
codes (character codes less than 20 hex) and, instead of printing out
a character, performs a function such as a carriage return or a cursor

movement. The specific control codes are listed in Table VI-2.

Table VI-2. BASIC CONTROL CODES AND THEIR FUNCTIONS

CODE CODE FUNCTION I
(decimal) (hex) KEYPRESS PERFORMED EQUIVALENTS
1 01 S-4,NpP Cursor left C-A; C-4,NP I
3 03 C-C Non-destructive
carriage return and
line feed, stops
execution, if any
8 08 S -under destructive back- C-H
score space (rubout) l
10 OA LINE FEED Line feed C-
12 0oC CLEAR Home cursor, clear C-L l
screen, set Sorcerer
graphics
13 OD RETURN Carriage return, C-M I
line feed, enter data
15 OF Cc-0O Disables keyboard,
except for RETURN, I
RESET, or another
C-0, which enables
keyboard I
17 11 S-5NP Cursor home C-@ C-5NP
19 13 S-6,NP Cursor right C-S; C-6,NP
23 17 S-8,NP Cursor up C-W; C-8,NP I
26 1A S-2,NP Cursor down C-Z; C-2,NP
27 1B ESC Suspends execl RUN/STOP I
tion, if any
6—10 I

Sorcerer Video and Graphics

THE VIDEO SCREEN

The Sorcerer Video uses direct memory access (DMA). The
video driver repeatedly reads 1920 bytes of RAM to determine the
1920 characters to be displayed on the screen. The RAM area for
video is located in memory at FO80 to F7FF (-3968 to -2049). The
first 64 bytes of this area define the first row of the screen, the second
64 the second row, and so on, such that the byte that contains the
character code for the character in row R, column C, is located at
address A, where

A = F080 + (40 * R)+C (hexadecimal)
0 <R =1D
0<C<3F

A=-3968 +64*R+C (decimal)
0<R=<29
0<Cg63

CHARACTER DEFINITIONS

The first 128 characters, codes 00-07 (0-27), are not under
user control. The definition of these characters is located in PROM at
F800-FBFF (1K). The next 64 characters, codes 80-BF (128-191),
can be programmed if desired, but they are already programmed to be
standard keyboard graphics. The 64x8 (512) bytes that define these
characters are located in RAM at FCOO-FDFF. This RAM can be
changed at any time by the programmer to redefine these characters.
However, the Monitor refreshes this area from its ROM every time a
RESET occurs, or whenever the video screen is cleared (e.g., when
CLEAR is pressed or when C-L is pressed). This will clobber any user
modifications.

The last 64 characters (CO-FF) are completely under program-
mer control. They are always displayed as nonsense until they are
defined by tuming on and off the bits of the eight bytes associated
with the character. These bytes are in RAM from FEOO to FFFF
(=512 to -1). For example, the character CO (192) is at FEOO-FEO7
(-512 to -505), C1 (193) at FEO8-FEOF (-504 to -497), C2 at

6—11

Chapter Six

FE10-FE17, and so on through FF (255), which is at FFF8-FFFF (-8
to -1). The formula to calculate where the eight bytes in RAM begin
for any of the 128 programmable characters (80-FF) is:

FCO00 + (8 * (c - 80)) (hexadecimal)
(8*(c-128))-1024 (decimal)

where “c” is the character code of the character to be programmed
and ranges from 80-FF (128-255).

The procedure for defining characters involves designing a
character and then translating the design into binary code. Each
character definition takes eight bytes of memory, or 64 bits. On the
screen each character consists of eight lines of eight dots. Thus each
of the eight bytes defining the character in memory corresponds to
one of the eight lines of the character in the display, and each of the
eight bits in that byte is a dot in that line. If the bit is on (1), then the
dot is white. If the bit is off (0), then the dot is black. For example, a
circle with a dot in the middle could be defined as a character. It would
require defining each of the 64 (8x8) dots as 64 (8x8) bits in
memory. So

00000000 binary 00 hex 0 decimal

XXX L. 00111000 38 56
XL L L XL, 01000100 44 68
X X. 10000010 82 130
X. . X. .X. 10010010 92 146
X X. 10000010 82 130
X . . . X . . 01000100 44 68

XXX L L. 00111000 38 56

The following BASIC program demonstrates how user-defined
characters can be generated and displayed using BASIC. The
program prints a “blot” (all dots on, a white square) on the screen
followed by the above circle with the dot in the middle. The blot will be
the first programmable graphic code CO (192), and the circle/dot will
be C1 (193).

6-12

-

Sorcerer Video and Graphics

10 FOR I=0 TO 7: REM 8 BYTES AT FEOO (-512) FOR BLOT

20 POKE -512+1,255: NEXT: REM TURN ON ALL BITS/DOTS

30 FOR I=0 TO 7: REM 8 BYTES AT FEO08 (-504) FOR CHR #193

40 READ J:RREM GET A BYTE VALUE FROM THE TABLE AS ABOVE
50 POKE -504+J: NEXT: REM TURN ON CORRECT DOTS

60 PRINT CHR$(192) ;CHR$(193): REM PRINT THE 2 NEW CHRS

70 DATA 0,56,68,130,146,30,68,56: REM DATA CHR #193

80 END

CURSOR POSITIONING

Cursor positioning is the process of moving the cursor (that
underscore character) on the screen to locations other than where it
usually is when standard BASIC or Monitor video output is done (eg.,
PRINT, DUMP, etc.). This is very useful especially when data is to be
placed on the screen but not in a line by line fashion. For example, if a
graphic diagram is displayed and certain segments are to be labeled,
the cursor can be moved directly to each one and the output gen-
erated in a random fashion on the screen. Also, in some programs
output statements will destructively erase what is already on the
screen. For example, if something is to be printed in the middle of a
line but there is information already in the beginning of that line, an
output statement will erase it. Proper cursor positioning will leave the
beginning of the line intact.

To perform cursor positioning from Assembly Language or
BASIC is quite simple:

1. Restore character under cursor. In machine language,
CALL OESE8H
From BASIC use the USR technique as follows:

900 POKE 260, 232 : REM HEX E8
901 POKE 261, 233 : REM HEX ES
902 X=USR(X) : REM CALL ESE8

2. Decide what row the cursor is to be on. There are 30 rows numbered
0-29. Call this “R".

3. Decide what column of that row the cursor is to be in. There are 64
columns numbered 0-63. Call this “C"

Chapter Six

4. Calculate 64 times R. This is the offset from the beginning of the
screen to the first column (0) of row R. This is easy in BASIC (Q=64*R).
In machine language, just shift R left six times, or, assuming R were in

register E:
LD D,0 ;D=0E=R
LD B,6 ;TIMES TO SHIFT
X: SLA E SHIFT E
RL D :SHIFT D
DJNZ X * 6 TIMES, DE=64"R

An alternate calculation would be to put R in the register pair HL and
execute the ADD HL,HL instruction six times in a row to double R six
times, or multiply by 64.

5. Find the Monitor workarea (MWA). This is described in detail in
Chapter 3. For the examples below, assume register [Y points to.the
MWA for Assembly, or assume AD equals the MWA address for

BASIC.
6. At offset 68 hex (IY+68 or AD+104) are two bytes where 64*R is to be
stored:
LD (IY+68),E
LD (IY+69),D

or in BASIC, POKE the low part (low byte) of the number 64*R, (64*R)
MOD 256, into AD+104, and POKE the high part (byte) of 64*R, INT
(64*R/256) at AD+105. Now, (64*R)MOD 256 is just the remainder
when 64*R is divided by 256, and this can be calculated as follows in
BASIC:

905 R2 = 64*R
910 MD = R2-INT (R2/256)*256
To do the POKESs, assuming AD is already pointing to the MWA:

915 POKE AD+104MD
920 POKE AD+105,INT(R2/256)

7. Atoffset 6A inthe MWA (IY+6A, AD+106) are two bytes where “C"is to
be stored. If it were in register A:

LD (IY+6A)A
LD (IY+6B),0

6-14

Sorcerer Video and Graphics

or in BASIC:

930 POKE AD+106,C
940 POKE AD+107,0

BASIC also requires you to put C at location 18E (398) in the BASIC
control area (BCA):

950 POKE 398,C

8. Call the Monitor cursor move routine. This will replace the current
cursor with the character which was at that spot (“underneath” it),
move the cursor to the requested spot and save the character there. In
machine language,

CALL OESCCH
From BASIC the USR technique must be used:

960 POKE 260,204: REM HEX CC
965 POKE 261,233: REM HEX E9
970 X=USR(X): REM CALL E9CC

9. Now a standard output statement like PRINT can be done and the
output will begin at this new cursor location.

This technique enables very fast horizontal and vertical tabbing that is
non-destructive. If speed and non-destructibility are not required,
tabbing can be done with BASIC statements. Horizontal tabbing can
be done directly with the use of the TAB(n) function. This function
overwrites all letters on the row, spacing out to the nth column
before writing.

Vertical tabbing may be done with C-Z (down arrow) characters.
For example, to tab to row 15, home the cursor witha C-Q (hex 11,
decimal 17) and then do a C-Z 15 times (C-Z is hex 1A, decimal 26):

2220 PRINT CHR$(17);: REM HOME

2240 FOR I=1 TO 15

2260 PRINT CHR$(26);: REM DOWN ONE ROW
2280 NEXT

PRINT TAB(n) can then be used to tab horizontally on that row.

6-15

Chapter Seven

5. None of the above depressed — standard lower case and numerics
and punctuation are used; no graphics or cursor movement.

The Monitor ROM area EC1E-EDFD contains the tables necessary to
allow the keyboard input routine to translate the signals from the
keyboard into a one-byte character code, depending on which of the
five states the keyboard is in. These tables are actually broken down
into six tables total: the first is awhat-to-do table to calculate the state,
and the last five are the character codes for the five states.

PERFORMING KEYBOARD INPUT

To get keyboard input from the user from BASIC or Z80
Assembly Language without INPUT statements, a very useful Monitor
subroutine can be used. In fact, this can be done such that the
program sees each character as it is typed without having to wait (or
ever get) a carriage return (RETURN). For example, a program can
react and respond immediately to input commands as they are typed.

From BASIC, characters can be input with the following example
assembly routine. Place this simple and relocatable Monitor keyboard
routine driver interface at, say, location FO (240). It can go anywhere,
but FO is a good start.

FO: CD15E0 SCAN: CALL QCKCHK ;CONTROL-C PRESSED?

F3: C2FADF JP NZ,BASIC ;YES, BACK TO BASIC(WARM)
F6: CDO9EO CALL RECEIVE ;NO, GET INPUT CHARACTER
F9: 28F5 JR ZSCAN ;NOTHING YET, CONTINUE
FB: 32FF00 LD (CHR)A ;GOT IT, SAVE AT LOC FF
FE: C9 RET ;RETURN AFTER USR CALL
FF: 00 CHR: NOP ‘WHERE BYTE STORED

QCKCHKEQU OEO15H
BASIC EQU ODFFAH
RECEIVEEQU OEOOSH

Sorcerer Keyboard

The routine first checks to see if C-C, ESC, or RUN/STOP have been
entered, meaning the user wants to quit. If so (Not Zero) back to
READY level. If not, the current RECEIVE device (usually keyboard) is
scanned for a character. If none (Zero), scanning continues. If found,
the character is put at location FF (255). Control is then retum to
BASIC after the USR call. The following example BASIC program can
use this routine:

10 PRINT “ENTER CHARACTER"

20 POKE 260,240: POKE 261,0: REM LOC 00FO0 IS 240,0
30 Z=USR(Z): REM CALL SCAN

40 REM IF WE GET HERE LOC FF HAS A CHARACTER
50 A$ = CHR$(PEEK (255))

60 IF A% = “S" THEN STOP: REM STOP IF S ENTERED
70 PRINT A$: REM ECHO THE CHARACTER

80 GOTO 20: REM LOOP TILL S ENTERED

These are both simple routines that can be modified to be as fancy as
necessary.

From Z80 machine language there is no need to store the
character in RAM. It is returned in the accumulator by the RECEIVE
routine.

The above programs accept their input from the current
RECEIVE device. To set this device the Monitor command SET I=x is
used, where x is the desired input device (see Chapter 2).

7-3

INDEX

Acoustic coupler 2-3

addresses 1-3

alphabetic characters 64, 6-5

arrays, BASIC 5-5, 5-8

assembly language 3-9, 5-9, 5-12, 6-13
automatic level control 4-3

BASIC
arrays 5-5, 5-8, 5-12
calling the monitor from 3-9
control area 3-3, 5-3, 56, 5-7
cursor positioning 6-13
defining characters with 6-12
floating point numbers 5-1, 5-5
machine language interfacing 3-9, 59
memory map 54, 56, 5-7
program statements 5-5
reserved character codes 6-10
reserved words 5-5, 6-1
ROM-PAC 14, 55
shorthand notation 6-1
stack 54, 56
string space 54, 56
string variables 5-8
tabbing 6-15
variables 5-5, 5-12

BATCH command 3-6, 3-12

baud rate 2-2

BCA 3-3, 5-3, 5-12

BYE 3-10

Carriage retumm (CR) 3-5, 3-11
cassette interface 2-1, 4-1

cassette motor controls 3-6, 3-10, 4-1
Centronics printer interface 2-1, 2-3
character codes 6-1

character definitions 6-11

clearing the screen 3-9

CLOAD 4-1, 4-3

cold start 3-5, 3-6, 3-10, 5-11

Index

control codes 6-2, 6-10

CRC 3-7,4-1,4-2,4-3, 44

CRLF 3-11

CRTL key 6-1, 7-1, 7-3

CSAVE 3-7, 4-1

cursor 3-12, 56, 7-1, 7-1, 7-2
cursor movement 6-10

cursor positioning 6-13

cyclical redundancy check 3-7, 4-1

DB25 connector 2-2

debugging 5-12

decimal, relation to hex and binary 1-1
direct memory access 3-11, 6-11
display screen 6-1

DMA 6-11

dynamic RAM 1-5

EPROM 14
ERROR message 3-11, 5-11
ESC key 7-3
exponent 5-1

FILES command 3-12, 4-1, 4-3
floating point numbers 5-1
FOUND message 4-3, 4-4

free space 54, 5-9

Graphics 6-1

graphic characters 6-6, 6-7, 6-8, 6-9
graphics with BASIC 6-12
GRAPHICS key 3-3, 6-1, 7-1

Header, tape 4-1, 4-2

hex 1-1

hex digits 1-1, 1-2

hex representation of floating point 5-3
HIMEM 3-1, 3-2, 34, 3-10, 54, 59
horizontal tabbing 6-15

Index

1/0 devices 2-1

input ports 2-2
interfaces 2-1

interfile tone 4-1, 4-2

“K” 1-3
keyboard 2-1, 7-1
keypresses 6-1, 6-2

Line feed (LF) 3-11
LOAD 3-11, 3-12,4-1,4-3
LOADG 3-7, 3-11

Machine language 1-1, 3-9
machine language interfacing to BASIC 5-9
mantissa 5-1
memory 1-3, 14
memory maps
BASIC 54
SORCERER 3-1, 3-2, 33
modem 2-3
Monitor
commands 2-1
description 3-1
interfacing with BASIC 3-9, 5-9
stack 3-2, 3-3
subroutines 3-9 through 3-12, 4-3, 5-12
workarea 3-1 through 3-8, 6-14

motor controls, tape 3-6, 3-10, 4-1
MPU 1-1
MWA 3-1 through 3-8, 3-10, 3-11, 3-12, 4-3, 6-14

Numeric characters 6-3

Output ports 2-2
OVER command 34, 3-6

Parallel interface 2-1, 2-3
ports 2-1
printer interface 2-1

Index

programmable characters 6-11
PROM 14, 6-11
PROMPT command 3-6, 3-12

RAM 14, 2-1

RECEIVE 3-5, 3-10, 7-3
registers 1-5

REPT key 3-8

reserved character codes, BASIC 6-10
reserved words, BASIC 5-5, 6-1
RESET 2-3, 24, 3-5, 3-10, 6-11
restart space 3-2, 3-3

ROM 14

ROM, BASIC 14, 55

ROM PAC 14, 3-2, 33

RS-232 2-1

RUN/STOP key 7-3

8-100 expansion facility 2-1
SAVE command 3-11
screen flicker 3-11
SEND command 3-6, 3-10, 3-11, 3-12, 4-3
serial interface 2-1, 2-2, 3-10
SET command 2-1, 2-3, 3-5, 36, 3-7, 3-10,
3-12,4-3,73
SHIFT key 3-3, 6-1, 7-1
SHIFT LOCK key 6-1, 7-1
SORCERER
BASIC 5-1
cassette interface 4-1
keyboard 7-1
1/O devices 2-1
ports 2-1
Monitor 2-1, 3-1
Video interface 6-1, 6-11
Sorcerer-defined graphic characters 6-6, 6-7
string arrays 5-8
string space 54, 5-6
string variables 5-8
static RAM 1-5

Index

Tabbing 6-15
tape interface 2-1, 4-1
tape motor controls 3-6, 3-10, 4-1

User-defined graphic characters 6-8, 6-9, 6-11
USR function 3-9, 5-10

Variables, BASIC 5-5, 5-8
variables, string 5-8
vertical tabbing 6-15
video
driver 3-2, 6-1, 6-11
interface 6-1
screen 2-1, 6-11
screen flicker 3-11

Warm start 3-6, 5-11

Z-80 1-1, 1-5, 2-1
Zilog 16

DISCLAIMER

The information in this manual is the work of the author. Exidy
Inc. is in no way responsible for the accuract of its contents. Much of
the research for this manual was conducted by wading through
personal disassemblies of the Monitor and BASIC trying to figure out
what was going on (the author has also written a Z80 disassembler
which is available from Quality Software).

Neither the author nor Quality Software makes any guarantee or
warranty, expressed or implied, of the accuracy of the information
contained in this manual. Many Sorcerer programmers, including the
author, have found this manual to be extremely useful, and we hope
the same holds true for you. Good luck in your programming!

